1
|
Anitha A, Banerjee M, Thanseem I, Prakash A, Melempatt N, Sumitha PS, Iype M, Thomas SV. Rare Pathogenic Variants Identified in Whole Exome Sequencing of Monozygotic Twins With Autism Spectrum Disorder. Pediatr Neurol 2024; 158:113-123. [PMID: 39038432 DOI: 10.1016/j.pediatrneurol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a childhood-onset complex neurodevelopmental disorder characterized by problems with communication and social interaction and restricted, repetitive, stereotyped behavior. The prevalence of ASD is one in 36 children. The genetic architecture of ASD is complex in spite of its high heritability. To identify the potential candidate genes of ASD, we carried out a comprehensive genetic study of monozygotic (MZ) twins concordant or discordant for ASD. METHODS Five MZ twins and their parents were recruited for the study. Four of the twins were concordant, whereas one was discordant for ASD. Whole exome sequencing was conducted for the twins and their parents. The exome DNA was enriched using Twist Human Customized Core Exome Kit, and paired-end sequencing was performed on HiSeq system. RESULTS We identified several rare and pathogenic variants (homozygous recessive, compound heterozygous, de novo) in ASD-affected individuals. CONCLUSION We report novel variants in individuals diagnosed with ASD. Several of these genes are involved in brain-related functions and not previously reported in ASD. Intriguingly, some of the variants were observed in the genes involved in sensory perception (auditory [MYO15A, PLEC, CDH23, UBR3, GPSM2], olfactory [OR9K2], gustatory [TAS2R31], and visual [CDH23, UBR3]). This is the first comprehensive genetic study of MZ twins in an Indian population. Further validation is required to determine whether these variants are associated with ASD.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India.
| | - Moinak Banerjee
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Anil Prakash
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nisha Melempatt
- Department of Audiology and Speech Language Pathology (ASLP), ICCONS, Palakkad, Kerala, India
| | - P S Sumitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Mary Iype
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India; Department of Pediatric Neurology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Sanjeev V Thomas
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India
| |
Collapse
|
2
|
Gallois M, Menoret D, Marques-Prieto S, Montigny A, Valenti P, Moussian B, Plaza S, Payre F, Chanut-Delalande H. Pri peptides temporally coordinate transcriptional programs during epidermal differentiation. SCIENCE ADVANCES 2024; 10:eadg8816. [PMID: 38335295 PMCID: PMC10857433 DOI: 10.1126/sciadv.adg8816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/09/2024] [Indexed: 02/12/2024]
Abstract
To achieve a highly differentiated state, cells undergo multiple transcriptional processes whose coordination and timing are not well understood. In Drosophila embryonic epidermal cells, polished-rice (Pri) smORF peptides act as temporal mediators of ecdysone to activate a transcriptional program leading to cell shape remodeling. Here, we show that the ecdysone/Pri axis concomitantly represses the transcription of a large subset of cuticle genes to ensure proper differentiation of the insect exoskeleton. The repression relies on the transcription factor Ken and persists for several days throughout early larval stages, during which a soft cuticle allows larval crawling. The onset of these cuticle genes normally awaits the end of larval stages when the rigid pupal case assembles, and their premature expression triggers abnormal sclerotization of the larval cuticle. These results uncovered a temporal switch to set up distinct structures of cuticles adapted to the animal lifestyle and which might be involved in the evolutionary history of insects.
Collapse
Affiliation(s)
- Maylis Gallois
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Delphine Menoret
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Simon Marques-Prieto
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Audrey Montigny
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Philippe Valenti
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Bernard Moussian
- Université Côte d'Azur, INRAE, CNRS, Institut Sophia Agrobiotech, Sophia Antipolis, France
| | - Serge Plaza
- Laboratoire de Recherche en Sciences Végétales, CNRS/UPS/INPT, Auzeville-Tolosane, France
| | - François Payre
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| | - Hélène Chanut-Delalande
- Molecular Cellular and Developmental Biology Unit (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France
| |
Collapse
|
3
|
Genevcius BC, Calandriello DC, Torres TT. Molecular and Developmental Signatures of Genital Size Macro-Evolution in Bugs. Mol Biol Evol 2022; 39:6742344. [PMID: 36181434 PMCID: PMC9585474 DOI: 10.1093/molbev/msac211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Our understanding of the genetic architecture of phenotypic traits has experienced drastic growth over the last years. Nevertheless, the majority of studies associating genotypes and phenotypes have been conducted at the ontogenetic level. Thus, we still have an elusive knowledge of how these genetic-developmental architectures evolve themselves and how their evolution is mirrored in the phenotypic change across evolutionary time. We tackle this gap by reconstructing the evolution of male genital size, one of the most complex traits in insects, together with its underlying genetic architecture. Using the order Hemiptera as a model, spanning over 350 million years of evolution, we estimate the correlation between genitalia and three features: development rate, body size, and rates of DNA substitution in 68 genes associated with genital development. We demonstrate that genital size macro-evolution has been largely dependent on body size and weakly influenced by development rate and phylogenetic history. We further revealed significant correlations between mutation rates and genital size for 19 genes. Interestingly, these genes have diverse functions and participate in distinct signaling pathways, suggesting that genital size is a complex trait whose fast evolution has been enabled by molecular changes associated with diverse morphogenetic processes. Our data further demonstrate that the majority of DNA evolution correlated with the genitalia has been shaped by negative selection or neutral evolution. Thus, in terms of sequence evolution, changes in genital size are predominantly facilitated by relaxation of constraints rather than positive selection, possibly due to the high pleiotropic nature of the morphogenetic genes.
Collapse
Affiliation(s)
| | - Denis C Calandriello
- Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo (SP), Brazil
| | - Tatiana T Torres
- Department of Genetics and Evolutionary Biology, University of Sao Paulo, Sao Paulo (SP), Brazil
| |
Collapse
|
4
|
Jiang Z, Zhao Q, Chen L, Luo Y, Shen L, Cao Z, Wang Q. UBR3 promotes inflammation and apoptosis via DUSP1/p38 pathway in the nucleus pulposus cells of patients with intervertebral disc degeneration. Hum Cell 2022; 35:792-802. [PMID: 35332432 DOI: 10.1007/s13577-022-00693-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/15/2022] [Indexed: 11/04/2022]
Abstract
Intervertebral disc disease (IDD) is a primary cause of low back pain, affecting 5% of individuals. Previous study have shown that dual-specificity (Thr/Tyr) phosphatase 1 (DUSP1) regulates p38 MAPK activity and DUSP1 level is regulated by ubiquitination. As an E3 ubiquitin-protein ligase, UBR3 has been shown to regulate a variety of biological processes through ubiquitination. However, the role of UBR3/DUSP1/p38 in IDD remains to be elucidated. In the current study, we found that UBR3 was significantly increased in the nucleus pulposus tissues of IDD patients and was correlated with IDD severity. Silencing UBR3 promoted the growth, inhibited apoptosis, and inhibited inflammation in primary NPCs. Mechanism study suggested that UBR3 exerted its effects through p38. Co-immunoprecipitation assay indicated that UBR3 promoted DUSP1 ubiquitination. Overexpression of DUSP1 reversed the effect of UBR3 overexpression. Our data also supported that UBR3 was positively correlated with p-p38, but negatively correlated with DUSP1 in IDD. In summary, UBR3 promotes inflammation and apoptosis via inhibiting the p38 signaling pathway by DUSP1 ubiquitination in the NPCs of IDD patients. These findings highlight the importance of UBR3/DUSP1/p38 signaling pathway in IDD and provide new insights for the prevention and treatment of IDD.
Collapse
Affiliation(s)
- Zhenhuan Jiang
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Qinghua Zhao
- Department of Orthopaedics, School of Medicine, Shanghai First People's Hospital, Shanghai Jiaotong University, Shanghai, China
| | - Liang Chen
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Yifeng Luo
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Lei Shen
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China
| | - Zhihong Cao
- Department of Radiology, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.
| | - Qiang Wang
- Department of Orthopaedics, The Affiliated Yixing Hospital of Jiangsu University, Yixing, China.
| |
Collapse
|
5
|
Zhang Q, Jiang J. Regulation of Hedgehog Signal Transduction by Ubiquitination and Deubiquitination. Int J Mol Sci 2021; 22:ijms222413338. [PMID: 34948134 PMCID: PMC8703657 DOI: 10.3390/ijms222413338] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 12/23/2022] Open
Abstract
The Hedgehog (Hh) family of secreted proteins governs embryonic development and adult tissue homeostasis in species ranging from insects to mammals. Deregulation of Hh pathway activity has been implicated in a wide range of human disorders, including congenital diseases and cancer. Hh exerts its biological influence through a conserved signaling pathway. Binding of Hh to its receptor Patched (Ptc), a twelve-span transmembrane protein, leads to activation of an atypical GPCR family protein and Hh signal transducer Smoothened (Smo), which then signals downstream to activate the latent Cubitus interruptus (Ci)/Gli family of transcription factors. Hh signal transduction is regulated by ubiquitination and deubiquitination at multiple steps along the pathway including regulation of Ptc, Smo and Ci/Gli proteins. Here we review the effect of ubiquitination and deubiquitination on the function of individual Hh pathway components, the E3 ubiquitin ligases and deubiquitinases involved, how ubiquitination and deubiquitination are regulated, and whether the underlying mechanisms are conserved from Drosophila to mammals.
Collapse
Affiliation(s)
- Qing Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
- MOE Key Laboratory of Model Animals for Disease Study, Model Animal Research Center, School of Medicine, Nanjing University, Nanjing 210061, China
- Correspondence: (Q.Z.); (J.J.)
| | - Jin Jiang
- Department of Molecular Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA
- Correspondence: (Q.Z.); (J.J.)
| |
Collapse
|
6
|
Calderón-Rosete G, González-Barrios JA, Piña-Leyva C, Moreno-Sandoval HN, Lara-Lozano M, Rodríguez-Sosa L. Transcriptional identification of genes light-interacting in the extraretinal photoreceptors of the crayfish Procambarusclarkii. Zookeys 2021; 1072:107-127. [PMID: 34899009 PMCID: PMC8626408 DOI: 10.3897/zookeys.1072.73075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/21/2021] [Indexed: 11/12/2022] Open
Abstract
Crayfish serve as a model for studying the effect of environmental lighting on locomotor activity and neuroendocrine functions. The effects of light on this organism are mediated differentially by retinal and extraretinal photoreceptors located in the cerebroid ganglion and the pleonal nerve cord. However, some molecular aspects of the phototransduction cascade in the pleonal extraretinal photoreceptors remain unknown. In this study, transcriptome data from the pleonal nerve cord of the crayfish Procambarusclarkii (Girard,1852) were analyzed to identify transcripts that potentially interact with phototransduction process. The Illumina MiSeq System and the pipeline Phylogenetically Informed Annotation (PIA) were employed, which places uncharacterized genes into pre-calculated phylogenies of gene families. Here, for the first time 62 transcripts identified from the pleonal nerve cord that are related to light-interacting pathways are reported; they can be classified into the following 11 sets: 1) retinoid pathway in vertebrates and invertebrates, 2) photoreceptor specification, 3) rhabdomeric phototransduction, 4) opsins 5) ciliary phototransduction, 6) melanin synthesis, 7) pterin synthesis, 8) ommochrome synthesis, 9) heme synthesis, 10) diurnal clock, and 11) crystallins. Moreover, this analysis comparing the sequences located on the pleonal nerve cord to eyestalk sequences reported in other studies reveals 94-100% similarity between the 55 common proteins identified. These results show that both retinal and pleonal non-visual photoreceptors in the crayfish equally expressed the transcripts involved in light detection. Moreover, they suggest that the genes related to ocular and extraocular light perception in the crayfish P.clarkii use biosynthesis pathways and phototransduction cascades commons.
Collapse
Affiliation(s)
- Gabina Calderón-Rosete
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, C. P. 04510, MéxicoUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| | - Juan Antonio González-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre” ISSSTE, 07300, MéxicoLaboratorio de Medicina GenómicaCiudad de MéxicoMexico
| | - Celia Piña-Leyva
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre” ISSSTE, 07300, MéxicoLaboratorio de Medicina GenómicaCiudad de MéxicoMexico
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados, 07360, MéxicoCentro de Investigación y Estudios AvanzadosCiudad de MéxicoMexico
| | - Hayde Nallely Moreno-Sandoval
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre” ISSSTE, 07300, MéxicoLaboratorio de Medicina GenómicaCiudad de MéxicoMexico
| | - Manuel Lara-Lozano
- Laboratorio de Medicina Genómica, Hospital Regional “Primero de Octubre” ISSSTE, 07300, MéxicoLaboratorio de Medicina GenómicaCiudad de MéxicoMexico
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y Estudios Avanzados, 07360, MéxicoCentro de Investigación y Estudios AvanzadosCiudad de MéxicoMexico
| | - Leonardo Rodríguez-Sosa
- Departamento de Fisiología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad Universitaria, C. P. 04510, MéxicoUniversidad Nacional Autónoma de MéxicoCiudad de MéxicoMexico
| |
Collapse
|
7
|
Liu M, Su Y, Peng J, Zhu AJ. Protein modifications in Hedgehog signaling: Cross talk and feedback regulation confer divergent Hedgehog signaling activity. Bioessays 2021; 43:e2100153. [PMID: 34738654 DOI: 10.1002/bies.202100153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
The complexity of the Hedgehog (Hh) signaling cascade has increased over the course of evolution; however, it does not suffice to accommodate the dynamic yet robust requirements of differential Hh signaling activity needed for embryonic development and adult homeostatic maintenance. One solution to solve this dilemma is to apply multiple forms of post-translational modifications (PTMs) to the core Hh signaling components, modulating their abundance, localization, and signaling activity. This review summarizes various forms of protein modifications utilized to regulate Hh signaling, with a special emphasis on crosstalk between different forms of PTMs and their feedback regulation by Hh signaling.
Collapse
Affiliation(s)
- Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Su
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jingyu Peng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
8
|
Hor CHH, Lo JCW, Cham ALS, Leong WY, Goh ELK. Multifaceted Functions of Rab23 on Primary Cilium-Mediated and Hedgehog Signaling-Mediated Cerebellar Granule Cell Proliferation. J Neurosci 2021; 41:6850-6863. [PMID: 34210780 PMCID: PMC8360682 DOI: 10.1523/jneurosci.3005-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 06/20/2021] [Accepted: 06/23/2021] [Indexed: 01/04/2023] Open
Abstract
Sonic hedgehog (Shh) signaling from the primary cilium drives cerebellar granule cell precursor (GCP) proliferation. Mutations of hedgehog (Hh) pathway repressors commonly cause medulloblastoma, the most prevalent and malignant childhood brain tumor that arises from aberrant GCP proliferation. We demonstrate that Nestin Cre-driven conditional knock-out (CKO) of a Shh pathway repressor-Rab23 in the mouse brain of both genders caused mis-patterning of cerebellar folia and elevated GCP proliferation during early development, but with no prevalent occurrence of medulloblastoma at adult stage. Strikingly, Rab23-depleted GCPs exhibited upregulated basal level of Shh pathway activities despite showing an abnormal ciliogenesis of primary cilia. In line with the compromised ciliation, Rab23-depleted GCPs were desensitized against Hh pathway activity stimulations by Shh ligand and Smoothened (Smo) agonist-SAG, and exhibited attenuated stimulation of Smo-localization on the primary cilium in response to SAG. These results implicate multidimensional actions of Rab23 on Hh signaling cascade. Rab23 represses the basal level of Shh signaling, while facilitating primary cilium-dependent extrinsic Shh signaling activation. Collectively, our findings unravel instrumental roles of Rab23 in GCP proliferation and ciliogenesis. Furthermore, Rab23's potentiation of Shh signaling pathway through the primary cilium and Smo suggests a potential new therapeutic strategy for Smo/primary cilium-driven medulloblastoma.SIGNIFICANCE STATEMENT Primary cilium and Sonic hedgehog (Shh) signaling are known to regulate granule cell precursor (GCP) proliferation. Aberrant overactivation of Shh signaling pathway ectopically increases GCP proliferation and causes malignant childhood tumor called medulloblastoma. However, the genetic and molecular regulatory cascade of GCP tumorigenesis remains incompletely understood. Our finding uncovers Rab23 as a novel regulator of hedgehog (Hh) signaling pathway activity and cell proliferation in GCP. Intriguingly, we demonstrated that Rab23 confers dual functions in regulating Shh signaling; it potentiates primary cilium and Shh/Smoothened (Smo)-dependent signaling activation, while antagonizes basal level Hh activity. Our data present a previously underappreciated aspect of Rab23 in mediating extrinsic Shh signaling upstream of Smo. This study sheds new light on the mechanistic insights underpinning Shh signaling-mediated GCP proliferation and tumorigenesis.
Collapse
Affiliation(s)
- C H H Hor
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
| | - J C W Lo
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - A L S Cham
- Department of Chemistry, Faculty of Science, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - W Y Leong
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
| | - E L K Goh
- Duke-NUS Medical School, Neuroscience Academic Clinical Programme, Singapore, 169857
- Department of Research, National Neuroscience Institute, Singapore, 308433
- Neuroscience and Mental Health Faculty, Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232
- KK Research Center, KK Women's and Children's Hospital, Singapore, 229899
| |
Collapse
|
9
|
Piedade WP, Famulski JK. E3 ubiquitin ligase-mediated regulation of vertebrate ocular development; new insights into the function of SIAH enzymes. Biochem Soc Trans 2021; 49:327-340. [PMID: 33616626 PMCID: PMC7924998 DOI: 10.1042/bst20200613] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 01/18/2023]
Abstract
Developmental regulation of the vertebrate visual system has been a focus of investigation for generations as understanding this critical time period has direct implications on our understanding of congenital blinding disease. The majority of studies to date have focused on transcriptional regulation mediated by morphogen gradients and signaling pathways. However, recent studies of post translational regulation during ocular development have shed light on the role of the ubiquitin proteasome system (UPS). This rather ubiquitous yet highly diverse system is well known for regulating protein function and localization as well as stability via targeting for degradation by the 26S proteasome. Work from many model organisms has recently identified UPS activity during various milestones of ocular development including retinal morphogenesis, retinal ganglion cell function as well as photoreceptor homeostasis. In particular work from flies and zebrafish has highlighted the role of the E3 ligase enzyme family, Seven in Absentia Homologue (Siah) during these events. In this review, we summarize the current understanding of UPS activity during Drosophila and vertebrate ocular development, with a major focus on recent findings correlating Siah E3 ligase activity with two major developmental stages of vertebrate ocular development, retinal morphogenesis and photoreceptor specification and survival.
Collapse
|
10
|
Arribat Y, Mysiak KS, Lescouzères L, Boizot A, Ruiz M, Rossel M, Bomont P. Sonic Hedgehog repression underlies gigaxonin mutation-induced motor deficits in giant axonal neuropathy. J Clin Invest 2020; 129:5312-5326. [PMID: 31503551 DOI: 10.1172/jci129788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Accepted: 08/28/2019] [Indexed: 12/11/2022] Open
Abstract
Growing evidence shows that alterations occurring at early developmental stages contribute to symptoms manifested in adulthood in the setting of neurodegenerative diseases. Here, we studied the molecular mechanisms causing giant axonal neuropathy (GAN), a severe neurodegenerative disease due to loss-of-function of the gigaxonin-E3 ligase. We showed that gigaxonin governs Sonic Hedgehog (Shh) induction, the developmental pathway patterning the dorso-ventral axis of the neural tube and muscles, by controlling the degradation of the Shh-bound Patched receptor. Similar to Shh inhibition, repression of gigaxonin in zebrafish impaired motor neuron specification and somitogenesis and abolished neuromuscular junction formation and locomotion. Shh signaling was impaired in gigaxonin-null zebrafish and was corrected by both pharmacological activation of the Shh pathway and human gigaxonin, pointing to an evolutionary-conserved mechanism regulating Shh signaling. Gigaxonin-dependent inhibition of Shh activation was also demonstrated in primary fibroblasts from patients with GAN and in a Shh activity reporter line depleted in gigaxonin. Our findings establish gigaxonin as a key E3 ligase that positively controls the initiation of Shh transduction, and reveal the causal role of Shh dysfunction in motor deficits, thus highlighting the developmental origin of GAN.
Collapse
Affiliation(s)
- Yoan Arribat
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Karolina S Mysiak
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Léa Lescouzères
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Alexia Boizot
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Maxime Ruiz
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| | - Mireille Rossel
- MMDN, University of Montpellier, EPHE, INSERM, U1198, PSL Research University, Montpellier, France
| | - Pascale Bomont
- ATIP-Avenir team, INM, INSERM, University of Montpellier, Montpellier, France
| |
Collapse
|
11
|
Murcia Pienkowski V, Kucharczyk M, Rydzanicz M, Poszewiecka B, Pachota K, Młynek M, Stawiński P, Pollak A, Kosińska J, Wojciechowska K, Lejman M, Cieślikowska A, Wicher D, Stembalska A, Matuszewska K, Materna-Kiryluk A, Gambin A, Chrzanowska K, Krajewska-Walasek M, Płoski R. Breakpoint Mapping of Symptomatic Balanced Translocations Links the EPHA6, KLF13 and UBR3 Genes to Novel Disease Phenotype. J Clin Med 2020; 9:jcm9051245. [PMID: 32344861 PMCID: PMC7287862 DOI: 10.3390/jcm9051245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/19/2020] [Accepted: 04/23/2020] [Indexed: 12/18/2022] Open
Abstract
De novo balanced chromosomal aberrations (BCAs), such as reciprocal translocations and inversions, are genomic aberrations that, in approximately 25% of cases, affect the human phenotype. Delineation of the exact structure of BCAs may provide a precise diagnosis and/or point to new disease loci. We report on six patients with de novo balanced chromosomal translocations (BCTs) and one patient with a de novo inversion, in whom we mapped breakpoints to a resolution of 1 bp, using shallow whole-genome mate pair sequencing. In all seven cases, a disruption of at least one gene was found. In two patients, the phenotypic impact of the disrupted genes is well known (NFIA, ATP7A). In five patients, the aberration damaged genes: PARD3, EPHA6, KLF13, STK24, UBR3, MLLT10 and TLE3, whose influence on the human phenotype is poorly understood. In particular, our results suggest novel candidate genes for retinal degeneration with anophthalmia (EPHA6), developmental delay with speech impairment (KLF13), and developmental delay with brain dysembryoplastic neuroepithelial tumor (UBR3). In conclusion, identification of the exact structure of symptomatic BCTs using next generation sequencing is a viable method for both diagnosis and finding novel disease candidate genes in humans.
Collapse
Affiliation(s)
- Victor Murcia Pienkowski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Marzena Kucharczyk
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Małgorzata Rydzanicz
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Barbara Poszewiecka
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland; (B.P.); (A.G.)
| | - Katarzyna Pachota
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Marlena Młynek
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Piotr Stawiński
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Agnieszka Pollak
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Joanna Kosińska
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
| | - Katarzyna Wojciechowska
- Department of Pediatric Hematology Oncology and Transplantology, University Children’s Hospital, 20-093 Lublin, Poland;
| | - Monika Lejman
- Department of Pediatric Hematology Oncology and Transplantology, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Agata Cieślikowska
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Dorota Wicher
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | | | - Karolina Matuszewska
- Department of Medical Genetics, University of Medical Sciences, 60-806 Poznan, Poland; (K.M.); (A.M.-K.)
- Centers for Medical Genetics GENESIS, Grudzieniec, 60-406 Poznan, Poland
| | - Anna Materna-Kiryluk
- Department of Medical Genetics, University of Medical Sciences, 60-806 Poznan, Poland; (K.M.); (A.M.-K.)
- Centers for Medical Genetics GENESIS, Grudzieniec, 60-406 Poznan, Poland
| | - Anna Gambin
- Institute of Informatics, Faculty of Mathematics, Informatics and Mechanics, University of Warsaw, 02-097 Warsaw, Poland; (B.P.); (A.G.)
| | - Krystyna Chrzanowska
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Małgorzata Krajewska-Walasek
- Department of Medical Genetics, The Children’s Memorial Health Institute, 04-730 Warsaw, Poland; (M.K.); (K.P.); (M.M.); (A.C.); (D.W.); (K.C.); (M.K.-W.)
| | - Rafał Płoski
- Department of Medical Genetics, Medical University of Warsaw, 02-106 Warsaw, Poland; (V.M.P.); (M.R.); (P.S.); (A.P.); (J.K.)
- Correspondence: ; Tel.: +48-22-572-06-95; Fax: +48-22-572-06-96
| |
Collapse
|
12
|
Cao J, Zhao M, Liu J, Zhang X, Pei Y, Wang J, Yang X, Shen B, Zhang J. RACK1 Promotes Self-Renewal and Chemoresistance of Cancer Stem Cells in Human Hepatocellular Carcinoma through Stabilizing Nanog. Theranostics 2019; 9:811-828. [PMID: 30809310 PMCID: PMC6376462 DOI: 10.7150/thno.29271] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 12/18/2018] [Indexed: 02/06/2023] Open
Abstract
Targeting cancer stem cells (CSCs) has been proposed as a new strategy to eradicate malignancies, including hepatocellular carcinoma (HCC). However, the mechanisms by which CSCs sustain their self-renewal and chemoresistance remain elusive. Nanog is a master transcriptional regulator of stemness, especially in CSCs. Its expression is tightly regulated by the ubiquitin-proteasome system in embryonic stem cells (ESCs). Whether the suppression of Nanog ubiquitination contributes to its over-expression in CSCs has not been explored. In addition, the role of receptor for activated C kinase 1 (RACK1), an adaptor protein implicated in HCC growth, in liver CSC-like traits remains to be determined. Methods: In vitro and in vivo assays were performed to investigate the role of RACK1 in liver CSC-like phenotype and murine ESC function. How RACK1 regulates Nanog expression was explored by immunoblotting and immunohistochemistry. The interaction of RACK1 with Nanog and the consequent effects on Nanog ubiquitination and stemness were then analyzed. Results: RACK1 promotes self-renewal and chemoresistance of human liver CSCs and maintains murine ESC function. Consistently, RACK1 enhances the expression of Nanog in human HCC cells and murine ESCs. The protein levels of RACK1 in clinical HCC tissues positively correlate with those of Nanog. Further exploration indicates that RACK1 directly binds to Nanog, which prevents its recruitment of E3 ubiquitin ligase FBXW8 and ubiquitin-dependent degradation. The interaction with Nanog is essential for RACK1 to promote stemness. Conclusions: Our data provide novel insights into the regulation of Nanog protein levels, as well the key role of RACK1 to enhance self-renewal and chemoresistance of CSCs in human HCC.
Collapse
|
13
|
Liu A. Proteostasis in the Hedgehog signaling pathway. Semin Cell Dev Biol 2018; 93:153-163. [PMID: 31429406 DOI: 10.1016/j.semcdb.2018.10.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 10/11/2018] [Accepted: 10/22/2018] [Indexed: 12/29/2022]
Abstract
The Hedgehog (Hh) signaling pathway is crucial for the development of vertebrate and invertebrate animals alike. Hh ligand binds its receptor Patched (Ptc), allowing the activation of the obligate signal transducer Smoothened (Smo). The levels and localizations of both Ptc and Smo are regulated by ubiquitination, and Smo is under additional regulation by phosphorylation and SUMOylation. Downstream of Smo, the Ci/Gli family of transcription factors regulates the transcriptional responses to Hh. Phosphorylation, ubiquitination and SUMOylation are important for the stability and localization of Ci/Gli proteins and Hh signaling output. Finally, Suppressor of Fused directly regulates Ci/Gli proteins and itself is under proteolytic regulation that is critical for normal Hh signaling.
Collapse
Affiliation(s)
- Aimin Liu
- Department of Biology, Eberly College of Science, Huck Institute of Life Sciences, The Pennsylvania State University, University Park, PA, 16802, United States.
| |
Collapse
|
14
|
Neelakantan D, Zhou H, Oliphant MUJ, Zhang X, Simon LM, Henke DM, Shaw CA, Wu MF, Hilsenbeck SG, White LD, Lewis MT, Ford HL. EMT cells increase breast cancer metastasis via paracrine GLI activation in neighbouring tumour cells. Nat Commun 2017; 8:15773. [PMID: 28604738 PMCID: PMC5472791 DOI: 10.1038/ncomms15773] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 04/27/2017] [Indexed: 02/07/2023] Open
Abstract
Recent fate-mapping studies concluded that EMT is not required for metastasis of carcinomas. Here we challenge this conclusion by showing that these studies failed to account for possible crosstalk between EMT and non-EMT cells that promotes dissemination of non-EMT cells. In breast cancer models, EMT cells induce increased metastasis of weakly metastatic, non-EMT tumour cells in a paracrine manner, in part by non-cell autonomous activation of the GLI transcription factor. Treatment with GANT61, a GLI1/2 inhibitor, but not with IPI 926, a Smoothened inhibitor, blocks this effect and inhibits growth in PDX models. In human breast tumours, the EMT-transcription factors strongly correlate with activated Hedgehog/GLI signalling but not with the Hh ligands. Our findings indicate that EMT contributes to metastasis via non-cell autonomous effects that activate the Hh pathway. Although all Hh inhibitors may act against tumours with canonical Hh/GLI signalling, only GLI inhibitors would act against non-canonical EMT-induced GLI activation.
Collapse
Affiliation(s)
- Deepika Neelakantan
- Department of Pharmacology, University of Colorado-Denver, 12800 East 19th Avenue, Room P18-6115, Aurora, Colorado 80045, USA.,Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Hengbo Zhou
- Department of Pharmacology, University of Colorado-Denver, 12800 East 19th Avenue, Room P18-6115, Aurora, Colorado 80045, USA.,Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Michael U J Oliphant
- Department of Pharmacology, University of Colorado-Denver, 12800 East 19th Avenue, Room P18-6115, Aurora, Colorado 80045, USA.,Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| | - Xiaomei Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lukas M Simon
- Institute of Computational Biology, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - David M Henke
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Chad A Shaw
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Meng-Fen Wu
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Susan G Hilsenbeck
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Lisa D White
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA.,Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Michael T Lewis
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, Texas 77030, USA.,Departments of Molecular and Cellular Biology and Radiology, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Heide L Ford
- Department of Pharmacology, University of Colorado-Denver, 12800 East 19th Avenue, Room P18-6115, Aurora, Colorado 80045, USA.,Molecular Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Cancer Biology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA.,Integrated Physiology Program, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, USA
| |
Collapse
|
15
|
Rao CV, Asch AS, Yamada HY. Frequently mutated genes/pathways and genomic instability as prevention targets in liver cancer. Carcinogenesis 2016; 38:2-11. [PMID: 27838634 DOI: 10.1093/carcin/bgw118] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Revised: 09/16/2016] [Accepted: 11/09/2016] [Indexed: 12/18/2022] Open
Abstract
The incidence of liver cancer has increased in recent years. Worldwide, liver cancer is common: more than 600000 related deaths are estimated each year. In the USA, about 27170 deaths due to liver cancer are estimated for 2016. Liver cancer is highly resistant to conventional chemotherapy and radiotherapy. For all stages combined, the 5-year survival rate is 15-17%, leaving much to be desired for liver cancer prevention and therapy. Heterogeneity, which can originate from genomic instability, is one reason for poor outcome. About 80-90% of liver cancers are hepatocellular carcinoma (HCC), and recent cancer genome sequencing studies have revealed frequently mutated genes in HCC. In this review, we discuss the cause of the tumor heterogeneity based on the functions of genes that are frequently mutated in HCC. We overview the functions of the genes that are most frequently mutated (e.g. TP53, CTNNB1, AXIN1, ARID1A and WWP1) that portray major pathways leading to HCC and identify the roles of these genes in preventing genomic instability. Notably, the pathway analysis suggested that oxidative stress management may be critical to prevent accumulation of DNA damage and further mutations. We propose that both chromosome instability (CIN) and microsatellite instability (MIN) are integral to the hepatic carcinogenesis process leading to heterogeneity in HCC and that the pathways leading to heterogeneity may be targeted for prognosis, prevention and treatment.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), 975 NE 10th Street BRC1207, Oklahoma City, OK 73104, USA and
| | - Adam S Asch
- Stephenson Cancer Center, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), Oklahoma City, OK 73104, USA
| | - Hiroshi Y Yamada
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center (OUHSC), 975 NE 10th Street BRC1207, Oklahoma City, OK 73104, USA and
| |
Collapse
|
16
|
Li T, Giagtzoglou N, Eberl DF, Jaiswal SN, Cai T, Godt D, Groves AK, Bellen HJ. The E3 ligase Ubr3 regulates Usher syndrome and MYH9 disorder proteins in the auditory organs of Drosophila and mammals. eLife 2016; 5. [PMID: 27331610 PMCID: PMC4978524 DOI: 10.7554/elife.15258] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Accepted: 06/21/2016] [Indexed: 01/08/2023] Open
Abstract
Myosins play essential roles in the development and function of auditory organs and multiple myosin genes are associated with hereditary forms of deafness. Using a forward genetic screen in Drosophila, we identified an E3 ligase, Ubr3, as an essential gene for auditory organ development. Ubr3 negatively regulates the mono-ubiquitination of non-muscle Myosin II, a protein associated with hearing loss in humans. The mono-ubiquitination of Myosin II promotes its physical interaction with Myosin VIIa, a protein responsible for Usher syndrome type IB. We show that ubr3 mutants phenocopy pathogenic variants of Myosin II and that Ubr3 interacts genetically and physically with three Usher syndrome proteins. The interactions between Myosin VIIa and Myosin IIa are conserved in the mammalian cochlea and in human retinal pigment epithelium cells. Our work reveals a novel mechanism that regulates protein complexes affected in two forms of syndromic deafness and suggests a molecular function for Myosin IIa in auditory organs.
Collapse
Affiliation(s)
- Tongchao Li
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States
| | - Nikolaos Giagtzoglou
- Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neurology, Baylor College of Medicine, Houston, United States
| | - Daniel F Eberl
- Department of Biology, University of Iowa, Iowa City, United States
| | - Sonal Nagarkar Jaiswal
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States
| | - Tiantian Cai
- Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Dorothea Godt
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Andrew K Groves
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| | - Hugo J Bellen
- Program in Developmental Biology, Baylor College of Medicine, Houston, United States.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, United States.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, United States.,Howard Hughes Medical Institute, Baylor College of Medicine, Houston, United States.,Department of Neuroscience, Baylor College of Medicine, Houston, United States
| |
Collapse
|