1
|
Shin J, Zielinski D, Palsson B. Modulating bacterial function utilizing A knowledge base of transcriptional regulatory modules. Nucleic Acids Res 2024; 52:11362-11377. [PMID: 39193902 PMCID: PMC11472167 DOI: 10.1093/nar/gkae742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/29/2024] [Accepted: 08/19/2024] [Indexed: 08/29/2024] Open
Abstract
Synthetic biology enables the reprogramming of cellular functions for various applications. However, challenges in scalability and predictability persist due to context-dependent performance and complex circuit-host interactions. This study introduces an iModulon-based engineering approach, utilizing machine learning-defined co-regulated gene groups (iModulons) as design parts containing essential genes for specific functions. This approach identifies the necessary components for genetic circuits across different contexts, enhancing genome engineering by improving target selection and predicting module behavior. We demonstrate several distinct uses of iModulons: (i) discovery of unknown iModulons to increase protein productivity, heat tolerance and fructose utilization; (ii) an iModulon boosting approach, which amplifies the activity of specific iModulons, improved cell growth under osmotic stress with minimal host regulation disruption; (iii) an iModulon rebalancing strategy, which adjusts the activity levels of iModulons to balance cellular functions, significantly increased oxidative stress tolerance while minimizing trade-offs and (iv) iModulon-based gene annotation enabled natural competence activation by predictably rewiring iModulons. Comparative experiments with traditional methods showed our approach offers advantages in efficiency and predictability of strain engineering. This study demonstrates the potential of iModulon-based strategies to systematically and predictably reprogram cellular functions, offering refined and adaptable control over complex regulatory networks.
Collapse
Affiliation(s)
- Jongoh Shin
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Daniel C Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby 2800, Denmark
- Department of Pediatrics, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Dalldorf C, Rychel K, Szubin R, Hefner Y, Patel A, Zielinski DC, Palsson BO. The hallmarks of a tradeoff in transcriptomes that balances stress and growth functions. mSystems 2024; 9:e0030524. [PMID: 38829048 PMCID: PMC11264592 DOI: 10.1128/msystems.00305-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/24/2024] [Indexed: 06/05/2024] Open
Abstract
Fast growth phenotypes are achieved through optimal transcriptomic allocation, in which cells must balance tradeoffs in resource allocation between diverse functions. One such balance between stress readiness and unbridled growth in E. coli has been termed the fear versus greed (f/g) tradeoff. Two specific RNA polymerase (RNAP) mutations observed in adaptation to fast growth have been previously shown to affect the f/g tradeoff, suggesting that genetic adaptations may be primed to control f/g resource allocation. Here, we conduct a greatly expanded study of the genetic control of the f/g tradeoff across diverse conditions. We introduced 12 RNA polymerase (RNAP) mutations commonly acquired during adaptive laboratory evolution (ALE) and obtained expression profiles of each. We found that these single RNAP mutation strains resulted in large shifts in the f/g tradeoff primarily in the RpoS regulon and ribosomal genes, likely through modifying RNAP-DNA interactions. Two of these mutations additionally caused condition-specific transcriptional adaptations. While this tradeoff was previously characterized by the RpoS regulon and ribosomal expression, we find that the GAD regulon plays an important role in stress readiness and ppGpp in translation activity, expanding the scope of the tradeoff. A phylogenetic analysis found the greed-related genes of the tradeoff present in numerous bacterial species. The results suggest that the f/g tradeoff represents a general principle of transcriptome allocation in bacteria where small genetic changes can result in large phenotypic adaptations to growth conditions.IMPORTANCETo increase growth, E. coli must raise ribosomal content at the expense of non-growth functions. Previous studies have linked RNAP mutations to this transcriptional shift and increased growth but were focused on only two mutations found in the protein's central region. RNAP mutations, however, commonly occur over a large structural range. To explore RNAP mutations' impact, we have introduced 12 RNAP mutations found in laboratory evolution experiments and obtained expression profiles of each. The mutations nearly universally increased growth rates by adjusting said tradeoff away from non-growth functions. In addition to this shift, a few caused condition-specific adaptations. We explored the prevalence of this tradeoff across phylogeny and found it to be a widespread and conserved trend among bacteria.
Collapse
Affiliation(s)
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Ying Hefner
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Arjun Patel
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, USA
- Bioinformatics and Systems Biology Program, University of California San Diego, La Jolla, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, California, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
3
|
Choudhury A, Gachet B, Dixit Z, Faure R, Gill RT, Tenaillon O. Deep mutational scanning reveals the molecular determinants of RNA polymerase-mediated adaptation and tradeoffs. Nat Commun 2023; 14:6319. [PMID: 37813857 PMCID: PMC10562459 DOI: 10.1038/s41467-023-41882-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 09/21/2023] [Indexed: 10/11/2023] Open
Abstract
RNA polymerase (RNAP) is emblematic of complex biological systems that control multiple traits involving trade-offs such as growth versus maintenance. Laboratory evolution has revealed that mutations in RNAP subunits, including RpoB, are frequently selected. However, we lack a systems view of how mutations alter the RNAP molecular functions to promote adaptation. We, therefore, measured the fitness of thousands of mutations within a region of rpoB under multiple conditions and genetic backgrounds, to find that adaptive mutations cluster in two modules. Mutations in one module favor growth over maintenance through a partial loss of an interaction associated with faster elongation. Mutations in the other favor maintenance over growth through a destabilized RNAP-DNA complex. The two molecular handles capture the versatile RNAP-mediated adaptations. Combining both interaction losses simultaneously improved maintenance and growth, challenging the idea that growth-maintenance tradeoff resorts only from limited resources, and revealing how compensatory evolution operates within RNAP.
Collapse
Affiliation(s)
- Alaksh Choudhury
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France.
- Laboratoire Biophysique et Évolution (LBE), UMR Chimie Biologie Innovation 8231, ESPCI Paris, Université PSL, CNRS, 75005, Paris, France.
| | - Benoit Gachet
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France
| | - Zoya Dixit
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France
- Université de Paris Cité, INSERM, CNRS, Institut Cochin, UMR 1016, 75014, Paris, France
| | - Roland Faure
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France
- Université de Rennes, INRIA RBA, CNRS UMR 6074, Rennes, France
- Service Evolution Biologique et Ecologie, Université libre de Bruxelles (ULB), 1050, Brussels, Belgium
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado-Boulder, Boulder, CO, 80309-0027, USA
- Novo Nordisk Foundation, Denmark Technical University, 2800 Kgs, Lyngby, Denmark
| | - Olivier Tenaillon
- Université de Paris Cité, INSERM, IAME, UMR 1137, 75018, Paris, France.
- Université de Paris Cité, INSERM, CNRS, Institut Cochin, UMR 1016, 75014, Paris, France.
| |
Collapse
|
4
|
Dalldorf C, Rychel K, Szubin R, Hefner Y, Patel A, Zielinski DC, Palsson BO. The hallmarks of a tradeoff in transcriptomes that balances stress and growth functions. RESEARCH SQUARE 2023:rs.3.rs-2729651. [PMID: 37090546 PMCID: PMC10120744 DOI: 10.21203/rs.3.rs-2729651/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Fit phenotypes are achieved through optimal transcriptomic allocation. Here, we performed a high-resolution, multi-scale study of the transcriptomic tradeoff between two key fitness phenotypes, stress response (fear) and growth (greed), in Escherichia coli. We introduced twelve RNA polymerase (RNAP) mutations commonly acquired during adaptive laboratory evolution (ALE) and found that single mutations resulted in large shifts in the fear vs. greed tradeoff, likely through destabilizing the rpoB-rpoC interface. RpoS and GAD regulons drive the fear response while ribosomal proteins and the ppGpp regulon underlie greed. Growth rate selection pressure during ALE results in endpoint strains that often have RNAP mutations, with synergistic mutations reflective of particular conditions. A phylogenetic analysis found the tradeoff in numerous bacteria species. The results suggest that the fear vs. greed tradeoff represents a general principle of transcriptome allocation in bacteria where small genetic changes can result in large phenotypic adaptations to growth conditions.
Collapse
Affiliation(s)
- Christopher Dalldorf
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Arjun Patel
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, USA
- Bioinformatics and Systems Biology Program, University of California, San Diego, La Jolla, USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California San Diego, La Jolla, CA 92093, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark
| |
Collapse
|
5
|
Transcriptional Potential Determines the Adaptability of Escherichia coli Strains with Different Fitness Backgrounds. Microbiol Spectr 2022; 10:e0252822. [PMID: 36445144 PMCID: PMC9769844 DOI: 10.1128/spectrum.02528-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Adaptation through the fitness landscape may be influenced by the gene pool or expression network. However, genetic factors that determine the contribution of beneficial mutations during adaptive evolution are poorly understood. In this study, we experimentally evolved wild-type Escherichia coli K-12 MG1655 and its isogenic derivative that has two additional replication origins and shows higher background fitness. During the short time of experimental evolution, the fitness gains of the two E. coli strains with different fitness backgrounds converged. Populational genome sequencing revealed various mutations with different allele frequencies in evolved populations. Several mutations occurred in genes affecting transcriptional regulation (e.g., RNA polymerase subunit, RNase, ppGpp synthetase, and transcription termination/antitermination factor genes). When we introduced mutations into the ancestral E. coli strains, beneficial effects tended to be lower in the ancestor with higher initial fitness. Replication rate analysis showed that the various replication indices do not correlate with the growth rate. Transcriptome profiling showed that gene expression and gene ontology are markedly enriched in populations with lower background fitness after experimental evolution. Further, the degree of transcriptional change was proportional to the fitness gain. Thus, the evolutionary trajectories of bacteria with different fitness backgrounds can be complex and counterintuitive. Notably, transcriptional change is a major contributor to adaptability. IMPORTANCE Predicting the adaptive potential of bacterial populations can be difficult due to their complexity and dynamic environmental conditions. Also, epistatic interaction between mutations affects the adaptive trajectory. Nevertheless, next-generation sequencing sheds light on understanding evolutionary dynamics through high-throughput genome and transcriptome information. Experimental evolution of two E. coli strains with different background fitness showed that the trajectories of fitness gain, which slowed down during the later stages of evolution, became convergent. This suggests that the adaptability of bacteria can be counterintuitive and that predicting the evolutionary path of bacteria can be difficult even in a constant environment. In addition, transcriptional change is associated with fitness gain during the evolutionary process. Thus, the adaptability of cells depends on their intrinsic genetic capacity for a given evolutionary period. This should be considered when genetically engineered bacteria are optimized through adaptive evolution.
Collapse
|
6
|
Nucci A, Rocha EPC, Rendueles O. Adaptation to novel spatially-structured environments is driven by the capsule and alters virulence-associated traits. Nat Commun 2022; 13:4751. [PMID: 35963864 PMCID: PMC9376106 DOI: 10.1038/s41467-022-32504-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/02/2022] [Indexed: 12/14/2022] Open
Abstract
The extracellular capsule is a major virulence factor, but its ubiquity in free-living bacteria with large environmental breadths suggests that it shapes adaptation to novel niches. Yet, how it does so, remains unexplored. Here, we evolve three Klebsiella strains and their capsule mutants in parallel. Their comparison reveals different phenotypic and genotypic evolutionary changes that alter virulence-associated traits. Non-capsulated populations accumulate mutations that reduce exopolysaccharide production and increase biofilm formation and yield, whereas most capsulated populations become hypermucoviscous, a signature of hypervirulence. Hence, adaptation to novel environments primarily occurs by fine-tuning expression of the capsular locus. The same evolutionary conditions selecting for mutations in the capsular gene wzc leading to hypermucoviscosity also result in increased susceptibility to antibiotics by mutations in the ramA regulon. This implies that general adaptive processes outside the host can affect capsule evolution and its role in virulence and infection outcomes may be a by-product of such adaptation. Phenotypic and genotypic evolution in worrisome Klebsiella spp. is influenced by the capsule. Here the authors show that adaptation outside the host can impact virulence-associated traits, including de novo emergence of hypermucoviscosity.
Collapse
Affiliation(s)
- Amandine Nucci
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Eduardo P C Rocha
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France
| | - Olaya Rendueles
- Institut Pasteur, Université de Paris, CNRS, UMR3525, Microbial Evolutionary Genomics, F-75015, Paris, France.
| |
Collapse
|
7
|
Espeso DR, Dvořák P, Aparicio T, de Lorenzo V. An automated DIY framework for experimental evolution of Pseudomonas putida. Microb Biotechnol 2021; 14:2679-2685. [PMID: 33047876 PMCID: PMC8601172 DOI: 10.1111/1751-7915.13678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/12/2020] [Accepted: 09/22/2020] [Indexed: 10/25/2022] Open
Abstract
Adaptive laboratory evolution (ALE) is a general and effective strategy for optimizing the design of engineered genetic circuits and upgrading metabolic phenotypes. However, the specific characteristics of each microorganism typically ask for exclusive conditions that need to be adjusted to the biological chassis at stake. In this work, we have adopted a do-it-yourself (DIY) approach to implement a flexible and automated framework for performing ALE experiments with the environmental bacterium and metabolic engineering platform Pseudomonas putida. The setup includes a dual-chamber semi-continuous log-phase bioreactor design combined with an anti-biofilm layout to manage specific traits of this bacterium in long-term cultivation experiments. As a way of validation, the prototype was instrumental for selecting fast-growing variants of a P. putida strain engineered to metabolize D-xylose as sole carbon and energy source after running an automated 42 days protocol of iterative regrowth. Several genomic changes were identified in the evolved population that pinpointed the role of RNA polymerase in controlling overall physiological conditions during metabolism of the new carbon source.
Collapse
Affiliation(s)
- David R. Espeso
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSICCampus de CantoblancoMadrid28049Spain
| | - Pavel Dvořák
- Department of Experimental BiologyFaculty of ScienceMasaryk UniversityBrno62500Czech Republic
| | - Tomás Aparicio
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSICCampus de CantoblancoMadrid28049Spain
| | - Víctor de Lorenzo
- Systems Biology ProgramCentro Nacional de Biotecnología‐CSICCampus de CantoblancoMadrid28049Spain
| |
Collapse
|
8
|
Changes in the distribution of fitness effects and adaptive mutational spectra following a single first step towards adaptation. Nat Commun 2021; 12:5193. [PMID: 34465770 PMCID: PMC8408183 DOI: 10.1038/s41467-021-25440-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2021] [Indexed: 01/17/2023] Open
Abstract
Historical contingency and diminishing returns epistasis have been typically studied for relatively divergent genotypes and/or over long evolutionary timescales. Here, we use Saccharomyces cerevisiae to study the extent of diminishing returns and the changes in the adaptive mutational spectra following a single first adaptive mutational step. We further evolve three clones that arose under identical conditions from a common ancestor. We follow their evolutionary dynamics by lineage tracking and determine adaptive outcomes using fitness assays and whole genome sequencing. We find that diminishing returns manifests as smaller fitness gains during the 2nd step of adaptation compared to the 1st step, mainly due to a compressed distribution of fitness effects. We also find that the beneficial mutational spectra for the 2nd adaptive step are contingent on the 1st step, as we see both shared and diverging adaptive strategies. Finally, we find that adaptive loss-of-function mutations, such as nonsense and frameshift mutations, are less common in the second step of adaptation than in the first step. Analyses of both natural and experimental evolution suggest that adaptation depends on the evolutionary past and adaptive potential decreases over time. Here, by tracking yeast adaptation with DNA barcoding, the authors show that such evolutionary phenomena can be observed even after a single adaptive step.
Collapse
|
9
|
Transcriptional regulator-induced phenotype screen reveals drug potentiators in Mycobacterium tuberculosis. Nat Microbiol 2020; 6:44-50. [PMID: 33199862 PMCID: PMC8331221 DOI: 10.1038/s41564-020-00810-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 10/05/2020] [Indexed: 02/07/2023]
Abstract
Transposon-based strategies provide a powerful and unbiased way to study bacterial stress response1–8, but these approaches cannot fully capture the complexities of network-based behavior. Here, we present a network-based genetic screening approach: the Transcriptional Regulator Induced Phenotype (TRIP) screen, which we used to identify previously uncharacterized network adaptations of Mycobacterium tuberculosis (Mtb) to the first-line anti-TB drug isoniazid (INH). We found regulators that alter INH susceptibility when induced, several of which could not be identified by standard gene disruption approaches. We then focused on a specific regulator, mce3R, which potentiated INH activity when induced. We compared mce3R-regulated genes with baseline INH transcriptional responses and implicated the gene ctpD (Rv1469) as a putative INH effector. Evaluating a ctpD disruption mutant demonstrated a previously unknown role for this gene in INH susceptibility. Integrating TRIP screening with network information can uncover sophisticated molecular response programs.
Collapse
|
10
|
Wytock TP, Zhang M, Jinich A, Fiebig A, Crosson S, Motter AE. Extreme Antagonism Arising from Gene-Environment Interactions. Biophys J 2020; 119:2074-2086. [PMID: 33068537 DOI: 10.1016/j.bpj.2020.09.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 01/06/2023] Open
Abstract
Antagonistic interactions in biological systems, which occur when one perturbation blunts the effect of another, are typically interpreted as evidence that the two perturbations impact the same cellular pathway or function. Yet, this interpretation ignores extreme antagonistic interactions wherein an otherwise deleterious perturbation compensates for the function lost because of a prior perturbation. Here, we report on gene-environment interactions involving genetic mutations that are deleterious in a permissive environment but beneficial in a specific environment that restricts growth. These extreme antagonistic interactions constitute gene-environment analogs of synthetic rescues previously observed for gene-gene interactions. Our approach uses two independent adaptive evolution steps to address the lack of experimental methods to systematically identify such extreme interactions. We apply the approach to Escherichia coli by successively adapting it to defined glucose media without and with the antibiotic rifampicin. The approach identified multiple mutations that are beneficial in the presence of rifampicin and deleterious in its absence. The analysis of transcription shows that the antagonistic adaptive mutations repress a stringent response-like transcriptional program, whereas nonantagonistic mutations have an opposite transcriptional profile. Our approach represents a step toward the systematic characterization of extreme antagonistic gene-drug interactions, which can be used to identify targets to select against antibiotic resistance.
Collapse
Affiliation(s)
- Thomas P Wytock
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois
| | - Manjing Zhang
- The Committee on Microbiology, University of Chicago, Chicago, Illinois
| | - Adrian Jinich
- Division of Infectious Diseases, Weill Department of Medicine, Weill-Cornell Medical College, New York, New York
| | - Aretha Fiebig
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Sean Crosson
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, Michigan
| | - Adilson E Motter
- Department of Physics and Astronomy, Northwestern University, Evanston, Illinois; Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois; Northwestern Institute on Complex Systems, Northwestern University, Evanston, Illinois.
| |
Collapse
|
11
|
Sandberg TE, Szubin R, Phaneuf PV, Palsson BO. Synthetic cross-phyla gene replacement and evolutionary assimilation of major enzymes. Nat Ecol Evol 2020; 4:1402-1409. [PMID: 32778753 PMCID: PMC7529951 DOI: 10.1038/s41559-020-1271-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 07/10/2020] [Indexed: 01/06/2023]
Abstract
The ability of DNA to produce a functional protein even after transfer to a foreign host is of fundamental importance in both evolutionary biology and biotechnology, enabling horizontal gene transfer in the wild and heterologous expression in the lab. However, the influence of genetic particulars on DNA functionality in a new host is poorly understood, as are the evolutionary mechanisms of assimilation and refinement. Here, we describe an automation-enabled large-scale experiment wherein Escherichia coli strains were evolved in parallel after replacement of the genes pgi or tpiA with orthologous DNA from donor species spanning all domains of life, from humans to hyperthermophilic archaea. Via analysis of hundreds of clones evolved for 50,000+ cumulative generations across dozens of independent lineages, we show that orthogene-upregulating mutations can completely mitigate fitness defects that result from initial non-functionality, with coding sequence changes unnecessary. Gene target, donor species and genomic location of the swap all influenced outcomes-both the nature of adaptive mutations (often synonymous) and the frequency with which strains successfully evolved to assimilate the foreign DNA. Additionally, time series DNA sequencing and replay evolution experiments revealed transient copy number expansions, the contingency of lineage outcome on first-step mutations and the ability for strains to escape from suboptimal local fitness maxima. Overall, this study establishes the influence of various DNA and protein features on cross-species genetic interchangeability and evolutionary outcomes, with implications for both horizontal gene transfer and rational strain design.
Collapse
Affiliation(s)
- Troy E Sandberg
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Patrick V Phaneuf
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA. .,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
12
|
Nguyen AD, Nam G, Kim D, Lee EY. Metabolic role of pyrophosphate-linked phosphofructokinase pfk for C1 assimilation in Methylotuvimicrobium alcaliphilum 20Z. Microb Cell Fact 2020; 19:131. [PMID: 32546161 PMCID: PMC7298851 DOI: 10.1186/s12934-020-01382-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 05/30/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Methanotrophs is a promising biocatalyst in biotechnological applications with their ability to utilize single carbon (C1) feedstock to produce high-value compounds. Understanding the behavior of biological networks of methanotrophic bacteria in different parameters is vital to systems biology and metabolic engineering. Interestingly, methanotrophic bacteria possess the pyrophosphate-dependent 6-phosphofructokinase (PPi-PFK) instead of the ATP-dependent 6-phosphofructokinase, indicating their potentials to serve as promising model for investigation the role of inorganic pyrophosphate (PPi) and PPi-dependent glycolysis in bacteria. Gene knockout experiments along with global-omics approaches can be used for studying gene functions as well as unraveling regulatory networks that rely on the gene product. RESULTS In this study, we performed gene knockout and RNA-seq experiments in Methylotuvimicrobium alcaliphilum 20Z to investigate the functional roles of PPi-PFK in C1 metabolism when cells were grown on methane and methanol, highlighting its metabolic importance in C1 assimilation in M. alcaliphilum 20Z. We further conducted adaptive laboratory evolution (ALE) to investigate regulatory architecture in pfk knockout strain. Whole-genome resequencing and RNA-seq approaches were performed to characterize the genetic and metabolic responses of adaptation to pfk knockout. A number of mutations, as well as gene expression profiles, were identified in pfk ALE strain to overcome insufficient C1 assimilation pathway which limits the growth in the unevolved strain. CONCLUSIONS This study first revealed the regulatory roles of PPi-PFK on C1 metabolism and then provided novel insights into mechanism of adaptation to the loss of this major metabolic enzyme as well as an improved basis for future strain design in type I methanotrophs.
Collapse
Affiliation(s)
- Anh Duc Nguyen
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea
| | - Gayoung Nam
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea
| | - Donghyuk Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, South Korea.
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do, 17104, South Korea.
| |
Collapse
|
13
|
LaBar T, Phoebe Hsieh YY, Fumasoni M, Murray AW. Evolutionary Repair Experiments as a Window to the Molecular Diversity of Life. Curr Biol 2020; 30:R565-R574. [PMID: 32428498 PMCID: PMC7295036 DOI: 10.1016/j.cub.2020.03.046] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Comparative genomics reveals an unexpected diversity in the molecular mechanisms underlying conserved cellular functions, such as DNA replication and cytokinesis. However, the genetic bases and evolutionary processes underlying this 'molecular diversity' remain to be explained. Here, we review a tool to generate alternative mechanisms for conserved cellular functions and test hypotheses concerning the generation of molecular diversity - evolutionary repair experiments, in which laboratory microbial populations adapt in response to a genetic perturbation. We summarize the insights gained from evolutionary repair experiments, the spectrum and dynamics of compensatory mutations, and the alternative molecular mechanisms used to repair perturbed cellular functions. We relate these experiments to the modifications of conserved functions that have occurred outside the laboratory. We end by proposing strategies to improve evolutionary repair experiments as a tool to explore the molecular diversity of life.
Collapse
Affiliation(s)
- Thomas LaBar
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Yu-Ying Phoebe Hsieh
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Marco Fumasoni
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Andrew W Murray
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA.
| |
Collapse
|
14
|
Mazaya M, Trinh HC, Kwon YK. Effects of ordered mutations on dynamics in signaling networks. BMC Med Genomics 2020; 13:13. [PMID: 32075651 PMCID: PMC7032007 DOI: 10.1186/s12920-019-0651-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 12/19/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Many previous clinical studies have found that accumulated sequential mutations are statistically related to tumorigenesis. However, they are limited in fully elucidating the significance of the ordered-mutation because they did not focus on the network dynamics. Therefore, there is a pressing need to investigate the dynamics characteristics induced by ordered-mutations. METHODS To quantify the ordered-mutation-inducing dynamics, we defined the mutation-sensitivity and the order-specificity that represent if the network is sensitive against a double knockout mutation and if mutation-sensitivity is specific to the mutation order, respectively, using a Boolean network model. RESULTS Through intensive investigations, we found that a signaling network is more sensitive when a double-mutation occurs in the direction order inducing a longer path and a smaller number of paths than in the reverse order. In addition, feedback loops involving a gene pair decreased both the mutation-sensitivity and the order-specificity. Next, we investigated relationships of functionally important genes with ordered-mutation-inducing dynamics. The network is more sensitive to mutations subject to drug-targets, whereas it is less specific to the mutation order. Both the sensitivity and specificity are increased when different-drug-targeted genes are mutated. Further, we found that tumor suppressors can efficiently suppress the amplification of oncogenes when the former are mutated earlier than the latter. CONCLUSION Taken together, our results help to understand the importance of the order of mutations with respect to the dynamical effects in complex biological systems.
Collapse
Affiliation(s)
- Maulida Mazaya
- School of IT Convergence, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, Republic of Korea
| | - Hung-Cuong Trinh
- Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Yung-Keun Kwon
- School of IT Convergence, University of Ulsan, 93 Daehak-ro, Nam-gu, Ulsan, 44610, Republic of Korea.
| |
Collapse
|
15
|
Kim S, Lindner SN, Aslan S, Yishai O, Wenk S, Schann K, Bar-Even A. Growth of E. coli on formate and methanol via the reductive glycine pathway. Nat Chem Biol 2020; 16:538-545. [PMID: 32042198 DOI: 10.1038/s41589-020-0473-5] [Citation(s) in RCA: 160] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 12/16/2019] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Engineering a biotechnological microorganism for growth on one-carbon intermediates, produced from the abiotic activation of CO2, is a key synthetic biology step towards the valorization of this greenhouse gas to commodity chemicals. Here we redesign the central carbon metabolism of the model bacterium Escherichia coli for growth on one-carbon compounds using the reductive glycine pathway. Sequential genomic introduction of the four metabolic modules of the synthetic pathway resulted in a strain capable of growth on formate and CO2 with a doubling time of ~70 h and growth yield of ~1.5 g cell dry weight (gCDW) per mol-formate. Short-term evolution decreased doubling time to less than 8 h and improved biomass yield to 2.3 gCDW per mol-formate. Growth on methanol and CO2 was achieved by further expression of a methanol dehydrogenase. Establishing synthetic formatotrophy and methylotrophy, as demonstrated here, paves the way for sustainable bioproduction rooted in CO2 and renewable energy.
Collapse
Affiliation(s)
- Seohyoung Kim
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Selçuk Aslan
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Oren Yishai
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Sebastian Wenk
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Karin Schann
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
16
|
Kim HJ, Jeong H, Lee SJ. Short-Term Adaptation Modulates Anaerobic Metabolic Flux to Succinate by Activating ExuT, a Novel D-Glucose Transporter in Escherichia coli. Front Microbiol 2020; 11:27. [PMID: 32038601 PMCID: PMC6989600 DOI: 10.3389/fmicb.2020.00027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/08/2020] [Indexed: 11/18/2022] Open
Abstract
The sugar phosphotransferase system (PTS) is an essential energy-saving mechanism, particularly under anaerobic conditions. Since the PTS consumes equimolar phosphoenolpyruvate to phosphorylate each molecule of internalized glucose in the process of pyruvate generation, its absence can adversely affect the mixed acid fermentation profile and cell growth under anaerobic conditions. In this study, we report that the ΔptsG mutant cells of Escherichia coli K-12 strain exhibited inefficient glucose utilization, produced a significant amount of succinate, and exhibited a low growth rate. However, cells adapted soon after and started to grow rapidly in the same batch culture. As a result, the adapted ΔptsG cells showed the same mixed acid fermentation profiles as the wild-type cells, which was attributed to the mutation of the mlc gene, a repressor of the D-mannose PTS, another transporter for D-glucose. Similar adaptations were observed in the cells with ΔptsGΔmanX and the cells with ΔptsI that resulted in the production of a substantial amount of succinate and fast growth rate. The genome sequencing showed the presence of null mutations in the exuR gene, which encodes a modulator of exuT-encoded non-PTS sugar transporter, in adapted ΔptsGΔmanX and ΔptsI strains. Results from the RT-qPCR analysis and genetic test confirmed that the enhanced expression of ExuT, a non-PTS sugar transporter, was responsible for the uptake of D-glucose, increased succinate production, and fast growth of adapted cells. In conclusion, our study showed that the regulatory network of sugar transporters can be modulated by short-term adaptation and that downstream metabolic flux could be significantly determined by the choice of sugar transporters.
Collapse
Affiliation(s)
- Hyun Ju Kim
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| | - Haeyoung Jeong
- Gwanggyo R&D Center, Medytox Inc., Suwon, South Korea.,Infectious Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, South Korea
| |
Collapse
|
17
|
Hidden resources in the Escherichia coli genome restore PLP synthesis and robust growth after deletion of the essential gene pdxB. Proc Natl Acad Sci U S A 2019; 116:24164-24173. [PMID: 31712440 PMCID: PMC6883840 DOI: 10.1073/pnas.1915569116] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The evolution of new metabolic pathways has been a driver of diversification from the last universal common ancestor 3.8 billion y ago to the present. Bioinformatic evidence suggests that many pathways were assembled by recruiting promiscuous enzymes to serve new functions. However, the processes by which new pathways have emerged are lost in time. We have little information about the environmental conditions that fostered emergence of new pathways, the genome context in which new pathways emerged, and the types of mutations that elevated flux through inefficient new pathways. Experimental laboratory evolution has allowed us to evolve a new pathway and identify mechanisms by which mutations increase fitness when an inefficient new pathway becomes important for survival. PdxB (erythronate 4-phosphate dehydrogenase) is expected to be required for synthesis of the essential cofactor pyridoxal 5′-phosphate (PLP) in Escherichia coli. Surprisingly, incubation of the ∆pdxB strain in medium containing glucose as a sole carbon source for 10 d resulted in visible turbidity, suggesting that PLP is being produced by some alternative pathway. Continued evolution of parallel lineages for 110 to 150 generations produced several strains that grow robustly in glucose. We identified a 4-step bypass pathway patched together from promiscuous enzymes that restores PLP synthesis in strain JK1. None of the mutations in JK1 occurs in a gene encoding an enzyme in the new pathway. Two mutations indirectly enhance the ability of SerA (3-phosphoglycerate dehydrogenase) to perform a new function in the bypass pathway. Another disrupts a gene encoding a PLP phosphatase, thus preserving PLP levels. These results demonstrate that a functional pathway can be patched together from promiscuous enzymes in the proteome, even without mutations in the genes encoding those enzymes.
Collapse
|
18
|
Du B, Olson CA, Sastry AV, Fang X, Phaneuf PV, Chen K, Wu M, Szubin R, Xu S, Gao Y, Hefner Y, Feist AM, Palsson BO. Adaptive laboratory evolution of Escherichia coli under acid stress. MICROBIOLOGY-SGM 2019; 166:141-148. [PMID: 31625833 DOI: 10.1099/mic.0.000867] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The ability of Escherichia coli to tolerate acid stress is important for its survival and colonization in the human digestive tract. Here, we performed adaptive laboratory evolution of the laboratory strain E. coli K-12 MG1655 at pH 5.5 in glucose minimal medium. After 800 generations, six independent populations under evolution had reached 18.0 % higher growth rates than their starting strain at pH 5.5, while maintaining comparable growth rates to the starting strain at pH 7. We characterized the evolved strains and found that: (1) whole genome sequencing of isolated clones from each evolved population revealed mutations in rpoC appearing in five of six sequenced clones; and (2) gene expression profiles revealed different strategies to mitigate acid stress, which are related to amino acid metabolism and energy production and conversion. Thus, a combination of adaptive laboratory evolution, genome resequencing and expression profiling revealed, on a genome scale, the strategies that E. coli uses to mitigate acid stress.
Collapse
Affiliation(s)
- Bin Du
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Connor A Olson
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Anand V Sastry
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Xin Fang
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Patrick V Phaneuf
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ke Chen
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Muyao Wu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Richard Szubin
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Sibei Xu
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ye Gao
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Ying Hefner
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Adam M Feist
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| | - Bernhard O Palsson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kongens, Lyngby, Denmark.,Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
19
|
Zhao H, Roistacher DM, Helmann JD. Deciphering the essentiality and function of the anti-σ M factors in Bacillus subtilis. Mol Microbiol 2019; 112:482-497. [PMID: 30715747 PMCID: PMC6679829 DOI: 10.1111/mmi.14216] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2019] [Indexed: 12/27/2022]
Abstract
Bacteria use alternative sigma factors to adapt to different growth and stress conditions. The Bacillus subtilis extracytoplasmic function sigma factor SigM regulates genes for cell wall synthesis and is crucial for maintaining cell wall homeostasis under stress conditions. The activity of SigM is regulated by its anti-sigma factor, YhdL, and the accessory protein YhdK. Here, we show that dysregulation of SigM caused by the absence of either component of the anti-sigma factor complex leads to toxic levels of SigM and severe growth defects. High SigM activity results from a dysregulated positive feedback loop, and can be suppressed by overexpression of the housekeeping sigma, SigA. Using a sigM merodiploid strain, we selected for suppressor mutations that allow survival of yhdL depletion strain. The recovered suppressor mutations map to the beta and beta-prime subunits of RNA polymerase core enzyme and selectively reduce SigM activity, and in some cases increase the activity of other alternative sigma factors. This work highlights the ability of mutations in RNA polymerase that remodel the sigma-core interface to differentially affect sigma factor activity, and thereby alter the transcriptional landscape of the cell.
Collapse
Affiliation(s)
- Heng Zhao
- Cornell University, Department of Microbiology, Ithaca, NY, USA
| | | | - John D. Helmann
- Cornell University, Department of Microbiology, Ithaca, NY, USA
| |
Collapse
|
20
|
How adaptive evolution reshapes metabolism to improve fitness: recent advances and future outlook. Curr Opin Chem Eng 2018; 22:209-215. [PMID: 30613467 DOI: 10.1016/j.coche.2018.11.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Adaptive laboratory evolution (ALE) has emerged as a powerful tool in basic microbial research and strain development. In the context of metabolic science and engineering, it has been applied to study gene knockout responses, expand substrate ranges, improve tolerance to process conditions, and to improve productivity via designed growth coupling. In recent years, advancements in ALE methods and systems biology measurement technologies, particularly genome sequencing and 13C metabolic flux analysis (13C-MFA), have enabled detailed study of the mechanisms and dynamics of evolving metabolism. In this review, we discuss a range of studies that have applied flux analysis to adaptively evolved strains, as well as modeling frameworks developed to predict and interpret evolved fluxes. These efforts link mutations to fitness-enhanced phenotypes, identify bottlenecks and approaches to resolve them, and address systems concepts such as optimality.
Collapse
|
21
|
Wytock TP, Fiebig A, Willett JW, Herrou J, Fergin A, Motter AE, Crosson S. Correction: Experimental evolution of diverse Escherichia coli metabolic mutants identifies genetic loci for convergent adaptation of growth rate. PLoS Genet 2018; 14:e1007411. [PMID: 29813063 PMCID: PMC5973558 DOI: 10.1371/journal.pgen.1007411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|