1
|
Lin L, Huang Y, McIntyre J, Chang CH, Colmenares S, Lee YCG. Prevalent Fast Evolution of Genes Involved in Heterochromatin Functions. Mol Biol Evol 2024; 41:msae181. [PMID: 39189646 PMCID: PMC11408610 DOI: 10.1093/molbev/msae181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 08/28/2024] Open
Abstract
Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in maintaining genome stability, organizing chromosomes, and suppressing transposable elements. Given the importance of these functions, it is expected that genes involved in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were found to evolve rapidly. To investigate whether these previous findings are anecdotal or general to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes involved in heterochromatin functions and investigate their evolution over short and long evolutionary time scales in Drosophila. Our analyses find that these genes exhibit significantly more frequent evolutionary changes, both in the forms of amino acid substitutions and gene copy number change, when compared to genes involved in Polycomb-based repressive chromatin. While positive selection drives amino acid changes within both structured domains with diverse functions and intrinsically disordered regions, purifying selection may have maintained the proportions of intrinsically disordered regions of these proteins. Together with the observed negative associations between the evolutionary rate of these genes and the genomic abundance of transposable elements, we propose an evolutionary model where the fast evolution of genes involved in heterochromatin functions is an inevitable outcome of the unique functional roles of heterochromatin, while the rapid evolution of transposable elements may be an effect rather than cause. Our study provides an important global view of the evolution of genes involved in this critical cellular domain and provides insights into the factors driving the distinctive evolution of heterochromatin.
Collapse
Affiliation(s)
- Leila Lin
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Jennifer McIntyre
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| | - Ching-Ho Chang
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Serafin Colmenares
- Department of Cell and Molecular Biology, University of California, Berkeley, CA, USA
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, USA
| |
Collapse
|
2
|
Lin L, Huang Y, McIntyre J, Chang CH, Colmenares S, Lee YCG. Prevalent fast evolution of genes involved in heterochromatin functions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583199. [PMID: 38496614 PMCID: PMC10942301 DOI: 10.1101/2024.03.03.583199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Heterochromatin is a gene-poor and repeat-rich genomic compartment universally found in eukaryotes. Despite its low transcriptional activity, heterochromatin plays important roles in maintaining genome stability, organizing chromosomes, and suppressing transposable elements (TEs). Given the importance of these functions, it is expected that the genes involved in heterochromatin regulation would be highly conserved. Yet, a handful of these genes were found to evolve rapidly. To investigate whether these previous findings are anecdotal or general to genes modulating heterochromatin, we compile an exhaustive list of 106 candidate genes involved in heterochromatin functions and investigate their evolution over short and long evolutionary time scales in Drosophila. Our analyses find that these genes exhibit significantly more frequent evolutionary changes, both in the forms of amino acid substitutions and gene copy number change, when compared to genes involved in Polycomb-based repressive chromatin. While positive selection drives amino acid changes within both structured domains with diverse functions and intrinsically disordered regions (IDRs), purifying selection may have maintained the proportions of IDRs of these proteins. Together with the observed negative associations between evolutionary rates of these genes and genomic TE abundance, we propose an evolutionary model where the fast evolution of genes involved in heterochromatin functions is an inevitable outcome of the unique functional roles of heterochromatin, while the rapid evolution of TEs may be an effect rather than cause. Our study provides an important global view of the evolution of genes involved in this critical cellular domain and provides insights into the factors driving the distinctive evolution of heterochromatin.
Collapse
|
3
|
Huang Y, Lee YCG. Blessing or curse: how the epigenetic resolution of host-transposable element conflicts shapes their evolutionary dynamics. Proc Biol Sci 2024; 291:20232775. [PMID: 38593848 PMCID: PMC11003778 DOI: 10.1098/rspb.2023.2775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 03/01/2024] [Indexed: 04/11/2024] Open
Abstract
Transposable elements (TEs) are selfish genetic elements whose antagonistic interactions with hosts represent a common genetic conflict in eukaryotes. To resolve this conflict, hosts have widely adopted epigenetic silencing that deposits repressive marks at TEs. However, this mechanism is imperfect and fails to fully halt TE replication. Furthermore, TE epigenetic silencing can inadvertently spread repressive marks to adjacent functional sequences, a phenomenon considered a 'curse' of this conflict resolution. Here, we used forward simulations to explore how TE epigenetic silencing and its harmful side effects shape the evolutionary dynamics of TEs and their hosts. Our findings reveal that epigenetic silencing allows TEs and their hosts to stably coexist under a wide range of conditions, because the underlying molecular mechanisms give rise to copy-number dependency of the strength of TE silencing. Interestingly, contrary to intuitive expectations that TE epigenetic silencing should evolve to be as strong as possible, we found a selective benefit for modifier alleles that weaken TE silencing under biologically feasible conditions. These results reveal that the dual nature of TE epigenetic silencing, with both positive and negative effects, complicates its evolutionary trajectory and makes it challenging to determine whether TE epigenetic silencing is a 'blessing' or a 'curse'.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, USA
| |
Collapse
|
4
|
Sarkies P. The curious case of the disappearing piRNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1849. [PMID: 38629193 DOI: 10.1002/wrna.1849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/19/2024] [Accepted: 03/22/2024] [Indexed: 04/19/2024]
Abstract
Small non-coding RNAs are key regulators of gene expression across eukaryotes. Piwi-interacting small RNAs (piRNAs) are a specific type of small non-coding RNAs, conserved across animals, which are best known as regulators of genome stability through their ability to target transposable elements for silencing. Despite the near ubiquitous presence of piRNAs in animal lineages, there are some examples where the piRNA pathway has been lost completely, most dramatically in nematodes where loss has occurred in at least four independent lineages. In this perspective I will provide an evaluation of the presence of piRNAs across animals, explaining how it is known that piRNAs are missing from certain organisms. I will then consider possible explanations for why the piRNA pathway might have been lost and evaluate the evidence in favor of each possible mechanism. While it is still impossible to provide definitive answers, these theories will prompt further investigations into why such a highly conserved pathway can nevertheless become dispensable in certain lineages. This article is categorized under: Regulatory RNAs/RNAi/Riboswitches > Biogenesis of Effector Small RNAs RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution.
Collapse
Affiliation(s)
- Peter Sarkies
- Department of Biochemistry, University of Oxford, Oxford, UK
| |
Collapse
|
5
|
Fablet M, Salces-Ortiz J, Jacquet A, Menezes BF, Dechaud C, Veber P, Rebollo R, Vieira C. A Quantitative, Genome-Wide Analysis in Drosophila Reveals Transposable Elements' Influence on Gene Expression Is Species-Specific. Genome Biol Evol 2023; 15:evad160. [PMID: 37652057 PMCID: PMC10492446 DOI: 10.1093/gbe/evad160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023] Open
Abstract
Transposable elements (TEs) are parasite DNA sequences that are able to move and multiply along the chromosomes of all genomes. They can be controlled by the host through the targeting of silencing epigenetic marks, which may affect the chromatin structure of neighboring sequences, including genes. In this study, we used transcriptomic and epigenomic high-throughput data produced from ovarian samples of several Drosophila melanogaster and Drosophila simulans wild-type strains, in order to finely quantify the influence of TE insertions on gene RNA levels and histone marks (H3K9me3 and H3K4me3). Our results reveal a stronger epigenetic effect of TEs on ortholog genes in D. simulans compared with D. melanogaster. At the same time, we uncover a larger contribution of TEs to gene H3K9me3 variance within genomes in D. melanogaster, which is evidenced by a stronger correlation of TE numbers around genes with the levels of this chromatin mark in D. melanogaster. Overall, this work contributes to the understanding of species-specific influence of TEs within genomes. It provides a new light on the considerable natural variability provided by TEs, which may be associated with contrasted adaptive and evolutionary potentials.
Collapse
Affiliation(s)
- Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
- Institut Universitaire de France (IUF), Paris, France
| | - Judit Salces-Ortiz
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Angelo Jacquet
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Bianca F Menezes
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Corentin Dechaud
- Institut de Génomique Fonctionnelle de Lyon, Univ Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Philippe Veber
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| | - Rita Rebollo
- Univ Lyon, INRAE, INSA-Lyon, BF2I, UMR 203, Villeurbanne, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon; Université Lyon 1; CNRS; UMR 5558, Villeurbanne, France
| |
Collapse
|
6
|
Alkailani MI, Gibbings D. The Regulation and Immune Signature of Retrotransposons in Cancer. Cancers (Basel) 2023; 15:4340. [PMID: 37686616 PMCID: PMC10486412 DOI: 10.3390/cancers15174340] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Advances in sequencing technologies and the bioinformatic analysis of big data facilitate the study of jumping genes' activity in the human genome in cancer from a broad perspective. Retrotransposons, which move from one genomic site to another by a copy-and-paste mechanism, are regulated by various molecular pathways that may be disrupted during tumorigenesis. Active retrotransposons can stimulate type I IFN responses. Although accumulated evidence suggests that retrotransposons can induce inflammation, the research investigating the exact mechanism of triggering these responses is ongoing. Understanding these mechanisms could improve the therapeutic management of cancer through the use of retrotransposon-induced inflammation as a tool to instigate immune responses to tumors.
Collapse
Affiliation(s)
- Maisa I. Alkailani
- College of Health and Life Sciences, Hamad Bin Khalifa University, Qatar Foundation, Doha P.O. Box 34110, Qatar
| | - Derrick Gibbings
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON K1H 8M5, Canada;
| |
Collapse
|
7
|
Chakrabarty P, Sen R, Sengupta S. From parasites to partners: exploring the intricacies of host-transposon dynamics and coevolution. Funct Integr Genomics 2023; 23:278. [PMID: 37610667 DOI: 10.1007/s10142-023-01206-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/01/2023] [Accepted: 08/07/2023] [Indexed: 08/24/2023]
Abstract
Transposable elements, often referred to as "jumping genes," have long been recognized as genomic parasites due to their ability to integrate and disrupt normal gene function and induce extensive genomic alterations, thereby compromising the host's fitness. To counteract this, the host has evolved a plethora of mechanisms to suppress the activity of the transposons. Recent research has unveiled the host-transposon relationships to be nuanced and complex phenomena, resulting in the coevolution of both entities. Transposition increases the mutational rate in the host genome, often triggering physiological pathways such as immune and stress responses. Current gene transfer technologies utilizing transposable elements have potential drawbacks, including off-target integration, induction of mutations, and modifications of cellular machinery, which makes an in-depth understanding of the host-transposon relationship imperative. This review highlights the dynamic interplay between the host and transposable elements, encompassing various factors and components of the cellular machinery. We provide a comprehensive discussion of the strategies employed by transposable elements for their propagation, as well as the mechanisms utilized by the host to mitigate their parasitic effects. Additionally, we present an overview of recent research identifying host proteins that act as facilitators or inhibitors of transposition. We further discuss the evolutionary outcomes resulting from the genetic interactions between the host and the transposable elements. Finally, we pose open questions in this field and suggest potential avenues for future research.
Collapse
Affiliation(s)
- Prayas Chakrabarty
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
| | - Raneet Sen
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India
- Institute of Bioorganic Chemistry, Department of RNA Metabolism, Polish Academy of Sciences, Poznan, Poland
| | - Sugopa Sengupta
- Department of Life Sciences, Presidency University Kolkata, 86/1 College Street, Kolkata, 700073, India.
| |
Collapse
|
8
|
Miller DE, Dorador AP, Van Vaerenberghe K, Li A, Grantham EK, Cerbin S, Cummings C, Barragan M, Egidy RR, Scott AR, Hall KE, Perera A, Gilliland WD, Hawley RS, Blumenstiel JP. Off-target piRNA gene silencing in Drosophila melanogaster rescued by a transposable element insertion. PLoS Genet 2023; 19:e1010598. [PMID: 36809339 PMCID: PMC9983838 DOI: 10.1371/journal.pgen.1010598] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 03/03/2023] [Accepted: 01/04/2023] [Indexed: 02/23/2023] Open
Abstract
Transposable elements (TE) are selfish genetic elements that can cause harmful mutations. In Drosophila, it has been estimated that half of all spontaneous visible marker phenotypes are mutations caused by TE insertions. Several factors likely limit the accumulation of exponentially amplifying TEs within genomes. First, synergistic interactions between TEs that amplify their harm with increasing copy number are proposed to limit TE copy number. However, the nature of this synergy is poorly understood. Second, because of the harm posed by TEs, eukaryotes have evolved systems of small RNA-based genome defense to limit transposition. However, as in all immune systems, there is a cost of autoimmunity and small RNA-based systems that silence TEs can inadvertently silence genes flanking TE insertions. In a screen for essential meiotic genes in Drosophila melanogaster, a truncated Doc retrotransposon within a neighboring gene was found to trigger the germline silencing of ald, the Drosophila Mps1 homolog, a gene essential for proper chromosome segregation in meiosis. A subsequent screen for suppressors of this silencing identified a new insertion of a Hobo DNA transposon in the same neighboring gene. Here we describe how the original Doc insertion triggers flanking piRNA biogenesis and local gene silencing. We show that this local gene silencing occurs in cis and is dependent on deadlock, a component of the Rhino-Deadlock-Cutoff (RDC) complex, to trigger dual-strand piRNA biogenesis at TE insertions. We further show how the additional Hobo insertion leads to de-silencing by reducing flanking piRNA biogenesis triggered by the original Doc insertion. These results support a model of TE-mediated gene silencing by piRNA biogenesis in cis that depends on local determinants of transcription. This may explain complex patterns of off-target gene silencing triggered by TEs within populations and in the laboratory. It also provides a mechanism of sign epistasis among TE insertions, illuminates the complex nature of their interactions and supports a model in which off-target gene silencing shapes the evolution of the RDC complex.
Collapse
Affiliation(s)
- Danny E. Miller
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children’s Hospital, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Ana P. Dorador
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Kelley Van Vaerenberghe
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
- Division of Biological Sciences, University of Montana, Missoula, Montana, United States of America
| | - Angela Li
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Emily K. Grantham
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Stefan Cerbin
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Celeste Cummings
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Marilyn Barragan
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| | - Rhonda R. Egidy
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Allison R. Scott
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Kate E. Hall
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - Anoja Perera
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
| | - William D. Gilliland
- Department of Biological Sciences, DePaul University, Chicago, Illinois, United States of America
| | - R. Scott Hawley
- Stowers Institute for Medical Research, Kansas City, Missouri, United States of America
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, Kansas, United States of America
| | - Justin P. Blumenstiel
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, United States of America
| |
Collapse
|
9
|
Sammarco I, Pieters J, Salony S, Toman I, Zolotarov G, Lafon Placette C. Epigenetic targeting of transposon relics: beating the dead horses of the genome? Epigenetics 2022; 17:1331-1344. [PMID: 36255200 PMCID: PMC9586680 DOI: 10.1080/15592294.2021.2022066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transposable elements (TEs) have been seen as selfish genetic elements that can propagate in a host genome. Their propagation success is however hindered by a combination of mechanisms such as mutations, selection, and their epigenetic silencing by the host genome. As a result, most copies of TEs in a given genome are dead relics: their sequence is too degenerated to allow any transposition. Nevertheless, these TE relics often, but not always, remain epigenetically silenced, and if not to prevent transposition anymore, one can wonder the reason for this phenomenon. The mere self-perpetuating loop inherent to epigenetic silencing could alone explain that even when inactive, TE copies remain silenced. Beyond this process, nevertheless, antagonistic selective forces are likely to act on TE relic silencing. Especially, without the benefit of preventing transposition, TE relic silencing may prove deleterious to the host fitness, suggesting that the maintenance of TE relic silencing is the result of a fine, and perhaps case-by-case, evolutionary trade-off between beneficial and deleterious effects. Ultimately, the release of TE relics silencing may provide a 'safe' ground for adaptive epimutations to arise. In this review, we provide an overview of these questions in both plants and animals.
Collapse
Affiliation(s)
- Iris Sammarco
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic,Institute of Botany, Czech Academy of Sciences, Pruhonice, Czech Republic
| | - Janto Pieters
- Laboratory of Pollen Biology, Institute of Experimental Botany, Czech Academy of Science, Prague, Czech Republic,Department of Plant Experimental Biology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Susnata Salony
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic
| | - Izabela Toman
- Department of Anthropology and Human Genetics, Faculty of Science, Charles University, Prague, Czech Republic
| | - Grygoriy Zolotarov
- Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Clément Lafon Placette
- Department of Botany, Faculty of Science, Charles University, Prague, Czech Republic,CONTACT Clément Lafon Placette Department of Botany, Faculty of Science, Charles University, PragueCZ-128 01, Czech Republic
| |
Collapse
|
10
|
Huang Y, Shukla H, Lee YCG. Species-specific chromatin landscape determines how transposable elements shape genome evolution. eLife 2022; 11:81567. [PMID: 35997258 PMCID: PMC9398452 DOI: 10.7554/elife.81567] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 07/15/2022] [Indexed: 11/30/2022] Open
Abstract
Transposable elements (TEs) are selfish genetic parasites that increase their copy number at the expense of host fitness. The ‘success’, or genome-wide abundance, of TEs differs widely between species. Deciphering the causes for this large variety in TE abundance has remained a central question in evolutionary genomics. We previously proposed that species-specific TE abundance could be driven by the inadvertent consequences of host-direct epigenetic silencing of TEs—the spreading of repressive epigenetic marks from silenced TEs into adjacent sequences. Here, we compared this TE-mediated local enrichment of repressive marks, or ‘the epigenetic effect of TEs’, in six species in the Drosophila melanogaster subgroup to dissect step-by-step the role of such effect in determining genomic TE abundance. We found that TE-mediated local enrichment of repressive marks is prevalent and substantially varies across and even within species. While this TE-mediated effect alters the epigenetic states of adjacent genes, we surprisingly discovered that the transcription of neighboring genes could reciprocally impact this spreading. Importantly, our multi-species analysis provides the power and appropriate phylogenetic resolution to connect species-specific host chromatin regulation, TE-mediated epigenetic effects, the strength of natural selection against TEs, and genomic TE abundance unique to individual species. Our findings point toward the importance of host chromatin landscapes in shaping genome evolution through the epigenetic effects of a selfish genetic parasite. All the instructions required for life are encoded in the set of DNA present in a cell. It therefore seems natural to think that every bit of this genetic information should serve the organism. And yet most species carry parasitic ‘transposable’ sequences, or transposons, whose only purpose is to multiply and insert themselves at other positions in the genome. It is possible for cells to suppress these selfish elements. Chemical marks can be deposited onto the DNA to temporarily ‘silence’ transposons and prevent them from being able to move and replicate. However, this sometimes comes at a cost: the repressive chemical modifications can spread to nearby genes that are essential for the organism and perturb their function. Strangely, the prevalence of transposons varies widely across the tree of life. These sequences form the majority of the genome of certain species – in fact, they represent about half of the human genetic information. But their abundance is much lower in other organisms, forming a measly 6% of the genome of puffer fish for instance. Even amongst fruit fly species, the prevalence of transposable elements can range between 2% and 25%. What explains such differences? Huang et al. set out to examine this question through the lens of transposon silencing, systematically comparing how this process impacts nearby regions in six species of fruit flies. This revealed variations in the strength of the side effects associated with transposon silencing, resulting in different levels of perturbation on neighbouring genes. A stronger impact was associated with the species having fewer transposons in its genome, suggesting that an evolutionary pressure is at work to keep the abundance of transposons at a low level in these species. Further analyses showed that the genes which determine how silencing marks are distributed may also be responsible for the variations in the impact of transposon silencing. They could therefore be the ones driving differences in the abundance of transposons between species. Overall, this work sheds light on the complex mechanisms shaping the evolution of genomes, and it may help to better understand how transposons are linked to processes such as aging and cancer.
Collapse
Affiliation(s)
- Yuheng Huang
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Harsh Shukla
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| | - Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, United States
| |
Collapse
|
11
|
Pathania AS, Prathipati P, Pandey MK, Byrareddy SN, Coulter DW, Gupta SC, Challagundla KB. The emerging role of non-coding RNAs in the epigenetic regulation of pediatric cancers. Semin Cancer Biol 2022; 83:227-241. [PMID: 33910063 DOI: 10.1016/j.semcancer.2021.04.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 02/09/2023]
Abstract
Epigenetics is a process that involves the regulation of gene expression without altering the sequence of DNA. Numerous studies have documented that epigenetic mechanisms play a critical role in cell growth, differentiation, and cancer over the past decade. The well-known epigenetic modifications are either on DNA or at the histone proteins. Although several studies have focused on regulating gene expression by non-coding RNAs, the current understanding of their biological functions in various human diseases, particularly in cancers, is inadequate. Only about two percent of DNA is involved in coding the protein-coding genes, and leaving the rest 98 percent is non-coding and the scientific community regarded as junk or noise with no known purpose. Most non-coding RNAs are derived from such junk DNA and are known to be involved in various signaling pathways involving cancer initiation, progression, and the development of therapy resistance in many human cancer types. Recent studies have suggested that non-coding RNAs, especially microRNAs, piwi-interactingRNAs, and long non-coding RNAs, play a significant role in controlling epigenetic mechanism(s), indicating the potential effect of epigenetic modulation of non-coding RNAs on cancer progression. In this review article, we briefly presented epigenetic marks' characteristics, crosstalk between epigenetic modifications and microRNAs, piwi-interactingRNAs, and long non-coding RNAs to uncover the effect on the phenotype of pediatric cancers. Further, current knowledge on understanding the RNA epigenetics will help design novel therapeutics that target epigenetic regulatory networks to benefit cancer patients in the clinic.
Collapse
Affiliation(s)
- Anup S Pathania
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Philip Prathipati
- Laboratory of Bioinformatics, National Institutes of Biomedical Innovation, Health and Nutrition, Osaka, Japan
| | - Manoj K Pandey
- Department of Biomedical Sciences, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
| | - Siddappa N Byrareddy
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Don W Coulter
- Department of Pediatrics, Division of Hematology/Oncology, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Kishore B Challagundla
- Department of Biochemistry and Molecular Biology & The Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA; The Children's Health Research Institute, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| |
Collapse
|
12
|
Jia DD, Jiang H, Zhang YF, Zhang Y, Qian LL, Zhang YF. The regulatory function of piRNA/PIWI complex in cancer and other human diseases: The role of DNA methylation. Int J Biol Sci 2022; 18:3358-3373. [PMID: 35637965 PMCID: PMC9134905 DOI: 10.7150/ijbs.68221] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 04/21/2022] [Indexed: 11/23/2022] Open
Abstract
Piwi-interacting RNAs (piRNAs) are a class of short chain noncoding RNAs that are constituted by 26-30 nucleotides (nt) and can couple with PIWI protein family. piRNAs were initially described in germline cells and are believed to be critical regulators of the maintenance of reproductive line. Increasing evidence has extended our perspectives on the biological significance of piRNAs and indicated that they could still affect somatic gene expression through DNA methylation, chromatin modification and transposon silencing, etc. Many studies have revealed that the dysregulation of piRNAs might contribute to diverse diseases through epigenetic changes represented by DNA methylation and chromatin modification. In this review, we summarized piRNA/PIWI protein-mediated DNA methylation regulation mechanisms and methylation changes caused by piRNA/PIWI proteins in different diseases, especially cancers. Since DNA methylation and inhibitory chromatin marks represented by histone H3 lysine 9 (H3K9) methylation frequently cooperate to silence genomic regions, we also included methylation in chromatin modification within this discussion. Furthermore, we discussed the potential clinical applications of piRNAs as a new type promising biomarkers for cancer diagnosis, as well as the significance of piRNA/PIWI protein-associated methylation changes in treatment, providing disparate insights into the potential applications of them.
Collapse
Affiliation(s)
- Dong-Dong Jia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
- Department of Vascular Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Jiang
- Department of Radiation Oncology, Sun Yat - Sen University Cancer Center, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Yi-Fei Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yu Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Li-Li Qian
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| | - Yin-Feng Zhang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao, 266021, China
| |
Collapse
|
13
|
Wei KHC, Mai D, Chatla K, Bachtrog D. Dynamics and Impacts of Transposable Element Proliferation in the Drosophila nasuta Species Group Radiation. Mol Biol Evol 2022; 39:msac080. [PMID: 35485457 PMCID: PMC9075770 DOI: 10.1093/molbev/msac080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transposable element (TE) mobilization is a constant threat to genome integrity. Eukaryotic organisms have evolved robust defensive mechanisms to suppress their activity, yet TEs can escape suppression and proliferate, creating strong selective pressure for host defense to adapt. This genomic conflict fuels a never-ending arms race that drives the rapid evolution of TEs and recurrent positive selection of genes involved in host defense; the latter has been shown to contribute to postzygotic hybrid incompatibility. However, how TE proliferation impacts genome and regulatory divergence remains poorly understood. Here, we report the highly complete and contiguous (N50 = 33.8-38.0 Mb) genome assemblies of seven closely related Drosophila species that belong to the nasuta species group-a poorly studied group of flies that radiated in the last 2 My. We constructed a high-quality de novo TE library and gathered germline RNA-seq data, which allowed us to comprehensively annotate and compare TE insertion patterns between the species, and infer the evolutionary forces controlling their spread. We find a strong negative association between TE insertion frequency and expression of genes nearby; this likely reflects survivor bias from reduced fitness impact of TEs inserting near lowly expressed, nonessential genes, with limited TE-induced epigenetic silencing. Phylogenetic analyses of insertions of 147 TE families reveal that 53% of them show recent amplification in at least one species. The most highly amplified TE is a nonautonomous DNA element (Drosophila INterspersed Element; DINE) which has gone through multiple bouts of expansions with thousands of full-length copies littered throughout each genome. Across all TEs, we find that TEs expansions are significantly associated with high expression in the expanded species consistent with suppression escape. Thus, whereas horizontal transfer followed by the invasion of a naïve genome has been highlighted to explain the long-term survival of TEs, our analysis suggests that evasion of host suppression of resident TEs is a major strategy to persist over evolutionary times. Altogether, our results shed light on the heterogenous and context-dependent nature in which TEs affect gene regulation and the dynamics of rampant TE proliferation amidst a recently radiated species group.
Collapse
Affiliation(s)
- Kevin H.-C. Wei
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Dat Mai
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Kamalakar Chatla
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
14
|
The evolution of gene regulation on sex chromosomes. Trends Genet 2022; 38:844-855. [DOI: 10.1016/j.tig.2022.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 11/20/2022]
|
15
|
Watson OT, Buchmann G, Young P, Lo K, Remnant EJ, Yagound B, Shambrook M, Hill AF, Oldroyd BP, Ashe A. Abundant small RNAs in the reproductive tissues and eggs of the honey bee, Apis mellifera. BMC Genomics 2022; 23:257. [PMID: 35379185 PMCID: PMC8978429 DOI: 10.1186/s12864-022-08478-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 03/17/2022] [Indexed: 11/21/2022] Open
Abstract
Background Polyandrous social insects such as the honey bee are prime candidates for parental manipulation of gene expression in offspring. Although there is good evidence for parent-of-origin effects in honey bees the epigenetic mechanisms that underlie these effects remain a mystery. Small RNA molecules such as miRNAs, piRNAs and siRNAs play important roles in transgenerational epigenetic inheritance and in the regulation of gene expression during development. Results Here we present the first characterisation of small RNAs present in honey bee reproductive tissues: ovaries, spermatheca, semen, fertilised and unfertilised eggs, and testes. We show that semen contains fewer piRNAs relative to eggs and ovaries, and that piRNAs and miRNAs which map antisense to genes involved in DNA regulation and developmental processes are differentially expressed between tissues. tRNA fragments are highly abundant in semen and have a similar profile to those seen in the semen of other animals. Intriguingly we also find abundant piRNAs that target the sex determination locus, suggesting that piRNAs may play a role in honey bee sex determination. Conclusions We conclude that small RNAs may play a fundamental role in honey bee gametogenesis and reproduction and provide a plausible mechanism for parent-of-origin effects on gene expression and reproductive physiology. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08478-9.
Collapse
Affiliation(s)
- Owen T Watson
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Gabriele Buchmann
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Paul Young
- Molecular Cardiology and Biophysics Division, Victor Chang Cardiac Research Institute NSW 2010, Darlinghurst, Australia
| | - Kitty Lo
- School of Mathematics and Statistics, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Emily J Remnant
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Boris Yagound
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia
| | - Mitch Shambrook
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Andrew F Hill
- Department of Biochemistry and Chemistry, School of Agriculture, Biomedicine and Environment, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Victoria, 3086, Australia.,Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Benjamin P Oldroyd
- BEE Laboratory, School of Life and Environmental Sciences, University of Sydney, Sydney, NSW, 2006, Australia. .,Wissenschaftskolleg zu Berlin, Wallotstrasse 19, 14193, Berlin, Germany.
| | - Alyson Ashe
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
16
|
Pettie N, Llopart A, Comeron JM. Meiotic, genomic and evolutionary properties of crossover distribution in Drosophila yakuba. PLoS Genet 2022; 18:e1010087. [PMID: 35320272 PMCID: PMC8979470 DOI: 10.1371/journal.pgen.1010087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 04/04/2022] [Accepted: 02/09/2022] [Indexed: 12/14/2022] Open
Abstract
The number and location of crossovers across genomes are highly regulated during meiosis, yet the key components controlling them are fast evolving, hindering our understanding of the mechanistic causes and evolutionary consequences of changes in crossover rates. Drosophila melanogaster has been a model species to study meiosis for more than a century, with an available high-resolution crossover map that is, nonetheless, missing for closely related species, thus preventing evolutionary context. Here, we applied a novel and highly efficient approach to generate whole-genome high-resolution crossover maps in D. yakuba to tackle multiple questions that benefit from being addressed collectively within an appropriate phylogenetic framework, in our case the D. melanogaster species subgroup. The genotyping of more than 1,600 individual meiotic events allowed us to identify several key distinct properties relative to D. melanogaster. We show that D. yakuba, in addition to higher crossover rates than D. melanogaster, has a stronger centromere effect and crossover assurance than any Drosophila species analyzed to date. We also report the presence of an active crossover-associated meiotic drive mechanism for the X chromosome that results in the preferential inclusion in oocytes of chromatids with crossovers. Our evolutionary and genomic analyses suggest that the genome-wide landscape of crossover rates in D. yakuba has been fairly stable and captures a significant signal of the ancestral crossover landscape for the whole D. melanogaster subgroup, even informative for the D. melanogaster lineage. Contemporary crossover rates in D. melanogaster, on the other hand, do not recapitulate ancestral crossovers landscapes. As a result, the temporal stability of crossover landscapes observed in D. yakuba makes this species an ideal system for applying population genetic models of selection and linkage, given that these models assume temporal constancy in linkage effects. Our studies emphasize the importance of generating multiple high-resolution crossover rate maps within a coherent phylogenetic context to broaden our understanding of crossover control during meiosis and to improve studies on the evolutionary consequences of variable crossover rates across genomes and time.
Collapse
Affiliation(s)
- Nikale Pettie
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
| | - Ana Llopart
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Josep M. Comeron
- Interdisciplinary Program in Genetics, University of Iowa, Iowa City, Iowa, United States of America
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
17
|
Lee YCG. Synergistic epistasis of the deleterious effects of transposable elements. Genetics 2022; 220:iyab211. [PMID: 34888644 PMCID: PMC9097265 DOI: 10.1093/genetics/iyab211] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 11/10/2021] [Indexed: 11/12/2022] Open
Abstract
The replicative nature and generally deleterious effects of transposable elements (TEs) raise an outstanding question about how TE copy number is stably contained in host populations. Classic theoretical analyses predict that, when the decline in fitness due to each additional TE insertion is greater than linear, or when there is synergistic epistasis, selection against TEs can result in a stable equilibrium of TE copy number. While several mechanisms are predicted to yield synergistic deleterious effects of TEs, we lack empirical investigations of the presence of such epistatic interactions. Purifying selection with synergistic epistasis generates repulsion linkage between deleterious alleles. We investigated this population genetic signal in the likely ancestral Drosophila melanogaster population and found evidence supporting the presence of synergistic epistasis among TE insertions, especially TEs expected to exert large fitness impacts. Even though synergistic epistasis of TEs has been predicted to arise through ectopic recombination and TE-mediated epigenetic silencing mechanisms, we only found mixed support for the associated predictions. We observed signals of synergistic epistasis for a large number of TE families, which is consistent with the expectation that such epistatic interaction mainly happens among copies of the same family. Curiously, significant repulsion linkage was also found among TE insertions from different families, suggesting the possibility that synergism of TEs' deleterious fitness effects could arise above the family level and through mechanisms similar to those of simple mutations. Our findings set the stage for investigating the prevalence and importance of epistatic interactions in the evolutionary dynamics of TEs.
Collapse
Affiliation(s)
- Yuh Chwen G Lee
- Department of Ecology and Evolutionary Biology, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Complex Genetic Interactions between Piwi and HP1a in the Repression of Transposable Elements and Tissue-Specific Genes in the Ovarian Germline. Int J Mol Sci 2021; 22:ijms222413430. [PMID: 34948223 PMCID: PMC8707237 DOI: 10.3390/ijms222413430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Insertions of transposable elements (TEs) in eukaryotic genomes are usually associated with repressive chromatin, which spreads to neighbouring genomic sequences. In ovaries of Drosophila melanogaster, the Piwi-piRNA pathway plays a key role in the transcriptional silencing of TEs considered to be exerted mostly through the establishment of H3K9me3 histone marks recruiting Heterochromatin Protein 1a (HP1a). Here, using RNA-seq, we investigated the expression of TEs and the adjacent genomic regions upon Piwi and HP1a germline knockdowns sharing a similar genetic background. We found that the depletion of Piwi and HP1a led to the derepression of only partially overlapping TE sets. Several TEs were silenced predominantly by HP1a, whereas the upregulation of some other TEs was more pronounced upon Piwi knockdown and, surprisingly, was diminished upon a Piwi/HP1a double-knockdown. We revealed that HP1a loss influenced the expression of thousands of protein-coding genes mostly not adjacent to TE insertions and, in particular, downregulated a putative transcriptional factor required for TE activation. Nevertheless, our results indicate that Piwi and HP1a cooperatively exert repressive effects on the transcription of euchromatic loci flanking the insertions of some Piwi-regulated TEs. We suggest that this mechanism controls the silencing of a small set of TE-adjacent tissue-specific genes, preventing their inappropriate expression in ovaries.
Collapse
|
19
|
Ullastres A, Merenciano M, González J. Regulatory regions in natural transposable element insertions drive interindividual differences in response to immune challenges in Drosophila. Genome Biol 2021; 22:265. [PMID: 34521452 PMCID: PMC8439047 DOI: 10.1186/s13059-021-02471-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 08/19/2021] [Indexed: 02/08/2023] Open
Abstract
Background Variation in gene expression underlies interindividual variability in relevant traits including immune response. However, the genetic variation responsible for these gene expression changes remains largely unknown. Among the non-coding variants that could be relevant, transposable element insertions are promising candidates as they have been shown to be a rich and diverse source of cis-regulatory elements. Results In this work, we use a population genetics approach to identify transposable element insertions likely to increase the tolerance of Drosophila melanogaster to bacterial infection by affecting the expression of immune-related genes. We identify 12 insertions associated with allele-specific expression changes in immune-related genes. We experimentally validate three of these insertions including one likely to be acting as a silencer, one as an enhancer, and one with a dual role as enhancer and promoter. The direction in the change of gene expression associated with the presence of several of these insertions is consistent with an increased survival to infection. Indeed, for one of the insertions, we show that this is the case by analyzing both natural populations and CRISPR/Cas9 mutants in which the insertion is deleted from its native genomic context. Conclusions We show that transposable elements contribute to gene expression variation in response to infection in D. melanogaster and that this variation is likely to affect their survival capacity. Because the role of transposable elements as regulatory elements is not restricted to Drosophila, transposable elements are likely to play a role in immune response in other organisms as well. Supplementary Information The online version contains supplementary material available at 10.1186/s13059-021-02471-3.
Collapse
Affiliation(s)
- Anna Ullastres
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Miriam Merenciano
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003, Barcelona, Spain.
| |
Collapse
|
20
|
Kuhn GCS, Heringer P, Dias GB. Structure, Organization, and Evolution of Satellite DNAs: Insights from the Drosophila repleta and D. virilis Species Groups. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:27-56. [PMID: 34386871 DOI: 10.1007/978-3-030-74889-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The fact that satellite DNAs (satDNAs) in eukaryotes are abundant genomic components, can perform functional roles, but can also change rapidly across species while being homogenous within a species, makes them an intriguing and fascinating genomic component to study. It is also becoming clear that satDNAs represent an important piece in genome architecture and that changes in their structure, organization, and abundance can affect the evolution of genomes and species in many ways. Since the discovery of satDNAs more than 50 years ago, species from the Drosophila genus have continuously been used as models to study several aspects of satDNA biology. These studies have been largely concentrated in D. melanogaster and closely related species from the Sophophora subgenus, even though the vast majority of all Drosophila species belong to the Drosophila subgenus. This chapter highlights some studies on the satDNA structure, organization, and evolution in two species groups from the Drosophila subgenus: the repleta and virilis groups. We also discuss and review the classification of other abundant tandem repeats found in these species in the light of the current information available.
Collapse
Affiliation(s)
- Gustavo C S Kuhn
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil.
| | - Pedro Heringer
- Departamento de Genética, Ecologia e Evolução, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Guilherme Borges Dias
- Department of Genetics and Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| |
Collapse
|
21
|
Feliciello I, Pezer Ž, Sermek A, Bruvo Mađarić B, Ljubić S, Ugarković Đ. Satellite DNA-Mediated Gene Expression Regulation: Physiological and Evolutionary Implication. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 60:145-167. [PMID: 34386875 DOI: 10.1007/978-3-030-74889-0_6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Satellite DNAs are tandemly repeated sequences organized in large clusters within (peri)centromeric and/or subtelomeric heterochromatin. However, in many species, satellite DNAs are not restricted to heterochromatin but are also dispersed as short arrays within euchromatin. Such genomic organization together with transcriptional activity seems to be a prerequisite for the gene-modulatory effect of satellite DNAs which was first demonstrated in the beetle Tribolium castaneum upon heat stress. Namely, enrichment of a silent histone mark at euchromatic repeats of a major beetle satellite DNA results in epigenetic silencing of neighboring genes. In addition, human satellite III transcripts induced by heat shock contribute to genome-wide gene silencing, providing protection against stress-induced cell death. Gene silencing mediated by satellite RNA was also shown to be fundamental for the early embryonic development of the mosquito Aedes aegypti. Apart from a physiological role during embryogenesis and heat stress response, activation of satellite DNAs in terms of transcription and proliferation can have an evolutionary impact. Spreading of satellite repeats throughout euchromatin promotes the variation of epigenetic landscapes and gene expression diversity, contributing to the evolution of gene regulatory networks and to genome adaptation in fluctuating environmental conditions.
Collapse
Affiliation(s)
- Isidoro Feliciello
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.,Dipartimento di Medicina Clinica e Chirurgia, Universita' degli Studi di Napoli Federico II, Naples, Italy
| | - Željka Pezer
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Antonio Sermek
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | | | - Sven Ljubić
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Đurđica Ugarković
- Department of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.
| |
Collapse
|
22
|
Ellison CE, Kagda MS, Cao W. Telomeric TART elements target the piRNA machinery in Drosophila. PLoS Biol 2020; 18:e3000689. [PMID: 33347429 PMCID: PMC7785250 DOI: 10.1371/journal.pbio.3000689] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 01/05/2021] [Accepted: 12/10/2020] [Indexed: 11/23/2022] Open
Abstract
Coevolution between transposable elements (TEs) and their hosts can be antagonistic, where TEs evolve to avoid silencing and the host responds by reestablishing TE suppression, or mutualistic, where TEs are co-opted to benefit their host. The TART-A TE functions as an important component of Drosophila telomeres but has also reportedly inserted into the Drosophila melanogaster nuclear export factor gene nxf2. We find that, rather than inserting into nxf2, TART-A has actually captured a portion of nxf2 sequence. We show that TART-A produces abundant Piwi-interacting small RNAs (piRNAs), some of which are antisense to the nxf2 transcript, and that the TART-like region of nxf2 is evolving rapidly. Furthermore, in D. melanogaster, TART-A is present at higher copy numbers, and nxf2 shows reduced expression, compared to the closely related species Drosophila simulans. We propose that capturing nxf2 sequence allowed TART-A to target the nxf2 gene for piRNA-mediated repression and that these 2 elements are engaged in antagonistic coevolution despite the fact that TART-A is serving a critical role for its host genome. Co-evolution between transposable elements (TEs) and their hosts can be antagonistic, where TEs evolve to avoid silencing and the host responds by re-establishing TE suppression, or mutualistic, where TEs are co-opted to benefit their host. This study shows that a specialized Drosophila retrotransposon that functions as a telomere has captured a portion of a host piRNA gene which may allow it to evade silencing.
Collapse
Affiliation(s)
- Christopher E. Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
- * E-mail:
| | - Meenakshi S. Kagda
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
23
|
Wei KHC, Gibilisco L, Bachtrog D. Epigenetic conflict on a degenerating Y chromosome increases mutational burden in Drosophila males. Nat Commun 2020; 11:5537. [PMID: 33139741 PMCID: PMC7608633 DOI: 10.1038/s41467-020-19134-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/24/2020] [Indexed: 01/04/2023] Open
Abstract
Large portions of eukaryotic genomes consist of transposable elements (TEs), and the establishment of transcription-repressing heterochromatin during early development safeguards genome integrity in Drosophila. Repeat-rich Y chromosomes can act as reservoirs for TEs ('toxic' Y effect), and incomplete epigenomic defenses during early development can lead to deleterious TE mobilization. Here, we contrast the dynamics of early TE activation in two Drosophila species with vastly different Y chromosomes of different ages. Zygotic TE expression is elevated in male embryos relative to females in both species, mostly due to expression of Y-linked TEs. Interestingly, male-biased TE expression diminishes across development in D. pseudoobscura, but remains elevated in D. miranda, the species with the younger and larger Y chromosome. The repeat-rich Y of D. miranda still contains many actively transcribed genes, which compromise the formation of silencing heterochromatin. Elevated TE expression results in more de novo insertions of repeats in males compared to females. This lends support to the idea that the 'toxic' Y chromosome can create a mutational burden in males when genome-wide defense mechanisms are compromised, and suggests a previously unappreciated epigenetic conflict on evolving Y chromosomes between transcription of essential genes and silencing of selfish DNA.
Collapse
Affiliation(s)
- Kevin H-C Wei
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Lauren Gibilisco
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Doris Bachtrog
- Department of Integrative Biology, University of California Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
24
|
Hosseini S, Meunier C, Nguyen D, Reimegård J, Johannesson H. Comparative analysis of genome-wide DNA methylation in Neurospora. Epigenetics 2020; 15:972-987. [PMID: 32228351 PMCID: PMC7518705 DOI: 10.1080/15592294.2020.1741758] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/14/2020] [Accepted: 02/27/2020] [Indexed: 12/18/2022] Open
Abstract
DNA methylation is an epigenetic mark that plays an important role in genetic regulation in eukaryotes. Major progress has been made in dissecting the molecular pathways that regulate DNA methylation. Yet, little is known about DNA methylation variation over evolutionary time. Here we present an investigation of the variation of DNA methylation and transposable element (TE) content in species of the filamentous ascomycetes Neurospora. We generated genome-wide DNA methylation data at single-base resolution, together with genomic TE content and gene expression data, of 10 individuals representing five closely related Neurospora species. We found that the methylation levels were low (ranging from 1.3% to 2.5%) and varied among the genomes in a species-specific way. Furthermore, we found that the TEs over 400 bp long were targeted by DNA methylation, and in all genomes, high methylation correlated with low GC, confirming a conserved link between DNA methylation and Repeat Induced Point (RIP) mutations in this group of fungi. Both TE content and DNA methylation pattern showed phylogenetic signal, and the species with the highest TE load (N. crassa) also exhibited the highest methylation level per TE. Our results suggest that DNA methylation is an evolvable trait and indicate that the genomes of Neurospora are shaped by an evolutionary arms race between TEs and host defence.
Collapse
Affiliation(s)
- Sara Hosseini
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Cécile Meunier
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
- Department ECOBIO, UMR CNRS 6553, Université Rennes 1, Rennes, France
| | - Diem Nguyen
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | - Johan Reimegård
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Hanna Johannesson
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
25
|
Woodruff GC, Teterina AA. Degradation of the Repetitive Genomic Landscape in a Close Relative of Caenorhabditis elegans. Mol Biol Evol 2020; 37:2549-2567. [PMID: 32359146 PMCID: PMC7475029 DOI: 10.1093/molbev/msaa107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The abundance, diversity, and genomic distribution of repetitive elements is highly variable among species. These patterns are thought to be driven in part by reproductive mode and the interaction of selection and recombination, and recombination rates typically vary by chromosomal position. In the nematode Caenorhabditis elegans, repetitive elements are enriched at chromosome arms and depleted on centers, and this mirrors the chromosomal distributions of other genomic features such as recombination rate. How conserved is this genomic landscape of repeats, and what evolutionary forces maintain it? To address this, we compared the genomic organization of repetitive elements across five Caenorhabditis species with chromosome-level assemblies. As previously reported, repeat content is enriched on chromosome arms in most Caenorhabditis species, and no obvious patterns of repeat content associated with reproductive mode were observed. However, the fig-associated C. inopinata has experienced repetitive element expansion and reveals no association of global repeat density with chromosome position. Patterns of repeat superfamily specific distributions reveal this global pattern is driven largely by a few repeat superfamilies that in C. inopinata have expanded in number and have weak associations with chromosome position. Additionally, 15% of predicted protein-coding genes in C. inopinata align to transposon-related proteins. When these are excluded, C. inopinata has no enrichment of genes in chromosome centers, in contrast to its close relatives who all have such clusters. Forward evolutionary simulations reveal that chromosomal heterogeneity in recombination rate alone can generate structured repetitive genomic landscapes when insertions are weakly deleterious, whereas chromosomal heterogeneity in the fitness effects of transposon insertion can promote such landscapes across a variety of evolutionary scenarios. Thus, patterns of gene density along chromosomes likely contribute to global repetitive landscapes in this group, although other historical or genomic factors are needed to explain the idiosyncrasy of genomic organization of various transposable element taxa within C. inopinata. Taken together, these results highlight the power of comparative genomics and evolutionary simulations in testing hypotheses regarding the causes of genome organization.
Collapse
Affiliation(s)
- Gavin C Woodruff
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR
| | - Anastasia A Teterina
- Institute of Ecology and Evolution, University of Oregon, Eugene, OR
- Center of Parasitology, Severtsov Institute of Ecology and Evolution RAS, Moscow, Russia
| |
Collapse
|
26
|
Choi JY, Lee YCG. Double-edged sword: The evolutionary consequences of the epigenetic silencing of transposable elements. PLoS Genet 2020; 16:e1008872. [PMID: 32673310 PMCID: PMC7365398 DOI: 10.1371/journal.pgen.1008872] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transposable elements (TEs) are genomic parasites that selfishly replicate at the expense of host fitness. Fifty years of evolutionary studies of TEs have concentrated on the deleterious genetic effects of TEs, such as their effects on disrupting genes and regulatory sequences. However, a flurry of recent work suggests that there is another important source of TEs' harmful effects-epigenetic silencing. Host genomes typically silence TEs by the deposition of repressive epigenetic marks. While this silencing reduces the selfish replication of TEs and should benefit hosts, a picture is emerging that the epigenetic silencing of TEs triggers inadvertent spreading of repressive marks to otherwise expressed neighboring genes, ultimately jeopardizing host fitness. In this Review, we provide a long-overdue overview of the recent genome-wide evidence for the presence and prevalence of TEs' epigenetic effects, highlighting both the similarities and differences across mammals, insects, and plants. We lay out the current understanding of the functional and fitness consequences of TEs' epigenetic effects, and propose possible influences of such effects on the evolution of both hosts and TEs themselves. These unique evolutionary consequences indicate that TEs' epigenetic effect is not only a crucial component of TE biology but could also be a significant contributor to genome function and evolution.
Collapse
Affiliation(s)
- Jae Young Choi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York State, United States of America
| | - Yuh Chwen G. Lee
- Department of Ecology and Evolutionary Biology, University of California, Irvine, California, United States of America
| |
Collapse
|
27
|
Ilyin AA, Stolyarenko AD, Klenov MS, Shevelyov YY. Various modes of HP1a interactions with the euchromatic chromosome arms in Drosophila ovarian somatic cells. Chromosoma 2020; 129:201-214. [PMID: 32500264 DOI: 10.1007/s00412-020-00738-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 05/05/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022]
Abstract
Heterochromatin protein 1a (HP1a) is a well-known component of pericentromeric and telomeric heterochromatin in Drosophila. However, its role and the mechanisms of its binding in the chromosome arms (ChAs) remain largely unclear. Here, we identified HP1a-interacting domains in the somatic cells of Drosophila ovaries using a DamID-seq approach and compared them with insertion sites of transposable elements (TEs) revealed by genome sequencing. Although HP1a domains cover only 13% of ChAs, they non-randomly associate with 42% of TE insertions. Furthermore, HP1a on average propagates at 2-kb distances from the TE insertions. These data confirm the role of TEs in formation of HP1a islands in ChAs. However, only 18% of HP1a domains have adjacent TEs, indicating the existence of other mechanisms of HP1a domain formation besides spreading from TEs. In particular, many TE-independent HP1a domains correspond to the regions attached to the nuclear pore complexes (NPCs) or contain active gene promoters. However, HP1a occupancy on the promoters does not significantly influence expression of corresponding genes. At the same time, the steady-state transcript level of many genes located outside of HP1a domains was altered upon HP1a knockdown in the somatic cells of ovaries, thus pointing to the strong indirect effect of HP1a depletion. Collectively, our results support an existence of at least three different mechanisms of HP1a domain emergence in ChAs: spreading from TE insertions, transient interactions with the chromatin located near NPCs, and targeting to the promoters of moderately expressed genes.
Collapse
Affiliation(s)
- Artem A Ilyin
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, Russia, 123182
| | - Anastasia D Stolyarenko
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, Russia, 123182
| | - Mikhail S Klenov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, Russia, 123182.
| | - Yuri Y Shevelyov
- Department of Molecular Genetics of Cell, Institute of Molecular Genetics, Russian Academy of Sciences, Kurchatov Sq. 2, Moscow, Russia, 123182.
| |
Collapse
|
28
|
Kelleher ES, Barbash DA, Blumenstiel JP. Taming the Turmoil Within: New Insights on the Containment of Transposable Elements. Trends Genet 2020; 36:474-489. [PMID: 32473745 DOI: 10.1016/j.tig.2020.04.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/15/2020] [Accepted: 04/17/2020] [Indexed: 12/28/2022]
Abstract
Transposable elements (TEs) are mobile genetic parasites that can exponentially increase their genomic abundance through self-propagation. Classic theoretical papers highlighted the importance of two potentially escalating forces that oppose TE spread: regulated transposition and purifying selection. Here, we review new insights into mechanisms of TE regulation and purifying selection, which reveal the remarkable foresight of these theoretical models. We further highlight emergent connections between transcriptional control enacted by small RNAs and the contribution of TE insertions to structural mutation and host-gene regulation. Finally, we call for increased comparative analysis of TE dynamics and fitness effects, as well as host control mechanisms, to reveal how interconnected forces shape the differential prevalence and distribution of TEs across the tree of life.
Collapse
|
29
|
Pericentromeric heterochromatin is hierarchically organized and spatially contacts H3K9me2 islands in euchromatin. PLoS Genet 2020; 16:e1008673. [PMID: 32203508 PMCID: PMC7147806 DOI: 10.1371/journal.pgen.1008673] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 04/10/2020] [Accepted: 02/14/2020] [Indexed: 01/02/2023] Open
Abstract
Membraneless pericentromeric heterochromatin (PCH) domains play vital roles in chromosome dynamics and genome stability. However, our current understanding of 3D genome organization does not include PCH domains because of technical challenges associated with repetitive sequences enriched in PCH genomic regions. We investigated the 3D architecture of Drosophila melanogaster PCH domains and their spatial associations with the euchromatic genome by developing a novel analysis method that incorporates genome-wide Hi-C reads originating from PCH DNA. Combined with cytogenetic analysis, we reveal a hierarchical organization of the PCH domains into distinct “territories.” Strikingly, H3K9me2-enriched regions embedded in the euchromatic genome show prevalent 3D interactions with the PCH domain. These spatial contacts require H3K9me2 enrichment, are likely mediated by liquid-liquid phase separation, and may influence organismal fitness. Our findings have important implications for how PCH architecture influences the function and evolution of both repetitive heterochromatin and the gene-rich euchromatin. The three dimensional (3D) organization of genomes in cell nuclei can influence a wide variety of genome functions. However, most of our understanding of this critical architecture has been limited to the gene-rich euchromatin, and largely ignores the gene-poor and repeat-rich pericentromeric heterochromatin, or PCH. PCH comprises a large part of most eukaryotic genomes, forms 3D membraneless PCH domains in nuclei, and plays a vital role in chromosome dynamics and genome stability. In this study, we developed a new method that overcomes the technical challenges imposed by the highly repetitive PCH DNA, and generated a comprehensive picture of its 3D organization. Combined with image analyses, we reveal a hierarchical organization of the PCH domains. Surprisingly, we showed that distant euchromatic regions enriched for repressive epigenetic marks also dynamically interact with the main PCH domains. These 3D interactions are likely mediated by liquid-liquid phase separation (similar to how oil and vinegar separate in salad dressing) and the resulting liquid-like fusion events, and can influence the fitness of individuals. Our discoveries have strong implications for how seemingly “junk” DNA could impact functions in the gene-rich euchromatin.
Collapse
|
30
|
Ellison CE, Cao W. Nanopore sequencing and Hi-C scaffolding provide insight into the evolutionary dynamics of transposable elements and piRNA production in wild strains of Drosophila melanogaster. Nucleic Acids Res 2020; 48:290-303. [PMID: 31754714 PMCID: PMC6943127 DOI: 10.1093/nar/gkz1080] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 10/29/2019] [Accepted: 11/01/2019] [Indexed: 01/29/2023] Open
Abstract
Illumina sequencing has allowed for population-level surveys of transposable element (TE) polymorphism via split alignment approaches, which has provided important insight into the population dynamics of TEs. However, such approaches are not able to identify insertions of uncharacterized TEs, nor can they assemble the full sequence of inserted elements. Here, we use nanopore sequencing and Hi-C scaffolding to produce de novo genome assemblies for two wild strains of Drosophila melanogaster from the Drosophila Genetic Reference Panel (DGRP). Ovarian piRNA populations and Illumina split-read TE insertion profiles have been previously produced for both strains. We find that nanopore sequencing with Hi-C scaffolding produces highly contiguous, chromosome-length scaffolds, and we identify hundreds of TE insertions that were missed by Illumina-based methods, including a novel micropia-like element that has recently invaded the DGRP population. We also find hundreds of piRNA-producing loci that are specific to each strain. Some of these loci are created by strain-specific TE insertions, while others appear to be epigenetically controlled. Our results suggest that Illumina approaches reveal only a portion of the repetitive sequence landscape of eukaryotic genomes and that population-level resequencing using long reads is likely to provide novel insight into the evolutionary dynamics of repetitive elements.
Collapse
Affiliation(s)
- Christopher E Ellison
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Weihuan Cao
- Department of Genetics, Human Genetics Institute of New Jersey, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| |
Collapse
|
31
|
Cavaliere V, Lattanzi G, Andrenacci D. Silencing of Euchromatic Transposable Elements as a Consequence of Nuclear Lamina Dysfunction. Cells 2020; 9:cells9030625. [PMID: 32151001 PMCID: PMC7140440 DOI: 10.3390/cells9030625] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) are mobile genomic sequences that are normally repressed to avoid proliferation and genome instability. Gene silencing mechanisms repress TEs by RNA degradation or heterochromatin formation. Heterochromatin maintenance is therefore important to keep TEs silent. Loss of heterochromatic domains has been linked to lamin mutations, which have also been associated with derepression of TEs. In fact, lamins are structural components of the nuclear lamina (NL), which is considered a pivotal structure in the maintenance of heterochromatin domains at the nuclear periphery in a silent state. Here, we show that a lethal phenotype associated with Lamin loss-of-function mutations is influenced by Drosophila gypsy retrotransposons located in euchromatic regions, suggesting that NL dysfunction has also effects on active TEs located in euchromatic loci. In fact, expression analysis of different long terminal repeat (LTR) retrotransposons and of one non-LTR retrotransposon located near active genes shows that Lamin inactivation determines the silencing of euchromatic TEs. Furthermore, we show that the silencing effect on euchromatic TEs spreads to the neighboring genomic regions, with a repressive effect on nearby genes. We propose that NL dysfunction may have opposed regulatory effects on TEs that depend on their localization in active or repressed regions of the genome.
Collapse
Affiliation(s)
- Valeria Cavaliere
- Dipartimento di Farmacia e Biotecnologie, Alma Mater Studiorum Università di Bologna, 40126 Bologna, Italy;
| | - Giovanna Lattanzi
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Davide Andrenacci
- CNR Institute of Molecular Genetics “Luigi-Luca Cavalli-Sforza”, Unit of Bologna, 40136 Bologna, Italy;
- IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Correspondence:
| |
Collapse
|
32
|
Fouché S, Badet T, Oggenfuss U, Plissonneau C, Francisco CS, Croll D. Stress-Driven Transposable Element De-repression Dynamics and Virulence Evolution in a Fungal Pathogen. Mol Biol Evol 2020; 37:221-239. [PMID: 31553475 DOI: 10.1093/molbev/msz216] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Transposable elements (TEs) are drivers of genome evolution and affect the expression landscape of the host genome. Stress is a major factor inducing TE activity; however, the regulatory mechanisms underlying de-repression are poorly understood. Plant pathogens are excellent models to dissect the impact of stress on TEs. The process of plant infection induces stress for the pathogen, and virulence factors (i.e., effectors) located in TE-rich regions become expressed. To dissect TE de-repression dynamics and contributions to virulence, we analyzed the TE expression landscape of four strains of the major wheat pathogen Zymoseptoria tritici. We experimentally exposed strains to nutrient starvation and host infection stress. Contrary to expectations, we show that the two distinct conditions induce the expression of different sets of TEs. In particular, the most highly expressed TEs, including miniature inverted-repeat transposable element and long terminal repeat-Gypsy element, show highly distinct de-repression across stress conditions. Both the genomic context of TEs and the genetic background stress (i.e., different strains harboring the same TEs) were major predictors of de-repression under stress. Gene expression profiles under stress varied significantly depending on the proximity to the closest TEs and genomic defenses against TEs were largely ineffective to prevent de-repression. Next, we analyzed the locus encoding the Avr3D1 effector. We show that the insertion and subsequent silencing of TEs in close proximity likely contributed to reduced expression and virulence on a specific wheat cultivar. The complexity of TE responsiveness to stress across genetic backgrounds and genomic locations demonstrates substantial intraspecific genetic variation to control TEs with consequences for virulence.
Collapse
Affiliation(s)
- Simone Fouché
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland.,Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Thomas Badet
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Ursula Oggenfuss
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| | - Clémence Plissonneau
- Plant Pathology, Institute of Integrative Biology, ETH Zürich, Zürich, Switzerland
| | | | - Daniel Croll
- Laboratory of Evolutionary Genetics, Institute of Biology, University of Neuchâtel, Neuchâtel, Switzerland
| |
Collapse
|
33
|
Luo S, Zhang H, Duan Y, Yao X, Clark AG, Lu J. The evolutionary arms race between transposable elements and piRNAs in Drosophila melanogaster. BMC Evol Biol 2020; 20:14. [PMID: 31992188 PMCID: PMC6988346 DOI: 10.1186/s12862-020-1580-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Accepted: 01/13/2020] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The piwi-interacting RNAs (piRNAs) are small non-coding RNAs that specifically repress transposable elements (TEs) in the germline of Drosophila. Despite our expanding understanding of TE:piRNA interaction, whether there is an evolutionary arms race between TEs and piRNAs was unclear. RESULTS Here, we studied the population genomics of TEs and piRNAs in the worldwide strains of D. melanogaster. By conducting a correlation analysis between TE contents and the abundance of piRNAs from ovaries of representative strains of D. melanogaster, we find positive correlations between TEs and piRNAs in six TE families. Our simulations further highlight that TE activities and the strength of purifying selection against TEs are important factors shaping the interactions between TEs and piRNAs. Our studies also suggest that the de novo generation of piRNAs is an important mechanism to repress the newly invaded TEs. CONCLUSIONS Our results revealed the existence of an evolutionary arms race between the copy numbers of TEs and the abundance of antisense piRNAs at the population level. Although the interactions between TEs and piRNAs are complex and many factors should be considered to impact their interaction dynamics, our results suggest the emergence, repression specificity and strength of piRNAs on TEs should be considered in studying the landscapes of TE insertions in Drosophila. These results deepen our understanding of the interactions between piRNAs and TEs, and also provide novel insights into the nature of genomic conflicts of other forms.
Collapse
Affiliation(s)
- Shiqi Luo
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- College of Plant Protection, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, 100193, China
| | - Hong Zhang
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Yuange Duan
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xinmin Yao
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14853, USA.
| | - Jian Lu
- State Key Laboratory of Protein and Plant Gene Research, Center for Bioinformatics, College of Life Sciences and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
34
|
The role of transposable elements activity in aging and their possible involvement in laminopathic diseases. Ageing Res Rev 2020; 57:100995. [PMID: 31786372 DOI: 10.1016/j.arr.2019.100995] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 10/17/2019] [Accepted: 11/25/2019] [Indexed: 01/17/2023]
Abstract
Eukaryotic genomes contain a large number of transposable elements, part of which are still active and able to transpose in the host genome. Mobile element activation is repressed to avoid deleterious effects, such as gene mutations or chromosome rearrangements. Control of transposable elements includes a variety of mechanisms comprising silencing pathways, which are based on the production of small non-coding RNAs. Silencing can occur either through transposable element RNA degradation or through the targeting of DNA sequences by heterochromatin formation and consequent transcriptional inhibition. Since the important role of the heterochromatin silencing, the gradual loss of heterochromatin marks in constitutive heterochromatin regions during the aging process promotes derepression of transposable elements, which is considered a cause of the progressive increase in genomic instability and of the activation of inflammatory responses. This review provides an overview of the effects of heterochromatin loss on the activity of transposable elements during the aging process and the possible impact on genome function. In this context, we discuss the possible role of the nuclear lamina, a major player in heterochromatin dynamics, in the regulation of transposable element activity and potential implications in laminopathic diseases.
Collapse
|
35
|
The SUMO Ligase Su(var)2-10 Controls Hetero- and Euchromatic Gene Expression via Establishing H3K9 Trimethylation and Negative Feedback Regulation. Mol Cell 2019; 77:571-585.e4. [PMID: 31901448 DOI: 10.1016/j.molcel.2019.09.033] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 06/11/2019] [Accepted: 09/26/2019] [Indexed: 02/07/2023]
Abstract
Сhromatin is critical for genome compaction and gene expression. On a coarse scale, the genome is divided into euchromatin, which harbors the majority of genes and is enriched in active chromatin marks, and heterochromatin, which is gene-poor but repeat-rich. The conserved molecular hallmark of heterochromatin is the H3K9me3 modification, which is associated with gene silencing. We found that in Drosophila, deposition of most of the H3K9me3 mark depends on SUMO and the SUMO ligase Su(var)2-10, which recruits the histone methyltransferase complex SetDB1/Wde. In addition to repressing repeats, H3K9me3 influences expression of both hetero- and euchromatic host genes. High H3K9me3 levels in heterochromatin are required to suppress spurious transcription and ensure proper gene expression. In euchromatin, a set of conserved genes is repressed by Su(var)2-10/SetDB1-induced H3K9 trimethylation, ensuring tissue-specific gene expression. Several components of heterochromatin are themselves repressed by this pathway, providing a negative feedback mechanism to ensure chromatin homeostasis.
Collapse
|
36
|
Abstract
Transposable elements (TEs) are mobile DNA sequences that colonize genomes and threaten genome integrity. As a result, several mechanisms appear to have emerged during eukaryotic evolution to suppress TE activity. However, TEs are ubiquitous and account for a prominent fraction of most eukaryotic genomes. We argue that the evolutionary success of TEs cannot be explained solely by evasion from host control mechanisms. Rather, some TEs have evolved commensal and even mutualistic strategies that mitigate the cost of their propagation. These coevolutionary processes promote the emergence of complex cellular activities, which in turn pave the way for cooption of TE sequences for organismal function.
Collapse
Affiliation(s)
- Rachel L Cosby
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Ni-Chen Chang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
37
|
Adenine Methylation in Drosophila Is Associated with the Tissue-Specific Expression of Developmental and Regulatory Genes. G3-GENES GENOMES GENETICS 2019; 9:1893-1900. [PMID: 30988038 PMCID: PMC6553526 DOI: 10.1534/g3.119.400023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
N6-methyladenine (6mA or m6dA) is a DNA modification that has long been known to play an important role in a variety of biological functions in prokaryotes. This modification has only recently been described in eukaryotes, where it seems to have evolved species-specific functions ranging from nucleosome positioning to transposon repression. In Drosophila, 6mA has been shown to be important for enforcing the tissue specificity of neuronal genes in the brain and suppressing transposable element expression in the ovaries. In this study, we have analyzed the raw signal data from nanopore sequencing to identify 6mA positions in the D. melanogaster genome at single-base resolution. We find that this modification is enriched upstream from transcription start sites, within the introns and 3′ UTRs of genes, as well as in simple repeats. These 6mA positions are enriched for sequence motifs that are recognized by known transcriptional activators involved in development, such as Bicoid and Caudal, and the genes that carry this modification are enriched for functions involved in development, regulation of transcription, and neuronal activity. These genes show high expression specificity in a variety of tissues besides the brain, suggesting that this modification may play a more general role in enforcing the specificity of gene expression across many tissues, throughout development, and between the sexes.
Collapse
|
38
|
Choudhury RR, Rogivue A, Gugerli F, Parisod C. Impact of polymorphic transposable elements on linkage disequilibrium along chromosomes. Mol Ecol 2019; 28:1550-1562. [DOI: 10.1111/mec.15014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 12/26/2018] [Indexed: 01/03/2023]
Affiliation(s)
| | - Aude Rogivue
- WSL Swiss Federal Research Institute Birmensdorf Switzerland
| | - Felix Gugerli
- WSL Swiss Federal Research Institute Birmensdorf Switzerland
| | | |
Collapse
|
39
|
Lerat E, Casacuberta J, Chaparro C, Vieira C. On the Importance to Acknowledge Transposable Elements in Epigenomic Analyses. Genes (Basel) 2019; 10:genes10040258. [PMID: 30935103 PMCID: PMC6523952 DOI: 10.3390/genes10040258] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 12/21/2022] Open
Abstract
Eukaryotic genomes comprise a large proportion of repeated sequences, an important fraction of which are transposable elements (TEs). TEs are mobile elements that have a significant impact on genome evolution and on gene functioning. Although some TE insertions could provide adaptive advantages to species, transposition is a highly mutagenic event that has to be tightly controlled to ensure its viability. Genomes have evolved sophisticated mechanisms to control TE activity, the most important being epigenetic silencing. However, the epigenetic control of TEs can also affect genes located nearby that can become epigenetically regulated. It has been proposed that the combination of TE mobilization and the induced changes in the epigenetic landscape could allow a rapid phenotypic adaptation to global environmental changes. In this review, we argue the crucial need to take into account the repeated part of genomes when studying the global impact of epigenetic modifications on an organism. We emphasize more particularly why it is important to carefully consider TEs and what bioinformatic tools can be used to do so.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- CNRS, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, UMR 5558, F-69622 Villeurbanne, France.
| | - Josep Casacuberta
- Center for Research in Agricultural Genomics, CRAG (CSIC-IRTA-UAB-UB), Campus UAB, Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Cristian Chaparro
- CNRS, IHPE UMR 5244, University of Perpignan Via Domitia, IFREMER, University Montpellier, F-66860 Perpignan, France.
| | - Cristina Vieira
- CNRS, Laboratoire de Biométrie et Biologie Evolutive, Université de Lyon, Université Lyon 1, UMR 5558, F-69622 Villeurbanne, France.
| |
Collapse
|
40
|
Marin P, Genitoni J, Barloy D, Maury S, Gibert P, Ghalambor CK, Vieira C. Biological invasion: The influence of the hidden side of the (epi)genome. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13317] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Pierre Marin
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1 Université de Lyon Villeurbanne France
| | - Julien Genitoni
- ESE, Ecology and Ecosystem Health, Agrocampus Ouest INRA Rennes France
- LBLGC EA 1207 INRA, Université d'Orléans, USC 1328 Orléans France
| | - Dominique Barloy
- ESE, Ecology and Ecosystem Health, Agrocampus Ouest INRA Rennes France
| | - Stéphane Maury
- LBLGC EA 1207 INRA, Université d'Orléans, USC 1328 Orléans France
| | - Patricia Gibert
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1 Université de Lyon Villeurbanne France
| | - Cameron K. Ghalambor
- Department of Biology and Graduate Degree Program in Ecology Colorado State University Fort Collins Colorado
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive UMR 5558, CNRS, Université Lyon 1 Université de Lyon Villeurbanne France
| |
Collapse
|
41
|
Shamimuzzaman M, Hasegawa DK, Chen W, Simmons AM, Fei Z, Ling KS. Genome-wide profiling of piRNAs in the whitefly Bemisia tabaci reveals cluster distribution and association with begomovirus transmission. PLoS One 2019; 14:e0213149. [PMID: 30861037 PMCID: PMC6413925 DOI: 10.1371/journal.pone.0213149] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 02/17/2019] [Indexed: 11/19/2022] Open
Abstract
The whitefly Bemisia tabaci MEAM1 is a notorious vector capable of transmitting many plant viruses, resulting in serious crop loss and food shortage around the world. To investigate potential sRNA-mediated regulatory mechanisms in whiteflies that are affected by virus acquisition and transmission, we conducted small RNA (sRNA) deep sequencing and performed genome-wide profiling of piwi-interacting RNAs (piRNAs) in whiteflies that were fed on tomato yellow leaf curl virus (TYLCV)-infected or non-infected tomato plants for 24, 48, and 72 h. In the present study, piRNA reads ranging from 564,395 to 1,715,652 per library were identified and shown to distribute unevenly in clusters (57 to 96 per library) on the whitefly (B. tabaci MEAM1) genome. Among them, 53 piRNA clusters were common for all treatments. Comparative analysis between libraries generated from viruliferous and non-viruliferous whiteflies identified five TYLCV-induced and 24 TYLCV-suppressed piRNA clusters. Approximately 62% of piRNAs were derived from non-coding sequences including intergenic regions, introns, and untranslated regions (UTRs). The remaining 38% were derived from coding sequences (CDS) or repeat elements. Interestingly, six protein coding genes were targeted by the TYLCV-induced piRNAs. We identified a large number of piRNAs that were distributed in clusters across the whitefly genome, with 60% being derived from non-coding regions. Comparative analysis revealed that feeding on a virus-infected host caused induction and suppression of only a small number of piRNA clusters in whiteflies. Although piRNAs primarily regulate the activity of transposable elements, our results suggest that they may have additional functions in regulating protein coding genes and in insect-virus interactions.
Collapse
Affiliation(s)
- Md Shamimuzzaman
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC, United States of America
| | - Daniel K. Hasegawa
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC, United States of America
| | - Wenbo Chen
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
| | - Alvin M. Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC, United States of America
| | - Zhangjun Fei
- Boyce Thompson Institute, Cornell University, Ithaca, New York, United States of America
- USDA-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York, United States of America
| | - Kai-Shu Ling
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC, United States of America
- * E-mail:
| |
Collapse
|
42
|
Choi JY, Purugganan MD. Evolutionary Epigenomics of Retrotransposon-Mediated Methylation Spreading in Rice. Mol Biol Evol 2019; 35:365-382. [PMID: 29126199 PMCID: PMC5850837 DOI: 10.1093/molbev/msx284] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Plant genomes contain numerous transposable elements (TEs), and many hypotheses on the evolutionary drivers that restrict TE activity have been postulated. Few models, however, have focused on the evolutionary epigenomic interaction between the plant host and its TE. The host genome recruits epigenetic factors, such as methylation, to silence TEs but methylation can spread beyond the TE sequence and influence the expression of nearby host genes. In this study, we investigated this epigenetic trade-off between TE and proximal host gene silencing by studying the epigenomic regulation of repressing long terminal repeat (LTR) retrotransposons (RTs) in Oryza sativa. Results showed significant evidence of methylation spreading originating from the LTR-RT sequences, and the extent of spreading was dependent on five factors: 1) LTR-RT family, 2) time since the LTR-RT insertion, 3) recombination rate of the LTR-RT region, 4) level of LTR-RT sequence methylation, and 5) chromosomal location. Methylation spreading had negative effects by reducing host gene expression, but only on host genes with LTR-RT inserted in its introns. Our results also suggested high levels of LTR-RT methylation might have a role in suppressing TE-mediated deleterious ectopic recombination. In the end, despite the methylation spreading, no strong epigenetic trade-off was detected and majority of LTR-RT may have only minor epigenetic effects on nearby host genes.
Collapse
Affiliation(s)
- Jae Young Choi
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY
| | - Michael D Purugganan
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Saadiyat Island, Abu Dhabi, United Arab Emirates
| |
Collapse
|
43
|
Adrion JR, Begun DJ, Hahn MW. Patterns of transposable element variation and clinality in
Drosophila. Mol Ecol 2019; 28:1523-1536. [DOI: 10.1111/mec.14961] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 11/14/2018] [Accepted: 11/15/2018] [Indexed: 01/02/2023]
Affiliation(s)
- Jeffrey R. Adrion
- Department of Biology University of Oregon Eugene Oregon
- Department of Biology Indiana University Bloomington Indiana
| | - David J. Begun
- Department of Evolution and Ecology University of California Davis, Davis California
| | - Matthew W. Hahn
- Department of Biology Indiana University Bloomington Indiana
- Department of Computer Science Indiana University Bloomington Indiana
| |
Collapse
|
44
|
Weng W, Li H, Goel A. Piwi-interacting RNAs (piRNAs) and cancer: Emerging biological concepts and potential clinical implications. Biochim Biophys Acta Rev Cancer 2018; 1871:160-169. [PMID: 30599187 DOI: 10.1016/j.bbcan.2018.12.005] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 11/09/2018] [Accepted: 12/24/2018] [Indexed: 12/12/2022]
Abstract
Piwi-interacting RNAs (piRNAs) are a very recently discovered class of small non-coding RNAs (ncRNAs), with approximately 20,000 piRNA genes already identified within the human genome. These short RNAs were originally described as key functional regulators for the germline maintenance and transposon silencing. However, due to our limited knowledge regarding their function, piRNAs were for a long time assumed to be the "dark matter" of ncRNAs in our genome. However, recent evidence has now changed our viewpoint of their biological and clinical significance in various diseases, as newly emerging data reveals that aberrant expression of piRNAs is a unique and distinct feature in many diseases, including multiple human cancers. Furthermore, their altered expression in cancer patients has been significantly associated with clinical outcomes, highlighting their important biological functional role in disease progression. Functionally, piRNAs maintain genomic integrity by silencing transposable elements, and are capable of regulating the expression of specific downstream target genes in a post-transcriptional manner. Moreover, accumulating evidences demonstrates that analogous to other small ncRNAs (e.g. miRNAs) piRNAs have both oncogenic and tumor suppressive roles in cancer development. In this article, we discuss emerging insights into roles of piRNAs in a variety of cancers, reveal new findings underpinning various mechanisms of piRNAs-mediated gene regulation, and highlight their potential clinical significance in the management of cancer patients.
Collapse
Affiliation(s)
- Wenhao Weng
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China; Center for Translational Medicine, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Hanhua Li
- Department of Clinical Laboratory, Yangpu Hospital, Tongji University School of Medicine, Shanghai 200090, China
| | - Ajay Goel
- Center for Gastrointestinal Research, Center for Translational Genomics and Oncology, Baylor Scott & White Research Institute and Charles A Sammons Cancer Center, Baylor Research Institute and Sammons Cancer Center, Baylor University Medical Center, Dallas, TX 75246-2017, USA.
| |
Collapse
|
45
|
Kelleher ES, Azevedo RBR, Zheng Y. The Evolution of Small-RNA-Mediated Silencing of an Invading Transposable Element. Genome Biol Evol 2018; 10:3038-3057. [PMID: 30252073 PMCID: PMC6404463 DOI: 10.1093/gbe/evy218] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 12/11/2022] Open
Abstract
Transposable elements (TEs) are genomic parasites that impose fitness costs on their
hosts by producing deleterious mutations and disrupting gametogenesis. Host genomes avoid
these costs by regulating TE activity, particularly in germline cells where new insertions
are heritable and TEs are exceptionally active. However, the capacity of different
TE-associated fitness costs to select for repression in the host, and the role of
selection in the evolution of TE regulation more generally remain controversial. In this
study, we use forward, individual-based simulations to examine the evolution of
small-RNA-mediated TE regulation, a conserved mechanism for TE repression that is employed
by both prokaryotes and eukaryotes. To design and parameterize a biologically realistic
model, we drew on an extensive survey of empirical studies of the transposition and
regulation of P-element DNA transposons in Drosophila
melanogaster. We observed that even under conservative assumptions, where
small-RNA-mediated regulation reduces transposition only, repression evolves rapidly and
adaptively after the genome is invaded by a new TE in simulated populations. We further
show that the spread of repressor alleles through simulated populations is greatly
enhanced by two additional TE-imposed fitness costs: dysgenic sterility and ectopic
recombination. Finally, we demonstrate that the adaptive mutation rate to repression is a
critical parameter that influences both the evolutionary trajectory of host repression and
the associated proliferation of TEs after invasion in simulated populations. Our findings
suggest that adaptive evolution of TE regulation may be stronger and more prevalent than
previously appreciated, and provide a framework for interpreting empirical data.
Collapse
Affiliation(s)
- Erin S Kelleher
- Department of Biology and Biochemistry, University of Houston, Houston
| | | | - Yichen Zheng
- Department of Biology and Biochemistry, University of Houston, Houston.,Biodiversitt und Klima Forschungszentrum, Senckenberg Gesellschaft fr Naturforschung, Frankfurt am Main, Germany.,Institute of Genetics, University of Cologne, 50674 Cologne, NRW, Germany
| |
Collapse
|
46
|
Manee MM, Jackson J, Bergman CM. Conserved Noncoding Elements Influence the Transposable Element Landscape in Drosophila. Genome Biol Evol 2018; 10:1533-1545. [PMID: 29850787 PMCID: PMC6007792 DOI: 10.1093/gbe/evy104] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2018] [Indexed: 12/15/2022] Open
Abstract
Highly conserved noncoding elements (CNEs) constitute a significant proportion of the genomes of multicellular eukaryotes. The function of most CNEs remains elusive, but growing evidence indicates they are under some form of purifying selection. Noncoding regions in many species also harbor large numbers of transposable element (TE) insertions, which are typically lineage specific and depleted in exons because of their deleterious effects on gene function or expression. However, it is currently unknown whether the landscape of TE insertions in noncoding regions is random or influenced by purifying selection on CNEs. Here, we combine comparative and population genomic data in Drosophila melanogaster to show that the abundance of TE insertions in intronic and intergenic CNEs is reduced relative to random expectation, supporting the idea that selective constraints on CNEs eliminate a proportion of TE insertions in noncoding regions. However, we find no evidence for differences in the allele frequency spectra for polymorphic TE insertions in CNEs versus those in unconstrained spacer regions, suggesting that the distribution of fitness effects acting on observable TE insertions is similar across different functional compartments in noncoding DNA. Our results provide evidence that selective constraints on CNEs contribute to shaping the landscape of TE insertion in eukaryotic genomes, and provide further evidence that CNEs are indeed functionally constrained and not simply mutational cold spots.
Collapse
Affiliation(s)
- Manee M Manee
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,National Center for Biotechnology, King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia.,Center of Excellence for Genomics (CEG), King Abdulaziz City for Science and Technology, Riyadh, Saudi Arabia
| | - John Jackson
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,Department of Animal and Plant Sciences, University of Sheffield, Sheffield, United Kingdom
| | - Casey M Bergman
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.,Department of Genetics, University of Georgia, Athens, GA.,Institute of Bioinformatics, University of Georgia, Athens, GA
| |
Collapse
|
47
|
The H3K9 methyltransferase SETDB1 maintains female identity in Drosophila germ cells. Nat Commun 2018; 9:4155. [PMID: 30297796 PMCID: PMC6175928 DOI: 10.1038/s41467-018-06697-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 12/17/2022] Open
Abstract
The preservation of germ cell sexual identity is essential for gametogenesis. Here we show that H3K9me3-mediated gene silencing is integral to female fate maintenance in Drosophila germ cells. Germ cell specific loss of the H3K9me3 pathway members, the H3K9 methyltransferase SETDB1, WDE, and HP1a, leads to ectopic expression of genes, many of which are normally expressed in testis. SETDB1 controls the accumulation of H3K9me3 over a subset of these genes without spreading into neighboring loci. At phf7, a regulator of male germ cell sexual fate, the H3K9me3 peak falls over the silenced testis-specific transcription start site. Furthermore, H3K9me3 recruitment to phf7 and repression of testis-specific transcription is dependent on the female sex determination gene Sxl. Thus, female identity is secured by an H3K9me3 epigenetic pathway in which Sxl is the upstream female-specific regulator, SETDB1 is the required chromatin writer, and phf7 is one of the critical SETDB1 target genes. Epigenetic regulation is critical for the maintenance of germ cell identity. Here the authors show that H3K9me3-mediated gene silencing is critical for repression of testis-specific transcription in Drosophila female germ cells, indicating H3K9me3 maintains female germ cell sexual identity.
Collapse
|
48
|
Horvath R, Slotte T. The Role of Small RNA-Based Epigenetic Silencing for Purifying Selection on Transposable Elements in Capsella grandiflora. Genome Biol Evol 2018; 9:2911-2920. [PMID: 29036316 PMCID: PMC5737465 DOI: 10.1093/gbe/evx206] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/27/2017] [Indexed: 12/13/2022] Open
Abstract
To avoid negative effects of transposable element (TE) proliferation, plants epigenetically silence TEs using a number of mechanisms, including RNA-directed DNA methylation. These epigenetic modifications can extend outside the boundaries of TE insertions and lead to silencing of nearby genes, resulting in a trade-off between TE silencing and interference with nearby gene regulation. Therefore, purifying selection is expected to remove silenced TE insertions near genes more efficiently and prevent their accumulation within a population. To explore how effects of TE silencing on gene regulation shapes purifying selection on TEs, we analyzed whole genome sequencing data from 166 individuals of a large population of the outcrossing species Capsella grandiflora. We found that most TEs are rare, and in chromosome arms, silenced TEs are exposed to stronger purifying selection than those that are not silenced by 24-nucleotide small RNAs, especially with increasing proximity to genes. An age-of-allele test of neutrality on a subset of TEs supports our inference of purifying selection on silenced TEs, suggesting that our results are robust to varying transposition rates. Our results provide new insights into the processes affecting the accumulation of TEs in an outcrossing species and support the view that epigenetic silencing of TEs results in a trade-off between preventing TE proliferation and interference with nearby gene regulation. We also suggest that in the centromeric and pericentromeric regions, the negative aspects of epigenetic TE silencing are missing.
Collapse
Affiliation(s)
- Robert Horvath
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| | - Tanja Slotte
- Science for Life Laboratory, Department of Ecology, Environment and Plant Sciences, Stockholm University, Sweden
| |
Collapse
|
49
|
Lerat E, Fablet M, Modolo L, Lopez-Maestre H, Vieira C. TEtools facilitates big data expression analysis of transposable elements and reveals an antagonism between their activity and that of piRNA genes. Nucleic Acids Res 2018; 45:e17. [PMID: 28204592 PMCID: PMC5389681 DOI: 10.1093/nar/gkw953] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Revised: 09/29/2016] [Accepted: 10/11/2016] [Indexed: 11/24/2022] Open
Abstract
Over recent decades, substantial efforts have been made to understand the interactions between host genomes and transposable elements (TEs). The impact of TEs on the regulation of host genes is well known, with TEs acting as platforms of regulatory sequences. Nevertheless, due to their repetitive nature it is considerably hard to integrate TE analysis into genome-wide studies. Here, we developed a specific tool for the analysis of TE expression: TEtools. This tool takes into account the TE sequence diversity of the genome, it can be applied to unannotated or unassembled genomes and is freely available under the GPL3 (https://github.com/l-modolo/TEtools). TEtools performs the mapping of RNA-seq data obtained from classical mRNAs or small RNAs onto a list of TE sequences and performs differential expression analyses with statistical relevance. Using this tool, we analyzed TE expression from five Drosophila wild-type strains. Our data show for the first time that the activity of TEs is strictly linked to the activity of the genes implicated in the piwi-interacting RNA biogenesis and therefore fits an arms race scenario between TE sequences and host control genes.
Collapse
Affiliation(s)
- Emmanuelle Lerat
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, Université de Lyon, Villeurbanne 69622, France
| | - Marie Fablet
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, Université de Lyon, Villeurbanne 69622, France
| | - Laurent Modolo
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, Université de Lyon, Villeurbanne 69622, France
| | - Hélène Lopez-Maestre
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, Université de Lyon, Villeurbanne 69622, France
| | - Cristina Vieira
- Laboratoire de Biométrie et Biologie Evolutive, UMR CNRS 5558, Université Lyon 1, Université de Lyon, Villeurbanne 69622, France
| |
Collapse
|
50
|
Guio L, Vieira C, González J. Stress affects the epigenetic marks added by natural transposable element insertions in Drosophila melanogaster. Sci Rep 2018; 8:12197. [PMID: 30111890 PMCID: PMC6093896 DOI: 10.1038/s41598-018-30491-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022] Open
Abstract
Transposable elements are emerging as an important source of cis-acting regulatory sequences and epigenetic marks that could influence gene expression. However, few studies have dissected the role of specific transposable element insertions on epigenetic gene regulation. Bari-Jheh is a natural transposon that mediates resistance to oxidative stress by adding cis-regulatory sequences that affect expression of nearby genes. In this work, we integrated publicly available ChIP-seq and piRNA data with chromatin immunoprecipitation experiments to get a more comprehensive picture of Bari-Jheh molecular effects. We showed that Bari-Jheh was enriched for H3K9me3 in nonstress conditions, and for H3K9me3, H3K4me3 and H3K27me3 in oxidative stress conditions, which is consistent with expression changes in adjacent genes. We further showed that under oxidative stress conditions, H3K4me3 and H3K9me3 spread to the promoter region of Jheh1 gene. Finally, another insertion of the Bari1 family was associated with increased H3K27me3 in oxidative stress conditions suggesting that Bari1 histone marks are copy-specific. We concluded that besides adding cis-regulatory sequences, Bari-Jheh influences gene expression by affecting the local chromatin state.
Collapse
Affiliation(s)
- Lain Guio
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Lyon, France
| | - Cristina Vieira
- Université de Lyon, Université Lyon 1, CNRS UMR5558, Lyon, France
| | - Josefa González
- Institute of Evolutionary Biology (CSIC-Universitat Pompeu Fabra), Barcelona, Spain.
| |
Collapse
|