1
|
Chovanec P, Yin Y. A mapping platform for mitotic crossover by single-cell multi-omics. Methods Enzymol 2021; 661:183-204. [PMID: 34776212 DOI: 10.1016/bs.mie.2021.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Mitotic crossovers have the potential to cause large-scale genome rearrangements. Here, we describe high-throughput, single-cell, whole-genome sequencing methods for mapping crossovers genome-wide at scale. The methods are generalizable to various eukaryotes and to other end points requiring high-throughput, high-coverage single cell sequencing.
Collapse
Affiliation(s)
- Peter Chovanec
- Department of Human Genetics, University of California, Los Angeles, CA, Unites States
| | - Yi Yin
- Department of Human Genetics, University of California, Los Angeles, CA, Unites States.
| |
Collapse
|
2
|
Jia X, Zhang Q, Jiang M, Huang J, Yu L, Traw MB, Tian D, Hurst LD, Yang S. Mitotic gene conversion can be as important as meiotic conversion in driving genetic variability in plants and other species without early germline segregation. PLoS Biol 2021; 19:e3001164. [PMID: 33750968 PMCID: PMC8016264 DOI: 10.1371/journal.pbio.3001164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 04/01/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022] Open
Abstract
In contrast to common meiotic gene conversion, mitotic gene conversion, because it is so rare, is often ignored as a process influencing allelic diversity. We show that if there is a large enough number of premeiotic cell divisions, as seen in many organisms without early germline sequestration, such as plants, this is an unsafe position. From examination of 1.1 million rice plants, we determined that the rate of mitotic gene conversion events, per mitosis, is 2 orders of magnitude lower than the meiotic rate. However, owing to the large number of mitoses between zygote and gamete and because of long mitotic tract lengths, meiotic and mitotic gene conversion can be of approximately equivalent importance in terms of numbers of markers converted from zygote to gamete. This holds even if we assume a low number of premeiotic cell divisions (approximately 40) as witnessed in Arabidopsis. A low mitotic rate associated with long tracts is also seen in yeast, suggesting generality of results. For species with many mitoses between each meiotic event, mitotic gene conversion should not be overlooked. Gene conversion associated with meiosis has long been a focus of attention in population genomics, but mitotic conversion has been relatively overlooked as it was thought to be rare. Analysis in plants suggests that this could be a mistake; long tract lengths and multiple mitoses in species lacking germline sequestration suggest that mitotic conversion, although rare per mitosis, should not be ignored.
Collapse
Affiliation(s)
- Xianqing Jia
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Qijun Zhang
- Institute of Food Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Mengmeng Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Ju Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Luyao Yu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Milton Brian Traw
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Dacheng Tian
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Sihai Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China.,State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
3
|
Pardo B, Moriel‐Carretero M, Vicat T, Aguilera A, Pasero P. Homologous recombination and Mus81 promote replication completion in response to replication fork blockage. EMBO Rep 2020; 21:e49367. [PMID: 32419301 PMCID: PMC7332989 DOI: 10.15252/embr.201949367] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/19/2022] Open
Abstract
Impediments to DNA replication threaten genome stability. The homologous recombination (HR) pathway has been involved in the restart of blocked replication forks. Here, we used a method to increase yeast cell permeability in order to study at the molecular level the fate of replication forks blocked by DNA topoisomerase I poisoning by camptothecin (CPT). Our results indicate that Rad52 and Rad51 HR factors are required to complete DNA replication in response to CPT. Recombination events occurring during S phase do not generally lead to the restart of DNA synthesis but rather protect blocked forks until they merge with convergent forks. This fusion generates structures requiring their resolution by the Mus81 endonuclease in G2 /M. At the global genome level, the multiplicity of replication origins in eukaryotic genomes and the fork protection mechanism provided by HR appear therefore to be essential to complete DNA replication in response to fork blockage.
Collapse
Affiliation(s)
- Benjamin Pardo
- Institut de Génétique HumaineUniversité de Montpellier‐CNRSMontpellierFrance
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - María Moriel‐Carretero
- Institut de Génétique HumaineUniversité de Montpellier‐CNRSMontpellierFrance
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
- Present address:
Centre de Recherche en Biologie cellulaire de MontpellierUniversité de Montpellier‐CNRSMontpellierFrance
| | - Thibaud Vicat
- Institut de Génétique HumaineUniversité de Montpellier‐CNRSMontpellierFrance
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMERUniversidad de Sevilla‐CSIC‐Universidad Pablo de OlavideSevilleSpain
| | - Philippe Pasero
- Institut de Génétique HumaineUniversité de Montpellier‐CNRSMontpellierFrance
| |
Collapse
|
4
|
Piazza A, Heyer WD. Multi-Invasion-Induced Rearrangements as a Pathway for Physiological and Pathological Recombination. Bioessays 2018; 40:e1700249. [PMID: 29578583 PMCID: PMC6072258 DOI: 10.1002/bies.201700249] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/08/2018] [Indexed: 01/24/2023]
Abstract
Cells mitigate the detrimental consequences of DNA damage on genome stability by attempting high fidelity repair. Homologous recombination templates DNA double-strand break (DSB) repair on an identical or near identical donor sequence in a process that can in principle access the entire genome. Other physiological processes, such as homolog recognition and pairing during meiosis, also harness the HR machinery using programmed DSBs to physically link homologs and generate crossovers. A consequence of the homology search process by a long nucleoprotein filament is the formation of multi-invasions (MI), a joint molecule in which the damaged ssDNA has invaded more than one donor molecule. Processing of MI joint molecules can compromise the integrity of both donor sites and lead to their rearrangement. Here, two mechanisms for the generation of rearrangements as a pathological consequence of MI processing are detailed and the potential relevance for non-allelic homologous recombination discussed. Finally, it is proposed that MI-induced crossover formation may be a feature of physiological recombination.
Collapse
Affiliation(s)
- Aurèle Piazza
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, CA, 95616, USA
- Spatial Regulation of Genomes, Department of Genomes and Genetics, Institut Pasteur, 25-28 Rue du Docteur Roux, 75015 Paris, France
| | - Wolf-Dietrich Heyer
- Department of Microbiology and Molecular Genetics, One Shields Avenue, University of California, Davis, CA, 95616, USA
- Department of Molecular and Cellular Biology, One Shields Avenue, University of California, Davis, CA, 95616, USA
| |
Collapse
|
5
|
Mitotic Gene Conversion Tracts Associated with Repair of a Defined Double-Strand Break in Saccharomyces cerevisiae. Genetics 2017; 207:115-128. [PMID: 28743762 DOI: 10.1534/genetics.117.300057] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 07/18/2017] [Indexed: 11/18/2022] Open
Abstract
Mitotic recombination between homologous chromosomes leads to the uncovering of recessive alleles through loss of heterozygosity. In the current study, a defined double-strand break was used to initiate reciprocal loss of heterozygosity between diverged homologs of chromosome IV in Saccharomyces cerevisiae These events resulted from the repair of two broken chromatids, one of which was repaired as a crossover and the other as a noncrossover. Associated gene conversion tracts resulting from the donor-directed repair of mismatches formed during strand exchange (heteroduplex DNA) were mapped using microarrays. Gene conversion tracts associated with individual crossover and noncrossover events were similar in size and position, with half of the tracts being unidirectional and mapping to only one side of the initiating break. Among crossover events, this likely reflected gene conversion on only one side of the break, with restoration-type repair occurring on the other side. For noncrossover events, an ectopic system was used to directly compare gene conversion tracts produced in a wild-type strain to heteroduplex DNA tracts generated in the absence of the Mlh1 mismatch-repair protein. There was a strong bias for unidirectional tracts in the absence, but not in the presence, of Mlh1 This suggests that mismatch repair acts on heteroduplex DNA that is only transiently present in noncrossover intermediates of the synthesis dependent strand annealing pathway. Although the molecular features of events associated with loss of heterozygosity generally agreed with those predicted by current recombination models, there were unexpected complexities in associated gene conversion tracts.
Collapse
|
6
|
Abstract
Somatic recombination is essential to protect genomes of somatic cells from DNA damage but it also has important clinical implications, as it is a driving force of tumorigenesis leading to inactivation of tumor suppressor genes. Despite this importance, our knowledge about somatic recombination in adult tissues remains very limited. Our recent work, using the Drosophila adult midgut has demonstrated that spontaneous events of mitotic recombination accumulate in aging adult intestinal stem cells and result in frequent loss of heterozygosity (LOH). In this Extra View article, we provide further data supporting long-track chromosome LOH and discuss potential mechanisms involved in the process. In addition, we further discuss relevant questions surrounding somatic recombination and how the mechanisms and factors influencing somatic recombination in adult tissues can be explored using the Drosophila midgut model.
Collapse
Affiliation(s)
- Katarzyna Siudeja
- a Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group , Paris , France , Sorbonne Universités, UPMC Univ Paris 6 , Paris , France
| | - Allison J Bardin
- a Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, Stem Cells and Tissue Homeostasis group , Paris , France , Sorbonne Universités, UPMC Univ Paris 6 , Paris , France
| |
Collapse
|