1
|
Lai B, Jiang H, Gao Y, Zhou X. Skeletal ciliopathy: pathogenesis and related signaling pathways. Mol Cell Biochem 2024; 479:811-823. [PMID: 37188988 DOI: 10.1007/s11010-023-04765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Abstract
Cilia are tiny organelles with conserved structures and components in eukaryotic cells. Ciliopathy is a set of diseases resulting from cilium dysfunction classified into first-order and second-order ciliopathy. With the advancement of clinical diagnosis and radiography, numerous skeletal phenotypes, including polydactyly, short limbs, short ribs, scoliosis, a narrow thorax, and numerous anomalies in bone and cartilage, have been discovered in ciliopathies. Mutation in genes encoding cilia core components or other cilia-related molecules have been found in skeletal ciliopathies. Meanwhile, various signaling pathways associated with cilia and skeleton development have been deemed to be significant for the occurrence and progression of diseases. Herein, we review the structure and key components of the cilium and summarize several skeletal ciliopathies with their presumable pathology. We also emphasize the signaling pathways involved in skeletal ciliopathies, which may assist in developing potential therapies for these diseases.
Collapse
Affiliation(s)
- Bowen Lai
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Heng Jiang
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Yuan Gao
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China
| | - Xuhui Zhou
- Department of Orthopedics, Changzheng Hospital, Second Military Medical University, Fengyang Road 415, Shanghai, 200003, China.
| |
Collapse
|
2
|
Negrete-Torres N, Chima-Galán MDC, Sierra-López EA, Sánchez-Ramos J, Álvarez-González I, Reyes-Reali J, Mendoza-Ramos MI, Garrido-Guerrero E, Amato D, Méndez-Catalá CF, Pozo-Molina G, Méndez-Cruz AR. Identification of Compound Heterozygous EVC2 Gene Variants in Two Mexican Families with Ellis-van Creveld Syndrome. Genes (Basel) 2023; 14:genes14040887. [PMID: 37107645 PMCID: PMC10137610 DOI: 10.3390/genes14040887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/06/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
BACKGROUND Ellis-van Creveld syndrome (EvCS) is an autosomal recessive ciliopathy with a disproportionate short stature, polydactyly, dystrophic nails, oral defects, and cardiac anomalies. It is caused by pathogenic variants in the EVC or EVC2 genes. To obtain further insight into the genetics of EvCS, we identified the genetic defect for the EVC2 gene in two Mexican patients. METHODS Two Mexican families were enrolled in this study. Exome sequencing was applied in the probands to screen potential genetic variant(s), and then Sanger sequencing was used to identify the variant in the parents. Finally, a prediction of the three-dimensional structure of the mutant proteins was made. RESULTS One patient has a compound heterozygous EVC2 mutation: a novel heterozygous variant c.519_519 + 1delinsT inherited from her mother, and a heterozygous variant c.2161delC (p.L721fs) inherited from her father. The second patient has a previously reported compound heterozygous EVC2 mutation: nonsense mutation c.645G > A (p.W215*) in exon 5 inherited from her mother, and c.273dup (p.K92fs) in exon 2 inherited from her father. In both cases, the diagnostic was Ellis-van Creveld syndrome. Three-dimensional modeling of the EVC2 protein showed that truncated proteins are produced in both patients due to the generation of premature stop codons. CONCLUSION The identified novel heterozygous EVC2 variants, c.2161delC and c.519_519 + 1delinsT, were responsible for the Ellis-van Creveld syndrome in one of the Mexican patients. In the second Mexican patient, we identified a compound heterozygous variant, c.645G > A and c.273dup, responsible for EvCS. The findings in this study extend the EVC2 mutation spectrum and may provide new insights into the EVC2 causation and diagnosis with implications for genetic counseling and clinical management.
Collapse
Affiliation(s)
- Nancy Negrete-Torres
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | | | | | - Janet Sánchez-Ramos
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Isela Álvarez-González
- Laboratorio de Genética, Escuela Nacional de Ciencias Biológicas Zacatenco, Instituto Politécnico Nacional, Ciudad de México 07738, Mexico
| | - Julia Reyes-Reali
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - María Isabel Mendoza-Ramos
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Efraín Garrido-Guerrero
- Departamento de Genética y Biología Molecular, CINVESTAV-IPN, Ciudad de México 07360, Mexico
| | - Dante Amato
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Claudia Fabiola Méndez-Catalá
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
- División de Investigación y Posgrado, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Glustein Pozo-Molina
- Laboratorio de Genética y Oncología Molecular, Laboratorio 5, Edificio A4, Carrera de Médico Cirujano, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| | - Adolfo René Méndez-Cruz
- Laboratorio de Inmunología, Unidad de Morfofisiología y Función, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Mexico
| |
Collapse
|
3
|
Da Silva JD, Soares AR, Fortuna AM, Tkachenko N. Establishing an objective clinical spectrum, genotype-phenotype correlations, and CRMP1 as a modifier in the Ellis-van Creveld syndrome: The first systematic review of EVC- and EVC2-associated conditions. GENETICS IN MEDICINE OPEN 2023; 1:100781. [PMID: 39669252 PMCID: PMC11613718 DOI: 10.1016/j.gimo.2023.100781] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/08/2023] [Accepted: 03/09/2023] [Indexed: 12/14/2024]
Abstract
Purpose Ellis-van Creveld (EVC) syndrome is an autosomal recessive skeletal ciliopathy that was first identified in the Old Order Amish. Since its discovery, two causal genes have been identified, EVC and EVC2, showing that several cases were misdiagnosed and were, in fact, other entities. Nevertheless, there has not been any adequate phenotypic characterization of molecularly defined EVC syndrome so far. Methods We performed a systematic review of case reports of EVC syndrome with molecular confirmation of pathogenic variants in EVC or EVC2. Demographic, genetic, and clinical information of patients was assessed. Results We reviewed 725 papers and obtained 54 case reports/series that met the inclusion criteria, with a total subject sample of 310. Of these, 190 had biallelic variants, whereas 28 were affected heterozygotes. Our analysis revealed new phenotypes that have not been classically linked to the syndrome and others that have been linked but are very rare. Monoallelic symptomatic forms had less expressivity, and biallelic cases were milder if associated with EVC and/or missense variants. Finally, we identified CRMP1, a gene whose coding region partially overlaps with EVC, as a potential genetic modifier of the severity of the EVC syndrome. Conclusion We provided the first objective clinical characterization of molecularly defined EVC syndrome and identified the first associated genetic modifier, CRMP1, which had not been implicated in human disease before.
Collapse
Affiliation(s)
- Jorge Diogo Da Silva
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B’s – PT Government Associate Laboratory, Braga/Guimarães, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| | - Ana Rita Soares
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| | - Ana Maria Fortuna
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| | - Nataliya Tkachenko
- Centro de Genética Médica Doutor Jacinto Magalhães, Centro Hospitalar Universitário de Santo António, Porto, Portugal
- Unit for Multidisciplinary Research in Biomedicine, Abel Salazar Biomedical Sciences Institute, Porto University, Porto, Portugal
| |
Collapse
|
4
|
Zhang H, Chinoy A, Mousavi P, Beeler A, Louie K, Collier C, Mishina Y. Elevated WNT signaling and compromised Hedgehog signaling due to Evc2 loss of function contribute to the abnormal molar patterning. FRONTIERS IN DENTAL MEDICINE 2022; 3:876015. [PMID: 38606060 PMCID: PMC11007741 DOI: 10.3389/fdmed.2022.876015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024] Open
Abstract
Ellis-van Creveld (EVC) syndrome is an autosomal recessive chondrodysplasia. The affected individuals bear a series of skeleton defects, congenital heart septum anomalies, midfacial defects, and dental defects. Previous studies using Evc or Evc2 mutant mice have characterized the pathological mechanism leading to various types of congenital defects. Some patients with EVC have supernumerary tooth; however, it is not known yet if there are supernumerary tooth formed in Evc or Evc2 mutant mice, and if yes, what is the pathological mechanism associated. In the present study, we used Evc2 mutant mice and analyze the pattern of molars in Evc2 mutant mice at various stages. Our studies demonstrate that Evc2 loss of function within the dental mesenchymal cells leads to abnormal molar patterning, and that the most anterior molar in the Evc2 mutant mandible represents a supernumerary tooth. Finally, we provide evidence supporting the idea that both compromised Hedgehog signaling and elevated WNT signaling due to Evc2 loss of function contributes to the supernumerary tooth formation.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Afriti Chinoy
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Paymon Mousavi
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Aubrey Beeler
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Ke’ale Louie
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Crystal Collier
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Ornitz DM, Itoh N. New developments in the biology of fibroblast growth factors. WIREs Mech Dis 2022; 14:e1549. [PMID: 35142107 PMCID: PMC10115509 DOI: 10.1002/wsbm.1549] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 01/28/2023]
Abstract
The fibroblast growth factor (FGF) family is composed of 18 secreted signaling proteins consisting of canonical FGFs and endocrine FGFs that activate four receptor tyrosine kinases (FGFRs 1-4) and four intracellular proteins (intracellular FGFs or iFGFs) that primarily function to regulate the activity of voltage-gated sodium channels and other molecules. The canonical FGFs, endocrine FGFs, and iFGFs have been reviewed extensively by us and others. In this review, we briefly summarize past reviews and then focus on new developments in the FGF field since our last review in 2015. Some of the highlights in the past 6 years include the use of optogenetic tools, viral vectors, and inducible transgenes to experimentally modulate FGF signaling, the clinical use of small molecule FGFR inhibitors, an expanded understanding of endocrine FGF signaling, functions for FGF signaling in stem cell pluripotency and differentiation, roles for FGF signaling in tissue homeostasis and regeneration, a continuing elaboration of mechanisms of FGF signaling in development, and an expanding appreciation of roles for FGF signaling in neuropsychiatric diseases. This article is categorized under: Cardiovascular Diseases > Molecular and Cellular Physiology Neurological Diseases > Molecular and Cellular Physiology Congenital Diseases > Stem Cells and Development Cancer > Stem Cells and Development.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nobuyuki Itoh
- Kyoto University Graduate School of Pharmaceutical Sciences, Sakyo, Kyoto, Japan
| |
Collapse
|
6
|
Zhang H, Louie KW, Kulkarni AK, Zapien‐Guerra K, Yang J, Mishina Y. The Posterior Part Influences the Anterior Part of the Mouse Cranial Base Development. JBMR Plus 2021; 6:e10589. [PMID: 35229066 PMCID: PMC8861986 DOI: 10.1002/jbm4.10589] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
The cranial base is a critical structure in the head, which is composed of endoskeletal and dermal skeletal. The braincase floor, part of the cranial base, is a midline structure of the head. Because it is a midline structure connecting the posterior skull with the facial region, braincase floor is critical for the orientation of the facial structure. Shortened braincase floor leads to mid‐facial hypoplasia and malocclusions. During embryonic development, elongation of the braincase floor occurs through endochondral ossification in the parachordal cartilage, hypophyseal cartilage, and trabecular cartilage, which leads to formation of basioccipital (BO), basisphenoid (BS), and presphenoid (PS) bones, respectively. Currently, little is known about whether maturation of parachordal cartilage, hypophyseal cartilage, and trabecular cartilage occurs in a simultaneous or sequential manner and if the formation of one impacts the others. Our previous studies demonstrated that loss of function of ciliary protein Evc2 leads to premature fusion in the intersphenoid synchondrosis (ISS). In this study, we take advantage of Evc2 mutant mice to delineate the mechanism governing synchondrosis formation. Our analysis supports a cascade mechanism on the spatiotemporal regulation of the braincase floor development that the hypertrophy of parachordal cartilage (posterior side) impacts the hypertrophy of hypophyseal cartilage (middle) and trabecular cartilage (anterior side) in a sequential manner. The cascade mechanism well explains the premature fusion of the ISS in Evc2 mutant mice and is instructive to understand the specifically shortened anterior end of the braincase floor in various types of genetic syndromes. © 2021 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Honghao Zhang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Ke'ale W Louie
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Anshul K Kulkarni
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Karen Zapien‐Guerra
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Jingwen Yang
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| | - Yuji Mishina
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry University of Michigan Ann Arbor MI USA
| |
Collapse
|
7
|
Yamaguchi H, Kitami M, Uchima Koecklin KH, He L, Wang J, Lagor WR, Perrien DS, Komatsu Y. Temporospatial regulation of intraflagellar transport is required for the endochondral ossification in mice. Dev Biol 2021; 482:91-100. [PMID: 34929174 DOI: 10.1016/j.ydbio.2021.12.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 08/24/2021] [Accepted: 12/10/2021] [Indexed: 01/28/2023]
Abstract
Ciliogenic components, such as the family of intraflagellar transport (IFT) proteins, are recognized to play key roles in endochondral ossification, a critical process to form most bones. However, the unique functions and roles of each IFT during endochondral ossification remain unclear. Here, we show that IFT20 is required for endochondral ossification in mice. Utilizing osteo-chondrocyte lineage-specific Cre mice (Prx1-Cre and Col2-Cre), we deleted Ift20 to examine its function. Although chondrocyte-specific Ift20 deletion with Col2-Cre mice did not cause any overt skeletal defects, mesoderm-specific Ift20 deletion using Prx1-Cre (Ift20:Prx1-Cre) mice resulted in shortened limb outgrowth. Primary cilia were absent on chondrocytes of Ift20:Prx1-Cre mice, and ciliary-mediated Hedgehog signaling was attenuated in Ift20:Prx1-Cre mice. Interestingly, loss of Ift20 also increased Fgf18 expression in the perichondrium that sustained Sox9 expression, thus preventing endochondral ossification. Inhibition of enhanced phospho-ERK1/2 activation partially rescued defective chondrogenesis in Ift20 mutant cells, supporting an important role for FGF signaling. Our findings demonstrate that IFT20 is a critical regulator of temporospatial FGF signaling that is required for endochondral ossification.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Megumi Kitami
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | | | - Li He
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - Jianbo Wang
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA
| | - William R Lagor
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Daniel S Perrien
- Division of Endocrinology, Metabolism, and Lipids, Department of Medicine, Emory University, Atlanta, GA, 30232, USA
| | - Yoshihiro Komatsu
- Department of Pediatrics, McGovern Medical School, UTHealth, Houston, TX, 77030, USA; Graduate Program in Genetics & Epigenetics, The University of Texas MD Anderson Cancer Center, UTHealth, Graduate School of Biomedical Sciences, Houston, TX, 77030, USA.
| |
Collapse
|
8
|
Öztürk Ö, Bağış H, Bolu S, Çevik MÖ. Ellis-van Creveld syndrome novel pathogenic variant in the EVC2 gene a patient from Turkey. Clin Case Rep 2021; 9:1973-1976. [PMID: 33936625 PMCID: PMC8077313 DOI: 10.1002/ccr3.3919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 11/17/2022] Open
Abstract
Ellis-van Creveld syndrome 10-year-old Turkish girl and her parents were first degree cousins. A novel pathogenic variant (p.Glu1178Glyfs*82) was detected in the EVC2 gene in patient. She had no peg-shaped teeth, multiple frenula, and limb shortness.
Collapse
Affiliation(s)
- Özden Öztürk
- Department of Medical GeneticsMedical School of Adiyaman UniversityAdiyamanTurkey
| | - Haydar Bağış
- Department of Medical GeneticsMedical School of Adiyaman UniversityAdiyamanTurkey
| | - Semih Bolu
- Division of Pediatric EndocrinologyDepartment of PediatricsMedical School of Adiyaman UniversityAdiyamanTurkey
| | - Muhammer Özgür Çevik
- Department of Medical GeneticsMedical School of Adiyaman UniversityAdiyamanTurkey
| |
Collapse
|
9
|
Human-chimpanzee fused cells reveal cis-regulatory divergence underlying skeletal evolution. Nat Genet 2021; 53:467-476. [PMID: 33731941 PMCID: PMC8038968 DOI: 10.1038/s41588-021-00804-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/26/2021] [Indexed: 01/06/2023]
Abstract
Gene regulatory divergence is thought to play a central role in determining human-specific traits. However, our ability to link divergent regulation to divergent phenotypes is limited. Here, we utilized human-chimpanzee hybrid induced pluripotent stem cells to study gene expression separating these species. The tetraploid hybrid cells allowed us to separate cis- from trans-regulatory effects, and to control for non-genetic confounding factors. We differentiated these cells into cranial neural crest cells (CNCCs), the primary cell type giving rise to the face. We discovered evidence of lineage-specific selection on the hedgehog signaling pathway, including a human-specific 6-fold down-regulation of EVC2 (LIMBIN), a key hedgehog gene. Inducing a similar down-regulation of EVC2 substantially reduced hedgehog signaling output. Mice and humans lacking functional EVC2 show striking phenotypic parallels to human-chimpanzee craniofacial differences, suggesting that the regulatory divergence of hedgehog signaling may have contributed to the unique craniofacial morphology of humans.
Collapse
|
10
|
Molecular and Cellular Pathogenesis of Ellis-van Creveld Syndrome: Lessons from Targeted and Natural Mutations in Animal Models. J Dev Biol 2020; 8:jdb8040025. [PMID: 33050204 PMCID: PMC7711556 DOI: 10.3390/jdb8040025] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 09/29/2020] [Accepted: 10/06/2020] [Indexed: 02/01/2023] Open
Abstract
Ellis-van Creveld syndrome (EVC; MIM ID #225500) is a rare congenital disease with an occurrence of 1 in 60,000. It is characterized by remarkable skeletal dysplasia, such as short limbs, ribs and polydactyly, and orofacial anomalies. With two of three patients first noted as being offspring of consanguineous marriage, this autosomal recessive disease results from mutations in one of two causative genes: EVC or EVC2/LIMBIN. The recent identification and manipulation of genetic homologs in animals has deepened our understanding beyond human case studies and provided critical insight into disease pathogenesis. This review highlights the utility of animal-based studies of EVC by summarizing: (1) molecular biology of EVC and EVC2/LIMBIN, (2) human disease signs, (3) dysplastic limb development, (4) craniofacial anomalies, (5) tooth anomalies, (6) tracheal cartilage abnormalities, and (7) EVC-like disorders in non-human species.
Collapse
|
11
|
Paul MR, Pan TC, Pant DK, Shih NN, Chen Y, Harvey KL, Solomon A, Lieberman D, Morrissette JJ, Soucier-Ernst D, Goodman NG, Stavropoulos SW, Maxwell KN, Clark C, Belka GK, Feldman M, DeMichele A, Chodosh LA. Genomic landscape of metastatic breast cancer identifies preferentially dysregulated pathways and targets. J Clin Invest 2020; 130:4252-4265. [PMID: 32657779 PMCID: PMC7410083 DOI: 10.1172/jci129941] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/05/2020] [Indexed: 12/21/2022] Open
Abstract
Nearly all breast cancer deaths result from metastatic disease. Despite this, the genomic events that drive metastatic recurrence are poorly understood. We performed whole-exome and shallow whole-genome sequencing to identify genes and pathways preferentially mutated or copy-number altered in metastases compared with the paired primary tumors from which they arose. Seven genes were preferentially mutated in metastases - MYLK, PEAK1, SLC2A4RG, EVC2, XIRP2, PALB2, and ESR1 - 5 of which are not significantly mutated in any type of human primary cancer. Four regions were preferentially copy-number altered: loss of STK11 and CDKN2A/B, as well as gain of PTK6 and the membrane-bound progesterone receptor, PAQR8. PAQR8 gain was mutually exclusive with mutations in the nuclear estrogen and progesterone receptors, suggesting a role in treatment resistance. Several pathways were preferentially mutated or altered in metastases, including mTOR, CDK/RB, cAMP/PKA, WNT, HKMT, and focal adhesion. Immunohistochemical analyses revealed that metastases preferentially inactivate pRB, upregulate the mTORC1 and WNT signaling pathways, and exhibit nuclear localization of activated PKA. Our findings identify multiple therapeutic targets in metastatic recurrence that are not significantly mutated in primary cancers, implicate membrane progesterone signaling and nuclear PKA in metastatic recurrence, and provide genomic bases for the efficacy of mTORC1, CDK4/6, and PARP inhibitors in metastatic breast cancer.
Collapse
Affiliation(s)
- Matt R. Paul
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Tien-chi Pan
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Dhruv K. Pant
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Natalie N.C. Shih
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Pathology and Laboratory Medicine
| | - Yan Chen
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Kyra L. Harvey
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Aaron Solomon
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | | | | | - Danielle Soucier-Ernst
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
| | - Noah G. Goodman
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
| | - S. William Stavropoulos
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Radiology, and
| | - Kara N. Maxwell
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
| | - Candace Clark
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
| | - George K. Belka
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
| | - Michael Feldman
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Pathology and Laboratory Medicine
| | - Angela DeMichele
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Department of Medicine
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lewis A. Chodosh
- Secondary Prevention through Surveillance and Intervention (2-PREVENT) Translational Center of Excellence
- Abramson Family Cancer Research Institute
- Department of Cancer Biology
- Department of Medicine
| |
Collapse
|
12
|
Kulkarni AK, Louie KW, Yatabe M, Ruellas ACDO, Mochida Y, Cevidanes LHS, Mishina Y, Zhang H. A Ciliary Protein EVC2/LIMBIN Plays a Critical Role in the Skull Base for Mid-Facial Development. Front Physiol 2018; 9:1484. [PMID: 30410447 PMCID: PMC6210651 DOI: 10.3389/fphys.2018.01484] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/01/2018] [Indexed: 11/26/2022] Open
Abstract
Ellis-van Creveld (EvC) syndrome is an autosomal recessive chondrodysplastic disorder. Affected patients present a wide spectrum of symptoms including short stature, postaxial polydactyly, and dental abnormalities. We previously disrupted Evc2, one of the causative genes for EvC syndrome, in mice using a neural crest-specific, Cre-mediated approach (i.e., P0-Cre, referred to as Evc2 P0 mutants). Despite the fact that P0-Cre predominantly targets the mid-facial region, we reported that many mid-facial defects identified in Evc2 global mutants are not present in Evc2 P0 mutants at postnatal day 8 (P8). In the current study, we used multiple Cre lines (P0-Cre and Wnt1-Cre, respectively), to specifically delete Evc2 in neural crest-derived tissues and compared the resulting mid-facial defects at multiple time points (P8 and P28, respectively). While both Cre lines indistinguishably targeted the mid-facial region, they differentially targeted the anterior portion of the skull base. By comprehensively analyzing the shapes of conditional mutant skulls, we detected differentially affected mid-facial defects in Evc2 P0 mutants and Evc2 Wnt1 mutants. Micro-CT analysis of the skull base further revealed that the Evc2 mutation leads to a differentially affected skull base, caused by premature closure of the intersphenoid synchondrosis (presphenoidal synchondrosis), which limited the elongation of the anterior skull base during the postnatal development of the skull. Given the importance of the skull base in mid-facial bone development, our results suggest that loss of function of Evc2 within the skull base secondarily leads to many aspects of the mid-facial defects developed by the EvC syndrome.
Collapse
Affiliation(s)
- Anshul K Kulkarni
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Ke'ale W Louie
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Marilia Yatabe
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | | | - Yoshiyuki Mochida
- Department of Molecular and Cell Biology, Henry M. Goldman School of Dental Medicine, Boston University, Boston, MA, United States
| | - Lucia H S Cevidanes
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Honghao Zhang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
13
|
Martin L, Kaci N, Estibals V, Goudin N, Garfa-Traore M, Benoist-Lasselin C, Dambroise E, Legeai-Mallet L. Constitutively-active FGFR3 disrupts primary cilium length and IFT20 trafficking in various chondrocyte models of achondroplasia. Hum Mol Genet 2017; 27:1-13. [DOI: 10.1093/hmg/ddx374] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 09/28/2017] [Indexed: 12/31/2022] Open
|
14
|
Ornitz DM, Legeai-Mallet L. Achondroplasia: Development, pathogenesis, and therapy. Dev Dyn 2017; 246:291-309. [PMID: 27987249 DOI: 10.1002/dvdy.24479] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/04/2016] [Accepted: 12/05/2016] [Indexed: 12/11/2022] Open
Abstract
Autosomal dominant mutations in fibroblast growth factor receptor 3 (FGFR3) cause achondroplasia (Ach), the most common form of dwarfism in humans, and related chondrodysplasia syndromes that include hypochondroplasia (Hch), severe achondroplasia with developmental delay and acanthosis nigricans (SADDAN), and thanatophoric dysplasia (TD). FGFR3 is expressed in chondrocytes and mature osteoblasts where it functions to regulate bone growth. Analysis of the mutations in FGFR3 revealed increased signaling through a combination of mechanisms that include stabilization of the receptor, enhanced dimerization, and enhanced tyrosine kinase activity. Paradoxically, increased FGFR3 signaling profoundly suppresses proliferation and maturation of growth plate chondrocytes resulting in decreased growth plate size, reduced trabecular bone volume, and resulting decreased bone elongation. In this review, we discuss the molecular mechanisms that regulate growth plate chondrocytes, the pathogenesis of Ach, and therapeutic approaches that are being evaluated to improve endochondral bone growth in people with Ach and related conditions. Developmental Dynamics 246:291-309, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- David M Ornitz
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Laurence Legeai-Mallet
- Imagine Institute, Inserm U1163, Université Paris Descartes, Service de Génétique, Hôpital Necker-Enfants Malades, AP-HP, Paris, France
| |
Collapse
|