1
|
Hou S, Gao C, Liu J, Chen X, Wei W, Song W, Hu G, Li X, Wu J, Liu L. Med3-mediated NADPH generation to help Saccharomyces cerevisiae tolerate hyperosmotic stress. Appl Environ Microbiol 2024; 90:e0096824. [PMID: 39082808 PMCID: PMC11337799 DOI: 10.1128/aem.00968-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 07/19/2024] [Indexed: 08/22/2024] Open
Abstract
Hyperosmotic stress tolerance is crucial for Saccharomyces cerevisiae in producing value-added products from renewable feedstock. The limited understanding of its tolerance mechanism has impeded the application of these microbial cell factories. Previous studies have shown that Med3 plays a role in hyperosmotic stress in S. cerevisiae. However, the specific function of Med3 in hyperosmotic stress tolerance remains unclear. In this study, we showed that the deletion of the mediator Med3 impairs S. cerevisiae growth under hyperosmotic stress. Phenotypic analyses and yeast two-hybrid assays revealed that Med3 interacts with the transcription factor Stb5 to regulate the expression of the genes gnd1 and ald6, which are involved in NADPH production under hyperosmotic stress conditions. The deletion of med3 resulted in a decrease in intracellular NADPH content, leading to increased oxidative stress and elevated levels of intracellular reactive oxygen species under hyperosmotic stress, thereby impacting bud formation. These findings highlight the significant role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.IMPORTANCEHyperosmotic stress tolerance in the host strain is a significant challenge for fermentation performance in industrial production. In this study, we showed that the S. cerevisiae mediator Med3 is essential for yeast growth under hyperosmotic conditions. Med3 interacts with the transcription factor Stb5 to regulate the expression of genes involved in the NADPH-generation system during hyperosmotic stress. Adequate NADPH ensures the timely removal of excess reactive oxygen species and supports bud formation under these conditions. This work highlights the crucial role of Med3 as a regulator in maintaining NADPH generation and redox homeostasis in S. cerevisiae during hyperosmotic stress.
Collapse
Affiliation(s)
- Shuo Hou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Cong Gao
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jia Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wanqing Wei
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Wei Song
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Guipeng Hu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Xiaomin Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| | - Jing Wu
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi, China
| | - Liming Liu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
2
|
Fletcher J, O’Connor-Moneley J, Frawley D, Flanagan PR, Alaalm L, Menendez-Manjon P, Estevez SV, Hendricks S, Woodruff AL, Buscaino A, Anderson MZ, Sullivan DJ, Moran GP. Deletion of the Candida albicans TLO gene family using CRISPR-Cas9 mutagenesis allows characterisation of functional differences in α-, β- and γ- TLO gene function. PLoS Genet 2023; 19:e1011082. [PMID: 38048294 PMCID: PMC10721199 DOI: 10.1371/journal.pgen.1011082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/14/2023] [Accepted: 11/22/2023] [Indexed: 12/06/2023] Open
Abstract
The Candida albicans genome contains between ten and fifteen distinct TLO genes that all encode a Med2 subunit of Mediator. In order to investigate the biological role of Med2/Tlo in C. albicans we deleted all fourteen TLO genes using CRISPR-Cas9 mutagenesis. ChIP-seq analysis showed that RNAP II localized to 55% fewer genes in the tloΔ mutant strain compared to the parent, while RNA-seq analysis showed that the tloΔ mutant exhibited differential expression of genes required for carbohydrate metabolism, stress responses, white-opaque switching and filamentous growth. Consequently, the tloΔ mutant grows poorly in glucose- and galactose-containing media, is unable to grow as true hyphae, is more sensitive to oxidative stress and is less virulent in the wax worm infection model. Reintegration of genes representative of the α-, β- and γ-TLO clades resulted in the complementation of the mutant phenotypes, but to different degrees. TLOα1 could restore phenotypes and gene expression patterns similar to wild-type and was the strongest activator of glycolytic and Tye7-regulated gene expression. In contrast, the two γ-TLO genes examined (i.e., TLOγ5 and TLOγ11) had a far lower impact on complementing phenotypic and transcriptomic changes. Uniquely, expression of TLOβ2 in the tloΔ mutant stimulated filamentous growth in YEPD medium and this phenotype was enhanced when Tloβ2 expression was increased to levels far in excess of Med3. In contrast, expression of reintegrated TLO genes in a tloΔ/med3Δ double mutant background failed to restore any of the phenotypes tested, suggesting that complementation of these Tlo-regulated processes requires a functional Mediator tail module. Together, these data confirm the importance of Med2/Tlo in a wide range of C. albicans cellular activities and demonstrate functional diversity within the gene family which may contribute to the success of this yeast as a coloniser and pathogen of humans.
Collapse
Affiliation(s)
- Jessica Fletcher
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - James O’Connor-Moneley
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Dean Frawley
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Peter R. Flanagan
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Leenah Alaalm
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | | | | | - Shane Hendricks
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Andrew L. Woodruff
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Alessia Buscaino
- School of Biosciences, University of Kent, Canterbury, United Kingdom
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, Ohio, United States of America
| | - Derek J. Sullivan
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Gary P. Moran
- Division of Oral Biosciences, Dublin Dental University Hospital, & University of Dublin, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
O'Connor-Moneley J, Alaalm L, Moran GP, Sullivan DJ. The role of the Mediator complex in fungal pathogenesis and response to antifungal agents. Essays Biochem 2023; 67:843-851. [PMID: 37013399 PMCID: PMC10500203 DOI: 10.1042/ebc20220238] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/15/2023] [Accepted: 03/17/2023] [Indexed: 04/05/2023]
Abstract
Mediator is a complex of polypeptides that plays a central role in the recruitment of RNA polymerase II to promoters and subsequent transcriptional activation in eukaryotic organisms. Studies have now shown that Mediator has a role in regulating expression of genes implicated in virulence and antifungal drug resistance in pathogenic fungi. The roles of specific Mediator subunits have been investigated in several species of pathogenic fungi, particularly in the most pathogenic yeast Candida albicans. Uniquely, pathogenic yeast also present several interesting examples of divergence in Mediator structure and function, most notably in C. glabrata, which possesses two orthologues of Med15, and in C. albicans, which has a massively expanded family of Med2 orthologues known as the TLO gene family. This review highlights specific examples of recent progress in characterizing the role of Mediator in pathogenic fungi.
Collapse
Affiliation(s)
- James O'Connor-Moneley
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Leenah Alaalm
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Gary P Moran
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Derek J Sullivan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, University of Dublin, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
4
|
Mao Y, Solis NV, Filler SG, Mitchell AP. Functional Dichotomy for a Hyphal Repressor in Candida albicans. mBio 2023; 14:e0013423. [PMID: 36883818 PMCID: PMC10127614 DOI: 10.1128/mbio.00134-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Nrg1 is a repressor of hypha formation and hypha-associated gene expression in the fungal pathogen Candida albicans. It has been well studied in the genetic background of the type strain SC5314. Here, we tested Nrg1 function in four other diverse clinical isolates through an analysis of nrg1Δ/Δ mutants, with SC5314 included as a control. In three strains, nrg1Δ/Δ mutants unexpectedly produced aberrant hyphae under inducing conditions, as assayed by microscopic observation and endothelial cell damage. The nrg1Δ/Δ mutant of strain P57055 had the most severe defect. We examined gene expression features under hypha-inducing conditions by RNA-sequencing (RNA-Seq) for the SC5314 and P57055 backgrounds. The SC5314 nrg1Δ/Δ mutant expressed six hypha-associated genes at reduced levels compared with wild-type SC5314. The P57055 nrg1Δ/Δ mutant expressed 17 hypha-associated genes at reduced levels compared with wild-type P57055, including IRF1, RAS2, and ECE1. These findings indicate that Nrg1 has a positive role in hypha-associated gene expression and that this role is magnified in strain P57055. Remarkably, the same hypha-associated genes affected by the nrg1Δ/Δ mutation in strain P57055 were also naturally expressed at lower levels in wild-type P57055 than those in wild-type SC5314. Our results suggest that strain P57055 is defective in a pathway that acts in parallel with Nrg1 to upregulate the expression of several hypha-associated genes. IMPORTANCE Hypha formation is a central virulence trait of the fungal pathogen Candida albicans. Control of hypha formation has been studied in detail in the type strain but not in other diverse C. albicans clinical isolates. Here, we show that the hyphal repressor Nrg1 has an unexpected positive role in hypha formation and hypha-associated gene expression, as revealed by the sensitized P57055 strain background. Our findings indicate that reliance on a single type strain limits understanding of gene function and illustrate that strain diversity is a valuable resource for C. albicans molecular genetic analysis.
Collapse
Affiliation(s)
- Yinhe Mao
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| | - Norma V. Solis
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
| | - Scott G. Filler
- Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California, USA
- David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | - Aaron P. Mitchell
- Department of Microbiology, University of Georgia, Athens, Georgia, USA
| |
Collapse
|
5
|
Mediator Subunit Med15 Regulates Cell Morphology and Mating in Candida lusitaniae. J Fungi (Basel) 2023; 9:jof9030333. [PMID: 36983501 PMCID: PMC10053558 DOI: 10.3390/jof9030333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/12/2023] Open
Abstract
Candida lusitaniae is an emerging opportunistic pathogenic yeast capable of shifting from yeast to pseudohyphae form, and it is one of the few Candida species with the ability to reproduce sexually. In this study, we showed that a dpp3Δ mutant, inactivated for a putative pyrophosphatase, is impaired in cell separation, pseudohyphal growth and mating. The defective phenotypes were not restored after the reconstruction of a wild-type DPP3 locus, reinforcing the hypothesis of the presence of an additional mutation that we suspected in our previous study. Genetic crosses and genome sequencing identified an additional mutation in MED15, encoding a subunit of the mediator complex that functions as a general transcriptional co-activator in Eukaryotes. We confirmed that inactivation of MED15 was responsible for the defective phenotypes by rescuing the dpp3Δ mutant with a wild-type copy of MED15 and constructing a med15Δ knockout mutant that mimics the phenotypes of dpp3Δ in vitro. Proteomic analyses revealed the biological processes under the control of Med15 and involved in hyphal growth, cell separation and mating. This is the first description of the functions of MED15 in the regulation of hyphal growth, cell separation and mating, and the pathways involved in C. lusitaniae.
Collapse
|
6
|
Dunn MJ, Shazib SUA, Simonton E, Slot JC, Anderson MZ. Architectural groups of a subtelomeric gene family evolve along distinct paths in Candida albicans. G3 (BETHESDA, MD.) 2022; 12:jkac283. [PMID: 36269198 PMCID: PMC9713401 DOI: 10.1093/g3journal/jkac283] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 10/09/2022] [Indexed: 12/08/2023]
Abstract
Subtelomeres are dynamic genomic regions shaped by elevated rates of recombination, mutation, and gene birth/death. These processes contribute to formation of lineage-specific gene family expansions that commonly occupy subtelomeres across eukaryotes. Investigating the evolution of subtelomeric gene families is complicated by the presence of repetitive DNA and high sequence similarity among gene family members that prevents accurate assembly from whole genome sequences. Here, we investigated the evolution of the telomere-associated (TLO) gene family in Candida albicans using 189 complete coding sequences retrieved from 23 genetically diverse strains across the species. Tlo genes conformed to the 3 major architectural groups (α/β/γ) previously defined in the genome reference strain but significantly differed in the degree of within-group diversity. One group, Tloβ, was always found at the same chromosome arm with strong sequence similarity among all strains. In contrast, diverse Tloα sequences have proliferated among chromosome arms. Tloγ genes formed 7 primary clades that included each of the previously identified Tloγ genes from the genome reference strain with 3 Tloγ genes always found on the same chromosome arm among strains. Architectural groups displayed regions of high conservation that resolved newly identified functional motifs, providing insight into potential regulatory mechanisms that distinguish groups. Thus, by resolving intraspecies subtelomeric gene variation, it is possible to identify previously unknown gene family complexity that may underpin adaptive functional variation.
Collapse
Affiliation(s)
- Matthew J Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Shahed U A Shazib
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Emily Simonton
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason C Slot
- Department of Plant Pathology, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew Z Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH 43210, USA
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
7
|
Abstract
Of the many microbial species on earth, only a small number are able to thrive in humans and cause disease. Comparison of closely related pathogenic and nonpathogenic species can therefore be useful in identifying key features that contribute to virulence. We created interspecies hybrids between Candida albicans, a prevalent fungal pathogen of humans, and Candida dubliniensis, a close, but much less pathogenic, relative. By comparing genome-wide expression differences between the two genomes in the same cell, we surmised that since the two species diverged from a common ancestor, natural selection has acted upon the expression level of an ancient metabolic pathway, illustrating that pathogenicity traits can arise over evolutionary timescales through small expression changes in deeply conserved proteins. Candida albicans is the most common cause of systemic fungal infections in humans and is considerably more virulent than its closest known relative, Candida dubliniensis. To investigate this difference, we constructed interspecies hybrids and quantified mRNA levels produced from each genome in the hybrid. This approach systematically identified expression differences in orthologous genes arising from cis-regulatory sequence changes that accumulated since the two species last shared a common ancestor, some 10 million y ago. We documented many orthologous gene-expression differences between the two species, and we pursued one striking observation: All 15 genes coding for the enzymes of glycolysis showed higher expression from the C. albicans genome than the C. dubliniensis genome in the interspecies hybrid. This pattern requires evolutionary changes to have occurred at each gene; the fact that they all act in the same direction strongly indicates lineage-specific natural selection as the underlying cause. To test whether these expression differences contribute to virulence, we created a C. dubliniensis strain in which all 15 glycolysis genes were produced at modestly elevated levels and found that this strain had significantly increased virulence in the standard mouse model of systemic infection. These results indicate that small expression differences across a deeply conserved set of metabolism enzymes can play a significant role in the evolution of virulence in fungal pathogens.
Collapse
|
8
|
Candida glabrata Yap6 Recruits Med2 To Alter Glycerophospholipid Composition and Develop Acid pH Stress Resistance. Appl Environ Microbiol 2020; 86:AEM.01915-20. [PMID: 33036991 PMCID: PMC7688241 DOI: 10.1128/aem.01915-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
Candida glabrata is a high-performance microbial cell factory for the production of organic acids. To elucidate the role of the C. glabrata Mediator tail subunit Med2 (CgMed2) at pH 2.0, we deleted or overexpressed CgMed2 and used transcriptome analysis to identify genes that are regulated by CgMed2. At pH 2.0, the deletion of CgMed2 resulted in a cell growth decrease of 26.1% and a survival decrease of 32.3%. Overexpression of CgMed2 increased cell growth by 12.4% and cell survival by 5.9% compared to the wild-type strain. Transcriptome and phenotypic analyses identified CgYap6 as a transcription factor involved in acid pH stress tolerance. Deletion of CgYap6 caused growth defects, whereas its overexpression enhanced cell growth at pH 2.0. Furthermore, total glycerophospholipid content and membrane integrity decreased by 33.4% and 21.8%, respectively, in the CgMed2Δ strain; however, overexpression of CgMed2 increased the total glycerophospholipid content and membrane integrity by 24.7% and 12.1%, respectively, compared with those of the wild-type strain at pH 2.0. These results demonstrated that under acid pH stress, CgMed2 physically interacts with CgYap6, which translocates from the cytoplasm to the nucleus after being phosphorylated by the protein kinase CgYak1. Once in the nucleus, CgYap6 recruits CgMed2 to express glycerophospholipid-related genes. Our study elucidated the function of CgMed2 under acid pH stress and provides a potential strategy to equip Candida glabrata with low-pH resistance during organic acid fermentation.IMPORTANCE This study investigated the function of the Mediator tail subunit CgMed2 in C. glabrata under low-pH stress. The protein kinase CgYak1 activates CgYap6 for the recruitment of CgMed2, which in turn increases glycerophospholipid content and membrane integrity to confer low-pH stress tolerance. This study establishes a new link between the Mediator tail subunit and transcription factors. Overall, these findings indicate that CgMed2 is a novel target to induce the low-pH stress response in C. glabrata.
Collapse
|
9
|
Regulatory mechanisms controlling morphology and pathogenesis in Candida albicans. Curr Opin Microbiol 2019; 52:27-34. [PMID: 31129557 DOI: 10.1016/j.mib.2019.04.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 04/08/2019] [Accepted: 04/17/2019] [Indexed: 12/12/2022]
Abstract
Candida albicans, a major human fungal pathogen, can cause a wide variety of both mucosal and systemic infections, particularly in immunocompromised individuals. Multiple lines of evidence suggest a strong association between virulence and the ability of C. albicans to undergo a reversible morphological transition from yeast to filamentous cells in response to host environmental cues. Most previous studies on mechanisms important for controlling the C. albicans morphological transition have focused on signaling pathways and sequence-specific transcription factors. However, in recent years a variety of novel mechanisms have been reported, including those involving global transcriptional regulation and translational control. A large-scale functional genomics screen has also revealed new roles in filamentation for certain key biosynthesis pathways. This review article will highlight several of these exciting recent discoveries and discuss how they are relevant to the development of novel antifungal strategies. Ultimately, components of mechanisms that control C. albicans morphogenesis and pathogenicity could potentially serve as viable antifungal targets.
Collapse
|
10
|
Role of Mediator in virulence and antifungal drug resistance in pathogenic fungi. Curr Genet 2019; 65:621-630. [DOI: 10.1007/s00294-019-00932-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/04/2019] [Accepted: 01/05/2019] [Indexed: 10/27/2022]
|
11
|
Flanagan PR, Fletcher J, Boyle H, Sulea R, Moran GP, Sullivan DJ. Expansion of the TLO gene family enhances the virulence of Candida species. PLoS One 2018; 13:e0200852. [PMID: 30028853 PMCID: PMC6054389 DOI: 10.1371/journal.pone.0200852] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
The TLO genes are a family of subtelomeric ORFs in the fungal pathogens Candida albicans and C. dubliniensis encoding a subunit of the Mediator complex homologous to Med2. The more virulent pathogen C. albicans has 15 copies of the gene whereas the less pathogenic species C. dubliniensis has only two. To investigate if expansion of the TLO repertoire in C. dubliniensis has an effect on phenotype and virulence we expressed three representative C. albicans TLO genes (TLOβ2, TLOγ11 and TLOα12) in a wild type C. dubliniensis background, under the control of either their native or the ACT1 promoter. Expression of TLOβ2 resulted in a hyperfilamentous phenotype, while overexpression of TLOγ11 and TLOα12 resulted in enhanced resistance to oxidative stress. Expression of all three TLO genes from the ACT1 promoter resulted in increased virulence in the Galleria infection model. In order to further investigate if individual TLO genes exhibit differences in function we expressed six representative C. albicans TLO genes in a C. dubliniensis Δtlo1/Δtlo2 double mutant. Differences were observed in the ability of the expressed CaTLOs to complement the various phenotypes of the mutant. All TLO genes with the exception of TLOγ7 could restore filamentation, however only TLOα9, γ11 and α12 could restore chlamydospore formation. Differences in the ability of CaTLO genes to restore growth in the presence of H2O2, calcofluor white, Congo red and at 42°C were observed. Only TLOα3 restored wild-type levels of virulence in the Galleria infection model. These data show that expansion of the TLO gene family in C. dubliniensis results in gain of function and that there is functional diversity amongst members of the gene family. We propose that this expansion of the TLO family contributes to the success of C. albicans as a commensal and opportunistic pathogen.
Collapse
Affiliation(s)
- Peter R. Flanagan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Dublin, Ireland
- University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Jessica Fletcher
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Dublin, Ireland
- University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Hannah Boyle
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Dublin, Ireland
- University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Razvan Sulea
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Dublin, Ireland
- University of Dublin, Trinity College Dublin, Dublin, Ireland
| | - Gary P. Moran
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Dublin, Ireland
- University of Dublin, Trinity College Dublin, Dublin, Ireland
- * E-mail: (DJS); (GPM)
| | - Derek J. Sullivan
- Microbiology Research Unit, Division of Oral Biosciences, Dublin Dental University Hospital, Dublin, Ireland
- * E-mail: (DJS); (GPM)
| |
Collapse
|
12
|
Candida glabrata Med3 Plays a Role in Altering Cell Size and Budding Index To Coordinate Cell Growth. Appl Environ Microbiol 2018; 84:AEM.00781-18. [PMID: 29776932 DOI: 10.1128/aem.00781-18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 05/14/2018] [Indexed: 12/11/2022] Open
Abstract
Candida glabrata is a promising microorganism for the production of organic acids. Here, we report deletion and quantitative-expression approaches to elucidate the role of C. glabrata Med3AB (CgMed3AB), a subunit of the mediator transcriptional coactivator, in regulating cell growth. Deletion of CgMed3AB caused an 8.6% decrease in final biomass based on growth curve plots and 10.5% lower cell viability. Based on transcriptomics data, the reason for this growth defect was attributable to changes in expression of genes involved in pyruvate and acetyl-coenzyme A (CoA)-related metabolism in a Cgmed3abΔ strain. Furthermore, the mRNA level of acetyl-CoA synthetase was downregulated after deleting Cgmed3ab, resulting in 22.8% and 21% lower activity of acetyl-CoA synthetase and cellular acetyl-CoA, respectively. Additionally, the mRNA level of CgCln3, whose expression depends on acetyl-CoA, was 34% lower in this strain. As a consequence, the cell size and budding index in the Cgmed3abΔ strain were both reduced. Conversely, overexpression of Cgmed3ab led to 16.8% more acetyl-CoA and 120% higher CgCln3 mRNA levels, as well as 19.1% larger cell size and a 13.3% higher budding index than in wild-type cells. Taken together, these results suggest that CgMed3AB regulates cell growth in C. glabrata by coordinating homeostasis between cellular acetyl-CoA and CgCln3.IMPORTANCE This study demonstrates that CgMed3AB can regulate cell growth in C. glabrata by coordinating the homeostasis of cellular acetyl-CoA metabolism and the cell cycle cyclin CgCln3. Specifically, we report that CgMed3AB regulates the cellular acetyl-CoA level, which induces the transcription of Cgcln3, finally resulting in alterations to the cell size and budding index. In conclusion, we report that CgMed3AB functions as a wheel responsible for driving cellular acetyl-CoA metabolism, indirectly inducing the transcription of Cgcln3 and coordinating cell growth. We propose that Mediator subunits may represent a vital regulatory target modulating cell growth in C. glabrata.
Collapse
|
13
|
Dunn MJ, Kinney GM, Washington PM, Berman J, Anderson MZ. Functional diversification accompanies gene family expansion of MED2 homologs in Candida albicans. PLoS Genet 2018; 14:e1007326. [PMID: 29630599 PMCID: PMC5908203 DOI: 10.1371/journal.pgen.1007326] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 04/19/2018] [Accepted: 03/21/2018] [Indexed: 01/03/2023] Open
Abstract
Gene duplication facilitates functional diversification and provides greater phenotypic flexibility to an organism. Expanded gene families arise through repeated gene duplication but the extent of functional divergence that accompanies each paralogous gene is generally unexplored because of the difficulty in isolating the effects of single family members. The telomere-associated (TLO) gene family is a remarkable example of gene family expansion, with 14 members in the more pathogenic Candida albicans relative to two TLO genes in the closely-related species C. dubliniensis. TLO genes encode interchangeable Med2 subunits of the major transcriptional regulatory complex Mediator. To identify biological functions associated with each C. albicans TLO, expression of individual family members was regulated using a Tet-ON system and the strains were assessed across a range of phenotypes involved in growth and virulence traits. All TLOs affected multiple phenotypes and a single phenotype was often affected by multiple TLOs, including simple phenotypes such as cell aggregation and complex phenotypes such as virulence in a Galleria mellonella model of infection. No phenotype was regulated by all TLOs, suggesting neofunctionalization or subfunctionalization of ancestral properties among different family members. Importantly, regulation of three phenotypes could be mapped to individual polymorphic sites among the TLO genes, including an indel correlated with two phenotypes, growth in sucrose and macrophage killing. Different selective pressures have operated on the TLO sequence, with the 5’ conserved Med2 domain experiencing purifying selection and the gene/clade-specific 3’ end undergoing extensive positive selection that may contribute to the impact of individual TLOs on phenotypic variability. Therefore, expansion of the TLO gene family has conferred unique regulatory properties to each paralog such that it influences a range of phenotypes. We posit that the genetic diversity associated with this expansion contributed to C. albicans success as a commensal and opportunistic pathogen. Gene duplication is a rapid mechanism to generate additional sequences for natural selection to act upon and confer greater organismal fitness. If additional copies of the gene are beneficial, this process may be repeated to produce an expanded gene family containing many copies of related sequences. Following duplication, individual gene family members may retain functions of the ancestral gene or acquire new functions through mutation. How functional diversification accompanies expansion into large gene families remains largely unexplored due to the difficulty in assessing individual genes in the presence of the remaining family members. Here, we addressed this question using an inducible promoter to regulate expression of individual genes of the TLO gene family in the commensal yeast and opportunistic pathogen Candida albicans, which encode components of a major transcriptional regulator. Induced expression of individual TLOs affected a wide range of phenotypes such that significant functional overlap occurred among TLO genes and most phenotypes were affected by more than one TLO. Induced expression of individual TLOs did not produce massive phenotypic effects in most cases, suggesting that functional overlap among TLO genes may buffer new mutations that arise. Specific sequence variants among the TLO genes correlated with certain phenotypes and these sequence variants did not necessarily correlate with sequence similarity across the entire gene. Therefore, individual TLO family members evolved specific functional roles following duplication that likely reflect a combination of inherited function and new mutation.
Collapse
Affiliation(s)
- Matthew J. Dunn
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Griffin M. Kinney
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Pamela M. Washington
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
| | - Judith Berman
- Department of Molecular Microbiology and Biotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Matthew Z. Anderson
- Department of Microbiology, The Ohio State University, Columbus, OH, United States of America
- Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States of America
- * E-mail:
| |
Collapse
|
14
|
Erlendson AA, Friedman S, Freitag M. A Matter of Scale and Dimensions: Chromatin of Chromosome Landmarks in the Fungi. Microbiol Spectr 2017; 5:10.1128/microbiolspec.FUNK-0054-2017. [PMID: 28752814 PMCID: PMC5536859 DOI: 10.1128/microbiolspec.funk-0054-2017] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Indexed: 02/06/2023] Open
Abstract
Chromatin and chromosomes of fungi are highly diverse and dynamic, even within species. Much of what we know about histone modification enzymes, RNA interference, DNA methylation, and cell cycle control was first addressed in Saccharomyces cerevisiae, Schizosaccharomyces pombe, Aspergillus nidulans, and Neurospora crassa. Here, we examine the three landmark regions that are required for maintenance of stable chromosomes and their faithful inheritance, namely, origins of DNA replication, telomeres and centromeres. We summarize the state of recent chromatin research that explains what is required for normal function of these specialized chromosomal regions in different fungi, with an emphasis on the silencing mechanism associated with subtelomeric regions, initiated by sirtuin histone deacetylases and histone H3 lysine 27 (H3K27) methyltransferases. We explore mechanisms for the appearance of "accessory" or "conditionally dispensable" chromosomes and contrast what has been learned from studies on genome-wide chromosome conformation capture in S. cerevisiae, S. pombe, N. crassa, and Trichoderma reesei. While most of the current knowledge is based on work in a handful of genetically and biochemically tractable model organisms, we suggest where major knowledge gaps remain to be closed. Fungi will continue to serve as facile organisms to uncover the basic processes of life because they make excellent model organisms for genetics, biochemistry, cell biology, and evolutionary biology.
Collapse
Affiliation(s)
- Allyson A. Erlendson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Steven Friedman
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| | - Michael Freitag
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
15
|
Malik N, Agarwal P, Tyagi A. Emerging functions of multi-protein complex Mediator with special emphasis on plants. Crit Rev Biochem Mol Biol 2017; 52:475-502. [DOI: 10.1080/10409238.2017.1325830] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Naveen Malik
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Pinky Agarwal
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Akhilesh Tyagi
- National Institute of Plant Genome Research (NIPGR), New Delhi, India
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|