1
|
Malysa A, Zhang XM, Bepler G. Minichromosome Maintenance Proteins: From DNA Replication to the DNA Damage Response. Cells 2024; 14:12. [PMID: 39791713 PMCID: PMC11719910 DOI: 10.3390/cells14010012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 12/11/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
The DNA replication machinery is highly conserved from bacteria to eukaryotic cells. Faithful DNA replication is vital for cells to transmit accurate genetic information to the next generation. However, both internal and external DNA damages threaten the intricate DNA replication process, leading to the activation of the DNA damage response (DDR) system. Dysfunctional DNA replication and DDR are a source of genomic instability, causing heritable mutations that drive cancer evolutions. The family of minichromosome maintenance (MCM) proteins plays an important role not only in DNA replication but also in DDR. Here, we will review the current strides of MCM proteins in these integrated processes as well as the acetylation/deacetylation of MCM proteins and the value of MCMs as biomarkers in cancer.
Collapse
Affiliation(s)
| | | | - Gerold Bepler
- Karmanos Cancer Institute, Department of Oncology, School of Medicine, Wayne State University, 4100 John R Street, Detroit, MI 48201, USA; (A.M.); (X.M.Z.)
| |
Collapse
|
2
|
Wen C, Cao L, Wang S, Xu W, Yu Y, Zhao S, Yang F, Chen ZJ, Zhao S, Yang Y, Qin Y. MCM8 interacts with DDX5 to promote R-loop resolution. EMBO J 2024; 43:3044-3071. [PMID: 38858601 PMCID: PMC11251167 DOI: 10.1038/s44318-024-00134-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 06/12/2024] Open
Abstract
MCM8 has emerged as a core gene in reproductive aging and is crucial for meiotic homologous recombination repair. It also safeguards genome stability by coordinating the replication stress response during mitosis, but its function in mitotic germ cells remains elusive. Here we found that disabling MCM8 in mice resulted in proliferation defects of primordial germ cells (PGCs) and ultimately impaired fertility. We further demonstrated that MCM8 interacted with two known helicases DDX5 and DHX9, and loss of MCM8 led to R-loop accumulation by reducing the retention of these helicases at R-loops, thus inducing genome instability. Cells expressing premature ovarian insufficiency-causative mutants of MCM8 with decreased interaction with DDX5 displayed increased R-loop levels. These results show MCM8 interacts with R-loop-resolving factors to prevent R-loop-induced DNA damage, which may contribute to the maintenance of genome integrity of PGCs and reproductive reserve establishment. Our findings thus reveal an essential role for MCM8 in PGC development and improve our understanding of reproductive aging caused by genome instability in mitotic germ cells.
Collapse
Affiliation(s)
- Canxin Wen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Lili Cao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Shuhan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Weiwei Xu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Yongze Yu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Simin Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
| | - Fan Yang
- Advanced Medical Research Institute, Meili Lake Translational Research Park, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, 250012, China
| | - Zi-Jiang Chen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China
- Shanghai Key Laboratory for Assisted Reproduction and Reproductive Genetics, Shanghai, China
- Department of Reproductive Medicine, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shidou Zhao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Yajuan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| | - Yingying Qin
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproductive Medicine, Institute of Women, Children and Reproductive Health, Shandong University, Jinan, Shandong, 250012, China.
- National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Shandong University, Jinan, Shandong, 250012, China.
- Key Laboratory of Reproductive Endocrinology (Shandong University), Ministry of Education, Jinan, Shandong, 250012, China.
- Shandong Technology Innovation Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Provincial Clinical Research Center for Reproductive Health, Jinan, Shandong, 250012, China.
- Shandong Key Laboratory of Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250012, China.
- Research Unit of Gametogenesis and Health of ART-Offspring, Chinese Academy of Medical Sciences (No.2021RU001), Jinan, Shandong, 250012, China.
| |
Collapse
|
3
|
Xu Y, Jiao Y, Liu C, Miao R, Liu C, Wang Y, Ma C, Liu J. R-loop and diseases: the cell cycle matters. Mol Cancer 2024; 23:84. [PMID: 38678239 PMCID: PMC11055327 DOI: 10.1186/s12943-024-02000-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/13/2024] [Indexed: 04/29/2024] Open
Abstract
The cell cycle is a crucial biological process that is involved in cell growth, development, and reproduction. It can be divided into G1, S, G2, and M phases, and each period is closely regulated to ensure the production of two similar daughter cells with the same genetic material. However, many obstacles influence the cell cycle, including the R-loop that is formed throughout this process. R-loop is a triple-stranded structure, composed of an RNA: DNA hybrid and a single DNA strand, which is ubiquitous in organisms from bacteria to mammals. The existence of the R-loop has important significance for the regulation of various physiological processes. However, aberrant accumulation of R-loop due to its limited resolving ability will be detrimental for cells. For example, DNA damage and genomic instability, caused by the R-loop, can activate checkpoints in the cell cycle, which in turn induce cell cycle arrest and cell death. At present, a growing number of factors have been proven to prevent or eliminate the accumulation of R-loop thereby avoiding DNA damage and mutations. Therefore, we need to gain detailed insight into the R-loop resolution factors at different stages of the cell cycle. In this review, we review the current knowledge of factors that play a role in resolving the R-loop at different stages of the cell cycle, as well as how mutations of these factors lead to the onset and progression of diseases.
Collapse
Affiliation(s)
- Yuqin Xu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yue Jiao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chengbin Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Rui Miao
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunyan Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Yilong Wang
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Chunming Ma
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China
| | - Jiao Liu
- School of Basic Medicine Sciences, Shandong Second Medical University, Weifang, 261053, China.
| |
Collapse
|
4
|
Gospodinov A, Dzhokova S, Petrova M, Ugrinova I. Chromatin regulators in DNA replication and genome stability maintenance during S-phase. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 135:243-280. [PMID: 37061334 DOI: 10.1016/bs.apcsb.2023.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
Abstract
The duplication of genetic information is central to life. The replication of genetic information is strictly controlled to ensure that each piece of genomic DNA is copied only once during a cell cycle. Factors that slow or stop replication forks cause replication stress. Replication stress is a major source of genome instability in cancer cells. Multiple control mechanisms facilitate the unimpeded fork progression, prevent fork collapse and coordinate fork repair. Chromatin alterations, caused by histone post-translational modifications and chromatin remodeling, have critical roles in normal replication and in avoiding replication stress and its consequences. This text reviews the chromatin regulators that ensure DNA replication and the proper response to replication stress. We also briefly touch on exploiting replication stress in therapeutic strategies. As chromatin regulators are frequently mutated in cancer, manipulating their activity could provide many possibilities for personalized treatment.
Collapse
Affiliation(s)
- Anastas Gospodinov
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria.
| | - Stefka Dzhokova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Maria Petrova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Iva Ugrinova
- Roumen Tsanev Institute of Molecular Biology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
5
|
Kumar A, Fournier LA, Stirling PC. Integrative analysis and prediction of human R-loop binding proteins. G3 (BETHESDA, MD.) 2022; 12:jkac142. [PMID: 35666183 PMCID: PMC9339281 DOI: 10.1093/g3journal/jkac142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
In the past decade, there has been a growing appreciation for R-loop structures as important regulators of the epigenome, telomere maintenance, DNA repair, and replication. Given these numerous functions, dozens, or potentially hundreds, of proteins could serve as direct or indirect regulators of R-loop writing, reading, and erasing. In order to understand common properties shared amongst potential R-loop binding proteins, we mined published proteomic studies and distilled 10 features that were enriched in R-loop binding proteins compared with the rest of the proteome. Applying an easy-ensemble machine learning approach, we used these R-loop binding protein-specific features along with their amino acid composition to create random forest classifiers that predict the likelihood of a protein to bind to R-loops. Known R-loop regulating pathways such as splicing, DNA damage repair and chromatin remodeling are highly enriched in our datasets, and we validate 2 new R-loop binding proteins LIG1 and FXR1 in human cells. Together these datasets provide a reference to pursue analyses of novel R-loop regulatory proteins.
Collapse
Affiliation(s)
| | | | - Peter C Stirling
- Corresponding author: Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z1L3, Canada.
| |
Collapse
|
6
|
Sanders J, Castiglione M, Shun T, Vollmer LL, Schurdak ME, Vogt A, Schwacha A. Validation of a high throughput screening assay to identify small molecules that target the eukaryotic replicative helicase. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2022; 27:229-241. [PMID: 35058181 PMCID: PMC9196137 DOI: 10.1016/j.slasd.2021.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Mcm2-7 is the catalytic core of the eukaryotic replicative helicase, which together with CDC45 and the GINS complex unwind parental DNA to generate templates for DNA polymerase. Being a highly regulated and complex enzyme that operates via an incompletely understood multi-step mechanism, molecular probes of Mcm2-7 that interrogate specific mechanistic steps would be useful tools for research and potential future chemotherapy. Based upon a synthetic lethal approach, we previously developed a budding yeast multivariate cell-based high throughput screening (HTS) assay to identify putative Mcm inhibitors by their ability to specifically cause a growth defect in an mcm mutant relative to a wild-type strain[1]. Here, as proof of concept, we used this assay to screen a 1280-member compound library (LOPAC) for potential Mcm2-7 inhibitors. Primary screening and dose-dependent retesting identified twelve compounds from this library that specifically inhibited the growth of the Mcm mutant relative to the corresponding wild-type strain (0.9 % hit rate). Secondary assays were employed to rule out non-specific DNA damaging agents, establish direct protein-ligand interaction via biophysical methods, and verify in vivo DNA replication inhibition via fluorescence activated cell sorter analysis (FACS). We identified one agent (β-carboline-3-carboxylic acid N-methylamide, CMA) that physically bound to the purified Mcm2-7 complex (Kdapp119 µM), and at slightly higher concentrations specifically blocked S-phase cell cycle progression of the wild-type strain. In total, identification of Mcm2-7 as a CMA target validates our synthetic lethal HTS assay paradigm as a tool to identify chemical probes for the Mcm2-7 replicative helicase.
Collapse
Affiliation(s)
- Jordan Sanders
- The Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260
| | - Michael Castiglione
- Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh PA 15260
| | - Tongying Shun
- Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh PA 15260
| | - Laura L Vollmer
- Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh PA 15260
| | - Mark E Schurdak
- Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh PA 15260; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh PA 15260
| | - Andreas Vogt
- Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh PA 15260; Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh PA 15260.
| | - Anthony Schwacha
- The Department of Biological Sciences, University of Pittsburgh, Pittsburgh PA 15260.
| |
Collapse
|
7
|
St Germain C, Zhao H, Barlow JH. Transcription-Replication Collisions-A Series of Unfortunate Events. Biomolecules 2021; 11:1249. [PMID: 34439915 PMCID: PMC8391903 DOI: 10.3390/biom11081249] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Transcription-replication interactions occur when DNA replication encounters genomic regions undergoing transcription. Both replication and transcription are essential for life and use the same DNA template making conflicts unavoidable. R-loops, DNA supercoiling, DNA secondary structure, and chromatin-binding proteins are all potential obstacles for processive replication or transcription and pose an even more potent threat to genome integrity when these processes co-occur. It is critical to maintaining high fidelity and processivity of transcription and replication while navigating through a complex chromatin environment, highlighting the importance of defining cellular pathways regulating transcription-replication interaction formation, evasion, and resolution. Here we discuss how transcription influences replication fork stability, and the safeguards that have evolved to navigate transcription-replication interactions and maintain genome integrity in mammalian cells.
Collapse
Affiliation(s)
- Commodore St Germain
- School of Mathematics and Science, Solano Community College, 4000 Suisun Valley Road, Fairfield, CA 94534, USA
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Hongchang Zhao
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| | - Jacqueline H. Barlow
- Department of Microbiology and Molecular Genetics, University of California Davis, One Shields Avenue, Davis, CA 95616, USA;
| |
Collapse
|
8
|
Gene Co-Expression Analysis of Human RNASEH2A Reveals Functional Networks Associated with DNA Replication, DNA Damage Response, and Cell Cycle Regulation. BIOLOGY 2021; 10:biology10030221. [PMID: 33805806 PMCID: PMC7998727 DOI: 10.3390/biology10030221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/10/2021] [Indexed: 12/22/2022]
Abstract
Simple Summary RNASEH2A is the catalytic subunit of the ribonuclease (RNase) H2 ternary complex that plays an important role in maintaining DNA stability in cells. Recent studies have shown that the RNASEH2A subunit alone is highly expressed in certain cancer cell types. Via a series of bioinformatics approaches, we found that RNASEH2A is highly expressed in human proliferative tissues and many cancers. Our analyses reveal a possible involvement of RNASEH2A in cell cycle regulation in addition to its well established role in DNA replication and DNA repair. Our findings underscore that RNASEH2A could serve as a biomarker for cancer diagnosis and a therapeutic target. Abstract Ribonuclease (RNase) H2 is a key enzyme for the removal of RNA found in DNA-RNA hybrids, playing a fundamental role in biological processes such as DNA replication, telomere maintenance, and DNA damage repair. RNase H2 is a trimer composed of three subunits, RNASEH2A being the catalytic subunit. RNASEH2A expression levels have been shown to be upregulated in transformed and cancer cells. In this study, we used a bioinformatics approach to identify RNASEH2A co-expressed genes in different human tissues to underscore biological processes associated with RNASEH2A expression. Our analysis shows functional networks for RNASEH2A involvement such as DNA replication and DNA damage response and a novel putative functional network of cell cycle regulation. Further bioinformatics investigation showed increased gene expression in different types of actively cycling cells and tissues, particularly in several cancers, supporting a biological role for RNASEH2A but not for the other two subunits of RNase H2 in cell proliferation. Mass spectrometry analysis of RNASEH2A-bound proteins identified players functioning in cell cycle regulation. Additional bioinformatic analysis showed that RNASEH2A correlates with cancer progression and cell cycle related genes in Cancer Cell Line Encyclopedia (CCLE) and The Cancer Genome Atlas (TCGA) Pan Cancer datasets and supported our mass spectrometry findings.
Collapse
|
9
|
Murayama T, Takeuchi Y, Yamawaki K, Natsume T, Li M, Marcela RCN, Nishimura T, Kogure Y, Nakata A, Tominaga K, Sasahara A, Yano M, Ishikawa S, Ohta T, Ikeda K, Horie-Inoue K, Inoue S, Seki M, Suzuki Y, Sugano S, Enomoto T, Tanabe M, Tada KI, Kanemaki MT, Okamoto K, Tojo A, Gotoh N. MCM10 compensates for Myc-induced DNA replication stress in breast cancer stem-like cells. Cancer Sci 2021; 112:1209-1224. [PMID: 33340428 PMCID: PMC7935783 DOI: 10.1111/cas.14776] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 11/16/2020] [Accepted: 12/14/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer stem-like cells (CSCs) induce drug resistance and recurrence of tumors when they experience DNA replication stress. However, the mechanisms underlying DNA replication stress in CSCs and its compensation remain unclear. Here, we demonstrate that upregulated c-Myc expression induces stronger DNA replication stress in patient-derived breast CSCs than in differentiated cancer cells. Our results suggest critical roles for mini-chromosome maintenance protein 10 (MCM10), a firing (activating) factor of DNA replication origins, to compensate for DNA replication stress in CSCs. MCM10 expression is upregulated in CSCs and is maintained by c-Myc. c-Myc-dependent collisions between RNA transcription and DNA replication machinery may occur in nuclei, thereby causing DNA replication stress. MCM10 may activate dormant replication origins close to these collisions to ensure the progression of replication. Moreover, patient-derived breast CSCs were found to be dependent on MCM10 for their maintenance, even after enrichment for CSCs that were resistant to paclitaxel, the standard chemotherapeutic agent. Further, MCM10 depletion decreased the growth of cancer cells, but not of normal cells. Therefore, MCM10 may robustly compensate for DNA replication stress and facilitate genome duplication in cancer cells in the S-phase, which is more pronounced in CSCs. Overall, we provide a preclinical rationale to target the c-Myc-MCM10 axis for preventing drug resistance and recurrence of tumors.
Collapse
Affiliation(s)
- Takahiko Murayama
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, Japan.,Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Yasuto Takeuchi
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Kaoru Yamawaki
- Division of Cancer Differentiation, National Cancer Center Research Institute, Chuo-ku, Japan.,Department of Obstetrics and Gynecology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Toyoaki Natsume
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima City, Japan.,Department of Genetics, SOKENDAI, Mishima City, Japan
| | - Mengjiao Li
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Rojas-Chaverra N Marcela
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Tatsunori Nishimura
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| | - Yuta Kogure
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Science, The University of Tokyo, Kashiwa City, Japan
| | - Asuka Nakata
- Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan.,Department of Pediatrics, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Kana Tominaga
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, Japan.,Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan.,Division of Cancer Differentiation, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Asako Sasahara
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, Japan.,Department of Breast & Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Masao Yano
- Department of Surgery, Minamimachida Hospital, Machida City, Japan
| | - Satoko Ishikawa
- Department of Gastroenterological Surgery, Kanazawa University, Kanazawa City, Japan
| | - Tetsuo Ohta
- Department of Gastroenterological Surgery, Kanazawa University, Kanazawa City, Japan
| | - Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka City, Japan
| | - Kuniko Horie-Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka City, Japan
| | - Satoshi Inoue
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, Hidaka City, Japan
| | - Masahide Seki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Japan
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Japan
| | - Sumio Sugano
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa City, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Masahiko Tanabe
- Department of Breast & Endocrine Surgery, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Japan
| | - Kei-Ichiro Tada
- Department of Pediatrics, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima City, Japan.,Department of Genetics, SOKENDAI, Mishima City, Japan
| | - Koji Okamoto
- Division of Cancer Differentiation, National Cancer Center Research Institute, Chuo-ku, Japan
| | - Arinobu Tojo
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, Japan
| | - Noriko Gotoh
- Division of Molecular Therapy, Institute of Medical Science, The University of Tokyo, Minato-ku, Japan.,Division of Cancer Cell Biology, Cancer Research Institute, Kanazawa University, Kanazawa City, Japan
| |
Collapse
|
10
|
Dhar S, Datta A, Brosh RM. DNA helicases and their roles in cancer. DNA Repair (Amst) 2020; 96:102994. [PMID: 33137625 DOI: 10.1016/j.dnarep.2020.102994] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022]
Abstract
DNA helicases, known for their fundamentally important roles in genomic stability, are high profile players in cancer. Not only are there monogenic helicase disorders with a strong disposition to cancer, it is well appreciated that helicase variants are associated with specific cancers (e.g., breast cancer). Flipping the coin, DNA helicases are frequently overexpressed in cancerous tissues and reduction in helicase gene expression results in reduced proliferation and growth capacity, as well as DNA damage induction and apoptosis of cancer cells. The seminal roles of helicases in the DNA damage and replication stress responses, as well as DNA repair pathways, validate their vital importance in cancer biology and suggest their potential values as targets in anti-cancer therapy. In recent years, many laboratories have characterized the specialized roles of helicase to resolve transcription-replication conflicts, maintain telomeres, mediate cell cycle checkpoints, remodel stalled replication forks, and regulate transcription. In vivo models, particularly mice, have been used to interrogate helicase function and serve as a bridge for preclinical studies that may lead to novel therapeutic approaches. In this review, we will summarize our current knowledge of DNA helicases and their roles in cancer, emphasizing the latest developments.
Collapse
Affiliation(s)
- Srijita Dhar
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
11
|
R Loops: From Physiological to Pathological Roles. Cell 2019; 179:604-618. [PMID: 31607512 DOI: 10.1016/j.cell.2019.08.055] [Citation(s) in RCA: 397] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/19/2019] [Accepted: 08/28/2019] [Indexed: 12/13/2022]
Abstract
DNA-RNA hybrids play a physiological role in cellular processes, but often, they represent non-scheduled co-transcriptional structures with a negative impact on transcription, replication and DNA repair. Accumulating evidence suggests that they constitute a source of replication stress, DNA breaks and genome instability. Reciprocally, DNA breaks facilitate DNA-RNA hybrid formation by releasing the double helix torsional conformation. Cells avoid DNA-RNA accumulation by either preventing or removing hybrids directly or by DNA repair-coupled mechanisms. Given the R-loop impact on chromatin and genome organization and its potential relation with genetic diseases, we review R-loop homeostasis as well as their physiological and pathological roles.
Collapse
|
12
|
Chang EYC, Tsai S, Aristizabal MJ, Wells JP, Coulombe Y, Busatto FF, Chan YA, Kumar A, Dan Zhu Y, Wang AYH, Fournier LA, Hieter P, Kobor MS, Masson JY, Stirling PC. MRE11-RAD50-NBS1 promotes Fanconi Anemia R-loop suppression at transcription-replication conflicts. Nat Commun 2019; 10:4265. [PMID: 31537797 PMCID: PMC6753070 DOI: 10.1038/s41467-019-12271-w] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 08/30/2019] [Indexed: 12/25/2022] Open
Abstract
Ectopic R-loop accumulation causes DNA replication stress and genome instability. To avoid these outcomes, cells possess a range of anti-R-loop mechanisms, including RNaseH that degrades the RNA moiety in R-loops. To comprehensively identify anti-R-loop mechanisms, we performed a genome-wide trigenic interaction screen in yeast lacking RNH1 and RNH201. We identified >100 genes critical for fitness in the absence of RNaseH, which were enriched for DNA replication fork maintenance factors including the MRE11-RAD50-NBS1 (MRN) complex. While MRN has been shown to promote R-loops at DNA double-strand breaks, we show that it suppresses R-loops and associated DNA damage at transcription-replication conflicts. This occurs through a non-nucleolytic function of MRE11 that is important for R-loop suppression by the Fanconi Anemia pathway. This work establishes a novel role for MRE11-RAD50-NBS1 in directing tolerance mechanisms at transcription-replication conflicts.
Collapse
Affiliation(s)
| | - Shuhe Tsai
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Maria J Aristizabal
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - James P Wells
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yan Coulombe
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Franciele F Busatto
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Yujia A Chan
- The Broad Institute of MIT and Harvard University, Cambridge, MA, 02142, USA
| | - Arun Kumar
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | - Yi Dan Zhu
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada
| | | | | | - Philip Hieter
- Michael Smith Laboratories, University of British Columbia, Vancouver, V6T 1Z4, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, BC Children's Hospital Research Institute, Vancouver, V5Z 4H4, Canada
| | - Jean-Yves Masson
- Centre Hospitalier Universitaire de Québec-Universite Laval, Oncology Axis, Quebec City, G1R 2J6, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Quebec City, G1V 0A6, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, V5Z 1L3, Canada.
- Department of Medical Genetics, University of British Columbia, Vancouver, V5Z 4H4, Canada.
| |
Collapse
|
13
|
Casar Tena T, Maerz LD, Szafranski K, Groth M, Blätte TJ, Donow C, Matysik S, Walther P, Jeggo PA, Burkhalter MD, Philipp M. Resting cells rely on the DNA helicase component MCM2 to build cilia. Nucleic Acids Res 2019; 47:134-151. [PMID: 30329080 PMCID: PMC6326816 DOI: 10.1093/nar/gky945] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 10/04/2018] [Indexed: 12/24/2022] Open
Abstract
Minichromosome maintenance (MCM) proteins facilitate replication by licensing origins and unwinding the DNA double strand. Interestingly, the number of MCM hexamers greatly exceeds the number of firing origins suggesting additional roles of MCMs. Here we show a hitherto unanticipated function of MCM2 in cilia formation in human cells and zebrafish that is uncoupled from replication. Zebrafish depleted of MCM2 develop ciliopathy-phenotypes including microcephaly and aberrant heart looping due to malformed cilia. In non-cycling human fibroblasts, loss of MCM2 promotes transcription of a subset of genes, which cause cilia shortening and centriole overduplication. Chromatin immunoprecipitation experiments show that MCM2 binds to transcription start sites of cilia inhibiting genes. We propose that such binding may block RNA polymerase II-mediated transcription. Depletion of a second MCM (MCM7), which functions in complex with MCM2 during its canonical functions, reveals an overlapping cilia-deficiency phenotype likely unconnected to replication, although MCM7 appears to regulate a distinct subset of genes and pathways. Our data suggests that MCM2 and 7 exert a role in ciliogenesis in post-mitotic tissues.
Collapse
Affiliation(s)
- Teresa Casar Tena
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Lars D Maerz
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Karol Szafranski
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Marco Groth
- Leibniz Institute on Aging, Fritz Lipmann Institute, 07745 Jena, Germany
| | - Tamara J Blätte
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Cornelia Donow
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Sabrina Matysik
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, 89081 Ulm, Germany
| | - Penelope A Jeggo
- Genome Damage and Stability Centre, University of Sussex, Brighton BN1 9RQ, UK
| | - Martin D Burkhalter
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| | - Melanie Philipp
- Institute of Biochemistry and Molecular Biology, Ulm University, 89081 Ulm, Germany
| |
Collapse
|
14
|
Abstract
Genome replication involves dealing with obstacles that can result from DNA damage but also from chromatin alterations, topological stress, tightly bound proteins or non-B DNA structures such as R loops. Experimental evidence reveals that an engaged transcription machinery at the DNA can either enhance such obstacles or be an obstacle itself. Thus, transcription can become a potentially hazardous process promoting localized replication fork hindrance and stress, which would ultimately cause genome instability, a hallmark of cancer cells. Understanding the causes behind transcription-replication conflicts as well as how the cell resolves them to sustain genome integrity is the aim of this review.
Collapse
|
15
|
Ngo M, Wechter N, Tsai E, Shun TY, Gough A, Schurdak ME, Schwacha A, Vogt A. A High-Throughput Assay for DNA Replication Inhibitors Based upon Multivariate Analysis of Yeast Growth Kinetics. SLAS DISCOVERY 2019; 24:669-681. [PMID: 30802412 DOI: 10.1177/2472555219829740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Mcm2-7 is the molecular motor of eukaryotic replicative helicase, and the regulation of this complex is a major focus of cellular S-phase regulation. Despite its cellular importance, few small-molecule inhibitors of this complex are known. Based upon our genetic analysis of synthetic growth defects between mcm alleles and a range of other alleles, we have developed a high-throughput screening (HTS) assay using a well-characterized mcm mutant (containing the mcm2DENQ allele) to identify small molecules that replicate such synthetic growth defects. During assay development, we found that aphidicolin (inhibitor of DNA polymerase alpha) and XL413 (inhibitor of the DNA replication-dependent kinase CDC7) preferentially inhibited growth of the mcm2DENQ strain relative to the wild-type parental strain. However, as both strains demonstrated some degree of growth inhibition with these compounds, small and variable assay windows can result. To increase assay sensitivity and reproducibility, we developed a strategy combining the analysis of cell growth kinetics with linear discriminant analysis (LDA). We found that LDA greatly improved assay performance and captured a greater range of synthetic growth inhibition phenotypes, yielding a versatile analysis platform conforming to HTS requirements.
Collapse
Affiliation(s)
- Marilyn Ngo
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Nick Wechter
- 2 Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily Tsai
- 3 Apollo Medical Optics, Ltd., Taipei City, Taiwan (R.O.C.)
| | - Tong Ying Shun
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA
| | - Albert Gough
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA.,4 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark E Schurdak
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA.,4 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,5 Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Anthony Schwacha
- 2 Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Andreas Vogt
- 1 Drug Discovery Institute, University of Pittsburgh Medical School, Pittsburgh, PA, USA.,4 Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA.,5 Cancer Therapeutics Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Šviković S, Crisp A, Tan-Wong SM, Guilliam TA, Doherty AJ, Proudfoot NJ, Guilbaud G, Sale JE. R-loop formation during S phase is restricted by PrimPol-mediated repriming. EMBO J 2018; 38:embj.201899793. [PMID: 30478192 PMCID: PMC6356060 DOI: 10.15252/embj.201899793] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 10/08/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
During DNA replication, conflicts with ongoing transcription are frequent and require careful management to avoid genetic instability. R‐loops, three‐stranded nucleic acid structures comprising a DNA:RNA hybrid and displaced single‐stranded DNA, are important drivers of damage arising from such conflicts. How R‐loops stall replication and the mechanisms that restrain their formation during S phase are incompletely understood. Here, we show in vivo how R‐loop formation drives a short purine‐rich repeat, (GAA)10, to become a replication impediment that engages the repriming activity of the primase‐polymerase PrimPol. Further, the absence of PrimPol leads to significantly increased R‐loop formation around this repeat during S phase. We extend this observation by showing that PrimPol suppresses R‐loop formation in genes harbouring secondary structure‐forming sequences, exemplified by G quadruplex and H‐DNA motifs, across the genome in both avian and human cells. Thus, R‐loops promote the creation of replication blocks at susceptible structure‐forming sequences, while PrimPol‐dependent repriming limits the extent of unscheduled R‐loop formation at these sequences, mitigating their impact on replication.
Collapse
Affiliation(s)
| | | | | | - Thomas A Guilliam
- Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | - Aidan J Doherty
- Genome Damage & Stability Centre, School of Life Sciences, University of Sussex, Brighton, UK
| | | | | | | |
Collapse
|
17
|
Kotsantis P, Petermann E, Boulton SJ. Mechanisms of Oncogene-Induced Replication Stress: Jigsaw Falling into Place. Cancer Discov 2018; 8:537-555. [PMID: 29653955 DOI: 10.1158/2159-8290.cd-17-1461] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/26/2018] [Accepted: 03/09/2018] [Indexed: 12/31/2022]
Abstract
Oncogene activation disturbs cellular processes and accommodates a complex landscape of changes in the genome that contribute to genomic instability, which accelerates mutation rates and promotes tumorigenesis. Part of this cellular turmoil involves deregulation of physiologic DNA replication, widely described as replication stress. Oncogene-induced replication stress is an early driver of genomic instability and is attributed to a plethora of factors, most notably aberrant origin firing, replication-transcription collisions, reactive oxygen species, and defective nucleotide metabolism.Significance: Replication stress is a fundamental step and an early driver of tumorigenesis and has been associated with many activated oncogenes. Deciphering the mechanisms that contribute to the replication stress response may provide new avenues for targeted cancer treatment. In this review, we discuss the latest findings on the DNA replication stress response and examine the various mechanisms through which activated oncogenes induce replication stress. Cancer Discov; 8(5); 537-55. ©2018 AACR.
Collapse
Affiliation(s)
| | - Eva Petermann
- Institute of Cancer and Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, United Kingdom
| | | |
Collapse
|
18
|
Kuzminov A. When DNA Topology Turns Deadly - RNA Polymerases Dig in Their R-Loops to Stand Their Ground: New Positive and Negative (Super)Twists in the Replication-Transcription Conflict. Trends Genet 2017; 34:111-120. [PMID: 29179918 DOI: 10.1016/j.tig.2017.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Revised: 10/20/2017] [Accepted: 10/30/2017] [Indexed: 12/19/2022]
Abstract
Head-on replication-transcription conflict is especially bitter in bacterial chromosomes, explaining why actively transcribed genes are always co-oriented with replication. The mechanism of this conflict remains unclear, besides the anticipated accumulation of positive supercoils between head-on-conflicting polymerases. Unexpectedly, experiments in bacterial and human cells reveal that head-on replication-transcription conflict induces R-loops, indicating hypernegative supercoiling [(-)sc] in the region - precisely the opposite of that assumed. Further, as a result of these R-loops, both replication and transcription in the affected region permanently stall, so the failure of R-loop removal in RNase H-deficient bacteria becomes lethal. How hyper(-)sc emerges in the middle of a positively supercoiled chromosomal domain is a mystery that requires rethinking of topoisomerase action around polymerases.
Collapse
Affiliation(s)
- Andrei Kuzminov
- Department of Microbiology, University of Illinois at Urbana-Champaign, B103 CLSL, 601 South Goodwin Avenue, Urbana, IL 61801-3709, USA.
| |
Collapse
|
19
|
Shen W, Sun H, De Hoyos CL, Bailey JK, Liang XH, Crooke ST. Dynamic nucleoplasmic and nucleolar localization of mammalian RNase H1 in response to RNAP I transcriptional R-loops. Nucleic Acids Res 2017; 45:10672-10692. [PMID: 28977560 PMCID: PMC5737507 DOI: 10.1093/nar/gkx710] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 08/04/2017] [Indexed: 12/29/2022] Open
Abstract
An R-loop is a DNA:RNA hybrid formed during transcription when a DNA duplex is invaded by a nascent RNA transcript. R-loops accumulate in nucleoli during RNA polymerase I (RNAP I) transcription. Here, we report that mammalian RNase H1 enriches in nucleoli and co-localizes with R-loops in cultured human cells. Co-migration of RNase H1 and R-loops from nucleoli to perinucleolar ring structures was observed upon inhibition of RNAP I transcription. Treatment with camptothecin which transiently stabilized nucleolar R-loops recruited RNase H1 to the nucleoli. It has been reported that the absence of Topoisomerase and RNase H activity in Escherichia coli or Saccharomyces cerevisiae caused R-loop accumulation along rDNA. We found that the distribution of RNase H1 and Top1 along rDNA coincided at sites where R-loops accumulated in mammalian cells. Loss of either RNase H1 or Top1 caused R-loop accumulation, and the accumulation of R-loops was exacerbated when both proteins were depleted. Importantly, we observed that protein levels of Top1 were negatively correlated with the abundance of RNase H1. We conclude that Top1 and RNase H1 are partially functionally redundant in mammalian cells to suppress RNAP I transcription-associate R-loops.
Collapse
Affiliation(s)
- Wen Shen
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Hong Sun
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Cheryl L De Hoyos
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Jeffrey K Bailey
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Xue-Hai Liang
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| | - Stanley T Crooke
- Department of Core Antisense Research, Ionis Pharmaceuticals, Inc., 2855 Gazelle Court, Carlsbad, CA 92010, USA
| |
Collapse
|
20
|
Boulianne B, Feldhahn N. Transcribing malignancy: transcription-associated genomic instability in cancer. Oncogene 2017; 37:971-981. [DOI: 10.1038/onc.2017.402] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022]
|
21
|
Salas-Armenteros I, Pérez-Calero C, Bayona-Feliu A, Tumini E, Luna R, Aguilera A. Human THO-Sin3A interaction reveals new mechanisms to prevent R-loops that cause genome instability. EMBO J 2017; 36:3532-3547. [PMID: 29074626 DOI: 10.15252/embj.201797208] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 09/22/2017] [Accepted: 09/28/2017] [Indexed: 11/09/2022] Open
Abstract
R-loops, formed by co-transcriptional DNA-RNA hybrids and a displaced DNA single strand (ssDNA), fulfill certain positive regulatory roles but are also a source of genomic instability. One key cellular mechanism to prevent R-loop accumulation centers on the conserved THO/TREX complex, an RNA-binding factor involved in transcription elongation and RNA export that contributes to messenger ribonucleoprotein (mRNP) assembly, but whose precise function is still unclear. To understand how THO restrains harmful R-loops, we searched for new THO-interacting factors. We found that human THO interacts with the Sin3A histone deacetylase complex to suppress co-transcriptional R-loops, DNA damage, and replication impairment. Functional analyses show that histone hypo-acetylation prevents accumulation of harmful R-loops and RNA-mediated genomic instability. Diminished histone deacetylase activity in THO- and Sin3A-depleted cell lines correlates with increased R-loop formation, genomic instability, and replication fork stalling. Our study thus uncovers physical and functional crosstalk between RNA-binding factors and chromatin modifiers with a major role in preventing R-loop formation and RNA-mediated genome instability.
Collapse
Affiliation(s)
- Irene Salas-Armenteros
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Carmen Pérez-Calero
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Aleix Bayona-Feliu
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Emanuela Tumini
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Rosa Luna
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| | - Andrés Aguilera
- Centro Andaluz de Biología Molecular y Medicina Regenerativa-CABIMER, Consejo Superior de Investigaciones Científicas-Universidad Pablo de Olavide-Universidad de Sevilla, Seville, Spain
| |
Collapse
|
22
|
Chang EYC, Novoa CA, Aristizabal MJ, Coulombe Y, Segovia R, Chaturvedi R, Shen Y, Keong C, Tam AS, Jones SJM, Masson JY, Kobor MS, Stirling PC. RECQ-like helicases Sgs1 and BLM regulate R-loop-associated genome instability. J Cell Biol 2017; 216:3991-4005. [PMID: 29042409 PMCID: PMC5716281 DOI: 10.1083/jcb.201703168] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 08/16/2017] [Accepted: 09/18/2017] [Indexed: 01/01/2023] Open
Abstract
Sgs1, the orthologue of human Bloom's syndrome helicase BLM, is a yeast DNA helicase functioning in DNA replication and repair. We show that SGS1 loss increases R-loop accumulation and sensitizes cells to transcription-replication collisions. Yeast lacking SGS1 accumulate R-loops and γ-H2A at sites of Sgs1 binding, replication pausing regions, and long genes. The mutation signature of sgs1Δ reveals copy number changes flanked by repetitive regions with high R-loop-forming potential. Analysis of BLM in Bloom's syndrome fibroblasts or by depletion of BLM from human cancer cells confirms a role for Sgs1/BLM in suppressing R-loop-associated genome instability across species. In support of a potential direct effect, BLM is found physically proximal to DNA:RNA hybrids in human cells, and can efficiently unwind R-loops in vitro. Together, our data describe a conserved role for Sgs1/BLM in R-loop suppression and support an increasingly broad view of DNA repair and replication fork stabilizing proteins as modulators of R-loop-mediated genome instability.
Collapse
Affiliation(s)
| | - Carolina A Novoa
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | | | - Yan Coulombe
- Genome Stability Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Romulo Segovia
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Richa Chaturvedi
- Genome Stability Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Yaoqing Shen
- Michael Smith Genome Sciences Centre, Vancouver, Canada
| | - Christelle Keong
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada
| | - Annie S Tam
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Steven J M Jones
- Michael Smith Genome Sciences Centre, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Jean-Yves Masson
- Genome Stability Laboratory, Centre Hospitalier Universitaire de Québec Research Center, Québec City, Canada.,Department of Molecular Biology, Medical Biochemistry and Pathology, Laval University Cancer Research Center, Québec City, Canada
| | - Michael S Kobor
- Centre for Molecular Medicine and Therapeutics, Vancouver, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, Canada .,Department of Medical Genetics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
23
|
Replication Fork Protection Factors Controlling R-Loop Bypass and Suppression. Genes (Basel) 2017; 8:genes8010033. [PMID: 28098815 PMCID: PMC5295027 DOI: 10.3390/genes8010033] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 12/17/2022] Open
Abstract
Replication–transcription conflicts have been a well-studied source of genome instability for many years and have frequently been linked to defects in RNA processing. However, recent characterization of replication fork-associated proteins has revealed that defects in fork protection can directly or indirectly stabilize R-loop structures in the genome and promote transcription–replication conflicts that lead to genome instability. Defects in essential DNA replication-associated activities like topoisomerase, or the minichromosome maintenance (MCM) helicase complex, as well as fork-associated protection factors like the Fanconi anemia pathway, both appear to mitigate transcription–replication conflicts. Here, we will highlight recent advances that support the concept that normal and robust replisome function itself is a key component of mitigating R-loop coupled genome instability.
Collapse
|
24
|
Mec1/ATR, the Program Manager of Nucleic Acids Inc. Genes (Basel) 2016; 8:genes8010010. [PMID: 28036033 PMCID: PMC5295005 DOI: 10.3390/genes8010010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 12/19/2016] [Accepted: 12/22/2016] [Indexed: 11/17/2022] Open
Abstract
Eukaryotic cells are equipped with surveillance mechanisms called checkpoints to ensure proper execution of cell cycle events. Among these are the checkpoints that detect DNA damage or replication perturbations and coordinate cellular activities to maintain genome stability. At the forefront of damage sensing is an evolutionarily conserved molecule, known respectively in budding yeast and humans as Mec1 (Mitosis entry checkpoint 1) and ATR (Ataxia telangiectasia and Rad3-related protein). Through phosphorylation, Mec1/ATR activates downstream components of a signaling cascade to maintain nucleotide pool balance, protect replication fork integrity, regulate activation of origins of replication, coordinate DNA repair, and implement cell cycle delay. This list of functions continues to expand as studies have revealed that Mec1/ATR modularly interacts with various protein molecules in response to different cellular cues. Among these newly assigned functions is the regulation of RNA metabolism during checkpoint activation and the coordination of replication-transcription conflicts. In this review, I will highlight some of these new functions of Mec1/ATR with a focus on the yeast model organism.
Collapse
|