1
|
Tsuneizumi K, Kasamatsu A, Saito T, Fukushima R, Taga Y, Mizuno K, Sunohara M, Uzawa K, Yamauchi M. Generation of bone-specific lysyl hydroxylase 2 knockout mice and their phenotypes. Biochem Biophys Rep 2024; 39:101790. [PMID: 39156722 PMCID: PMC11327825 DOI: 10.1016/j.bbrep.2024.101790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 07/02/2024] [Accepted: 07/16/2024] [Indexed: 08/20/2024] Open
Abstract
Lysyl hydroxylase 2 (LH2) catalyzes the hydroxylation of lysine residues in the telopeptides of type I collagen. This modification is critical for the formation of stable hydroxylysine-aldehyde derived collagen cross-links, thus, for the stability of collagen fibrils. Though dysfunction of LH2 causes Bruck syndrome, recessive osteogenesis imperfecta with joint contracture, the molecular mechanisms by which LH2 affects bone formation are still not well understood. Since the Plod2 knockout mice are embryonically lethal, we generated bone-specific LH2 conditional knockout mice (bsLH2-cKO) using the osteocalcin-Cre/loxP system, and evaluated phenotypes of femurs. LH2 mRNA and protein levels assessed by qPCR, immunohistochemistry and Data Independent Acquisition proteomics were all markedly low in bsLH2-cKO femurs when compared to controls. Lysine hydroxylation of both carboxy- and amino-terminal telopeptides of an α1(I) chain were significantly diminished resulting in reduction of the hydroxylysine-aldehyde derived cross-links. The collagen fibrils in bsLH2-cKO appeared to be thicker, often fused and irregular when compared to controls. In addition, bone mineral density and mechanical properties of bsLH2-cKO femurs were significantly impaired. Taken together, these data demonstrate that LH2-catalyzed modification and consequent cross-linking of collagen are critical for proper bone formation and mechanical strength.
Collapse
Affiliation(s)
- Kenta Tsuneizumi
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Tomoaki Saito
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Reo Fukushima
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | | | - Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
2
|
Stauffer WT, Goodman AZ, Gallay PA. Cyclophilin inhibition as a strategy for the treatment of human disease. Front Pharmacol 2024; 15:1417945. [PMID: 39045055 PMCID: PMC11264201 DOI: 10.3389/fphar.2024.1417945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/14/2024] [Indexed: 07/25/2024] Open
Abstract
Cyclophilins (Cyps), characterized as peptidyl-prolyl cis-trans isomerases (PPIases), are highly conserved and ubiquitous, playing a crucial role in protein folding and cellular signaling. This review summarizes the biochemical pathways mediated by Cyps, including their involvement in pathological states such as viral replication, inflammation, and cancer progression, to underscore the therapeutic potential of Cyp inhibition. The exploration of Cyp inhibitors (CypI) in this review, particularly non-immunosuppressive cyclosporine A (CsA) derivatives, highlights their significance as therapeutic agents. The structural and functional nuances of CsA derivatives are examined, including their efficacy, mechanism of action, and the balance between therapeutic benefits and off-target effects. The landscape of CypI is evaluated to emphasize the clinical need for targeted approaches to exploit the complex biology of Cyps and to propose future directions for research that may enhance the utility of non-immunosuppressive CsA derivatives in treating diseases where Cyps play a key pathological role.
Collapse
Affiliation(s)
| | | | - Philippe A. Gallay
- Department of Immunology & Microbiology, The Scripps Research Institute, La Jolla, CA, United States
| |
Collapse
|
3
|
Joshi A, Nigam A, Narayan Mudgal L, Mondal B, Basak T. ColPTMScape: An open access knowledge base for tissue-specific collagen PTM maps. Matrix Biol Plus 2024; 22:100144. [PMID: 38469247 PMCID: PMC10926295 DOI: 10.1016/j.mbplus.2024.100144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/26/2024] [Accepted: 02/26/2024] [Indexed: 03/13/2024] Open
Abstract
Collagen is a key component of the extracellular matrix (ECM). In the remodeling of ECM, a remarkable variation in collagen post-translational modifications (PTMs) occurs. This makes collagen a potential target for understanding extracellular matrix remodeling during pathological conditions. Over the years, scientists have gathered a huge amount of data about collagen PTM during extracellular matrix remodeling. To make such information easily accessible in a consolidated space, we have developed ColPTMScape (https://colptmscape.iitmandi.ac.in/), a dedicated knowledge base for collagen PTMs. The identified site-specific PTMs, quantitated PTM sites, and PTM maps of collagen chains are deliverables to the scientific community, especially to matrix biologists. Through this knowledge base, users can easily gain information related to the difference in the collagen PTMs across different tissues in different organisms.
Collapse
Affiliation(s)
- Ashutosh Joshi
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Ayush Nigam
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Lalit Narayan Mudgal
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Bhaskar Mondal
- School of Chemical Sciences, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| | - Trayambak Basak
- School of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Mandi, Himachal Pradesh 175075, India
| |
Collapse
|
4
|
Bansal R, Torres M, Hunt M, Wang N, Chatzopoulou M, Manchanda M, Taddeo EP, Shu C, Shirihai OS, Bachar-Wikstrom E, Wikstrom JD. Role of the mitochondrial protein cyclophilin D in skin wound healing and collagen secretion. JCI Insight 2024; 9:e169213. [PMID: 38564292 PMCID: PMC11141914 DOI: 10.1172/jci.insight.169213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Central for wound healing is the formation of granulation tissue, which largely consists of collagen and whose importance stretches past wound healing, including being implicated in both fibrosis and skin aging. Cyclophilin D (CyD) is a mitochondrial protein that regulates the permeability transition pore, known for its role in apoptosis and ischemia-reperfusion. To date, the role of CyD in human wound healing and collagen generation has been largely unexplored. Here, we show that CyD was upregulated in normal wounds and venous ulcers, likely adaptive as CyD inhibition impaired reepithelialization, granulation tissue formation, and wound closure in both human and pig models. Overexpression of CyD increased keratinocyte migration and fibroblast proliferation, while its inhibition reduced migration. Independent of wound healing, CyD inhibition in fibroblasts reduced collagen secretion and caused endoplasmic reticulum collagen accumulation, while its overexpression increased collagen secretion. This was confirmed in a Ppif-KO mouse model, which showed a reduction in skin collagen. Overall, this study revealed previously unreported roles of CyD in skin, with implications for wound healing and beyond.
Collapse
Affiliation(s)
- Ritu Bansal
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Monica Torres
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| | - Matthew Hunt
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Nuoqi Wang
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Margarita Chatzopoulou
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Mansi Manchanda
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Evan P. Taddeo
- Metabolism Theme
- Department of Molecular and Medical Pharmacology, and
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Cynthia Shu
- Metabolism Theme
- Department of Molecular and Medical Pharmacology, and
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Orian S. Shirihai
- Metabolism Theme
- Department of Molecular and Medical Pharmacology, and
- Department of Medicine, Division of Endocrinology, David Geffen School of Medicine, UCLA, Los Angeles, California, USA
| | - Etty Bachar-Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
| | - Jakob D. Wikstrom
- Dermatology and Venereology Division, Department of Medicine (Solna), Karolinska Institutet, Stockholm, Sweden
- Dermato-Venereology Clinic, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
5
|
Dzobo K, Dandara C. The Extracellular Matrix: Its Composition, Function, Remodeling, and Role in Tumorigenesis. Biomimetics (Basel) 2023; 8:146. [PMID: 37092398 PMCID: PMC10123695 DOI: 10.3390/biomimetics8020146] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
The extracellular matrix (ECM) is a ubiquitous member of the body and is key to the maintenance of tissue and organ integrity. Initially thought to be a bystander in many cellular processes, the extracellular matrix has been shown to have diverse components that regulate and activate many cellular processes and ultimately influence cell phenotype. Importantly, the ECM's composition, architecture, and stiffness/elasticity influence cellular phenotypes. Under normal conditions and during development, the synthesized ECM constantly undergoes degradation and remodeling processes via the action of matrix proteases that maintain tissue homeostasis. In many pathological conditions including fibrosis and cancer, ECM synthesis, remodeling, and degradation is dysregulated, causing its integrity to be altered. Both physical and chemical cues from the ECM are sensed via receptors including integrins and play key roles in driving cellular proliferation and differentiation and in the progression of various diseases such as cancers. Advances in 'omics' technologies have seen an increase in studies focusing on bidirectional cell-matrix interactions, and here, we highlight the emerging knowledge on the role played by the ECM during normal development and in pathological conditions. This review summarizes current ECM-targeted therapies that can modify ECM tumors to overcome drug resistance and better cancer treatment.
Collapse
Affiliation(s)
- Kevin Dzobo
- Medical Research Council, SA Wound Healing Unit, Hair and Skin Research Laboratory, Division of Dermatology, Department of Medicine, Groote Schuur Hospital, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| | - Collet Dandara
- Division of Human Genetics and Institute of Infectious Disease and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
- The South African Medical Research Council-UCT Platform for Pharmacogenomics Research and Translation, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Anzio Road, Observatory, Cape Town 7925, South Africa
| |
Collapse
|
6
|
Aughton K, Sabat-Pośpiech D, Barlow S, Coupland SE, Kalirai H. Investigating the Role of DUSP4 in Uveal Melanoma. Transl Vis Sci Technol 2022; 11:13. [PMID: 36576731 PMCID: PMC9804032 DOI: 10.1167/tvst.11.12.13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Purpose Dual-specificity phosphatase 4 (DUSP4) inactivates factors in the mitogen-activated protein kinase (MAPK) signaling cascade, activated in uveal melanoma (UM) by mutations in upstream G-protein α subunits GNAQ/11 in >90% cases. This study examined whether DUSP4 (1) protein expression in primary UM (pUM) was a biomarker of metastatic risk and (2) knockdown sensitized UM cells to therapeutic agents, selumetinib or doxorubicin. Methods DUSP4 mRNA data from The Cancer Genome Atlas and DUSP4 protein expression examined using immunohistochemistry in 28 cases of pUM were evaluated for association with clinical, genetic, and histological features. In vitro cytotoxic drug assays tested the efficacy of selumetinib and doxorubicin in UM cell lines with/without small interfering RNA DUSP4 gene silencing. Results DUSP4 protein expression was observed in 93% of cases, with strong nuclear positivity in 79%. Despite higher DUSP4 messenger RNA levels in disomy 3/wild-type BAP1 UM, there was no significant association of nDUSP4 protein with these metastatic risk predictors or outcome. DUSP4 expression in UM cell lines varied. DUSP4 silencing in Mel202, MP46, and MP41 cells did not affect ERK1/2 or phospho-ERK levels. Despite increased phospho-ERK levels in Mel285, no cell line showed enhanced sensitivity to selumetinib/doxorubicin. Conclusions DUSP4 protein expression is not a biomarker of UM metastatic risk. DUSP4 plays a complex role in oncogenesis, as reported in other cancers, and further work is required to fully understand its functional role in the MAPK pathway. Translational Relevance Understanding the role of phosphatases, such as DUSP4, in the control of intracellular signaling cascades will facilitate our ability to identify successful treatment options.
Collapse
Affiliation(s)
- Karen Aughton
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Dorota Sabat-Pośpiech
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK
| | - Samantha Barlow
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK,Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| | - Sarah E. Coupland
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK,Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| | - Helen Kalirai
- Liverpool Ocular Oncology Research Group, University of Liverpool, Molecular and Clinical Cancer Medicine, Institute of Systems Molecular & Integrative Biology, University of Liverpool, Liverpool, UK,Liverpool Clinical Laboratories, Liverpool University Hospital Foundation Trust, Liverpool, UK
| |
Collapse
|
7
|
Lysyl hydroxylase 2 mediated collagen post-translational modifications and functional outcomes. Sci Rep 2022; 12:14256. [PMID: 35995931 PMCID: PMC9395344 DOI: 10.1038/s41598-022-18165-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/05/2022] [Indexed: 11/15/2022] Open
Abstract
Lysyl hydroxylase 2 (LH2) is a member of LH family that catalyzes the hydroxylation of lysine (Lys) residues on collagen, and this particular isozyme has been implicated in various diseases. While its function as a telopeptidyl LH is generally accepted, several fundamental questions remain unanswered: 1. Does LH2 catalyze the hydroxylation of all telopeptidyl Lys residues of collagen? 2. Is LH2 involved in the helical Lys hydroxylation? 3. What are the functional consequences when LH2 is completely absent? To answer these questions, we generated LH2-null MC3T3 cells (LH2KO), and extensively characterized the type I collagen phenotypes in comparison with controls. Cross-link analysis demonstrated that the hydroxylysine-aldehyde (Hylald)-derived cross-links were completely absent from LH2KO collagen with concomitant increases in the Lysald-derived cross-links. Mass spectrometric analysis revealed that, in LH2KO type I collagen, telopeptidyl Lys hydroxylation was completely abolished at all sites while helical Lys hydroxylation was slightly diminished in a site-specific manner. Moreover, di-glycosylated Hyl was diminished at the expense of mono-glycosylated Hyl. LH2KO collagen was highly soluble and digestible, fibril diameters were diminished, and mineralization impaired when compared to controls. Together, these data underscore the critical role of LH2-catalyzed collagen modifications in collagen stability, organization and mineralization in MC3T3 cells.
Collapse
|
8
|
Saito T, Terajima M, Taga Y, Hayashi F, Oshima S, Kasamatsu A, Okubo Y, Ito C, Toshimori K, Sunohara M, Tanzawa H, Uzawa K, Yamauchi M. Decrease of lysyl hydroxylase 2 activity causes abnormal collagen molecular phenotypes, defective mineralization and compromised mechanical properties of bone. Bone 2022; 154:116242. [PMID: 34718219 DOI: 10.1016/j.bone.2021.116242] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/11/2021] [Accepted: 10/22/2021] [Indexed: 12/22/2022]
Abstract
Lysyl hydroxylase 2 (LH2) is an enzyme that catalyzes the hydroxylation of lysine (Lys) residues in fibrillar collagen telopeptides, a critical post-translational modification for the stability of intermolecular cross-links. Though abnormal LH2 activities have been implicated in various diseases including Bruck syndrome, the molecular basis of the pathologies is still not well understood. Since LH2 null mice die at early embryonic stage, we generated LH2 heterozygous (LH2+/-) mice in which LH2 level is significantly diminished, and characterized collagen and bone phenotypes using femurs. Compared to the wild-type (WT), LH2+/- collagen showed a significant decrease in the ratio of hydroxylysine (Hyl)- to the Lys-aldehyde-derived collagen cross-links without affecting the total number of aldehydes involved in cross-links. Mass spectrometric analysis revealed that, in LH2+/- type I collagen, the extent of hydroxylation of all telopeptidyl Lys residues was significantly decreased. In the helical domain, Lys hydroxylation at the cross-linking sites was either unaffected or slightly lower, but other sites were significantly diminished compared to WT. In LH2+/- femurs, mineral densities of cortical and cancellous bones were significantly decreased and the mechanical properties of cortical bones evaluated by nanoindentation analysis were compromised. When cultured, LH2+/- osteoblasts poorly produced mineralized nodules compared to WT osteoblasts. These data provide insight into the functionality of LH2 in collagen molecular phenotype and its critical role in bone matrix mineralization and mechanical properties.
Collapse
Affiliation(s)
- Tomoaki Saito
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki 302-0017, Japan
| | - Fumihiko Hayashi
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Sachi Oshima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Atsushi Kasamatsu
- Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan
| | - Yasuhiko Okubo
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Chizuru Ito
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Kiyotaka Toshimori
- Department of Functional Anatomy, Reproductive Biology and Medicine, Graduate School of Medicine, Chiba University, Chiba, Japan; Future Medicine Research Center, Chiba University, Chiba, Japan
| | - Masataka Sunohara
- Department of Anatomy, School of Life Dentistry at Tokyo, Nippon Dental University, Tokyo, Japan
| | - Hideki Tanzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba, Japan; Department of Dentistry and Oral-Maxillofacial Surgery, Chiba University Hospital, Chiba, Japan.
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, NC, USA.
| |
Collapse
|
9
|
Collagen molecular phenotypic switch between non-neoplastic and neoplastic canine mammary tissues. Sci Rep 2021; 11:8659. [PMID: 33883562 PMCID: PMC8060395 DOI: 10.1038/s41598-021-87380-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 03/23/2021] [Indexed: 01/24/2023] Open
Abstract
In spite of major advances over the past several decades in diagnosis and treatment, breast cancer remains a global cause of morbidity and premature death for both human and veterinary patients. Due to multiple shared clinicopathological features, dogs provide an excellent model of human breast cancer, thus, a comparative oncology approach may advance our understanding of breast cancer biology and improve patient outcomes. Despite an increasing awareness of the critical role of fibrillar collagens in breast cancer biology, tumor-permissive collagen features are still ill-defined. Here, we characterize the molecular and morphological phenotypes of type I collagen in canine mammary gland tumors. Canine mammary carcinoma samples contained longer collagen fibers as well as a greater population of wider fibers compared to non-neoplastic and adenoma samples. Furthermore, the total number of collagen cross-links enriched in the stable hydroxylysine-aldehyde derived cross-links was significantly increased in neoplastic mammary gland samples compared to non-neoplastic mammary gland tissue. The mass spectrometric analyses of type I collagen revealed that in malignant mammary tumor samples, lysine residues, in particular those in the telopeptides, were markedly over-hydroxylated in comparison to non-neoplastic mammary tissue. The extent of glycosylation of hydroxylysine residues was comparable among the groups. Consistent with these data, expression levels of genes encoding lysyl hydroxylase 2 (LH2) and its molecular chaperone FK506-binding protein 65 were both significantly increased in neoplastic samples. These alterations likely lead to an increase in the LH2-mediated stable collagen cross-links in mammary carcinoma that may promote tumor cell metastasis in these patients.
Collapse
|
10
|
Collagen hydroxylysine glycosylation: non-conventional substrates for atypical glycosyltransferase enzymes. Biochem Soc Trans 2021; 49:855-866. [PMID: 33704379 DOI: 10.1042/bst20200767] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 12/22/2022]
Abstract
Collagen is a major constituent of the extracellular matrix (ECM) that confers fundamental mechanical properties to tissues. To allow proper folding in triple-helices and organization in quaternary super-structures, collagen molecules require essential post-translational modifications (PTMs), including hydroxylation of proline and lysine residues, and subsequent attachment of glycan moieties (galactose and glucose) to specific hydroxylysine residues on procollagen alpha chains. The resulting galactosyl-hydroxylysine (Gal-Hyl) and less abundant glucosyl-galactosyl-hydroxylysine (Glc-Gal-Hyl) are amongst the simplest glycosylation patterns found in nature and are essential for collagen and ECM homeostasis. These collagen PTMs depend on the activity of specialized glycosyltransferase enzymes. Although their biochemical reactions have been widely studied, several key biological questions about the possible functions of these essential PTMs are still missing. In addition, the lack of three-dimensional structures of collagen glycosyltransferase enzymes hinders our understanding of the catalytic mechanisms producing this modification, as well as the impact of genetic mutations causing severe connective tissue pathologies. In this mini-review, we summarize the current knowledge on the biochemical features of the enzymes involved in the production of collagen glycosylations and the current state-of-the-art methods for the identification and characterization of this important PTM.
Collapse
|
11
|
Ishikawa Y, Taga Y, Zientek K, Mizuno N, Salo AM, Semenova O, Tufa SF, Keene DR, Holden P, Mizuno K, Gould DB, Myllyharju J, Bächinger HP. Type I and type V procollagen triple helix uses different subsets of the molecular ensemble for lysine posttranslational modifications in the rER. J Biol Chem 2021; 296:100453. [PMID: 33631195 PMCID: PMC7988497 DOI: 10.1016/j.jbc.2021.100453] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 02/12/2021] [Accepted: 02/19/2021] [Indexed: 11/25/2022] Open
Abstract
Collagen is the most abundant protein in humans. It has a characteristic triple-helix structure and is heavily posttranslationally modified. The complex biosynthesis of collagen involves processing by many enzymes and chaperones in the rough endoplasmic reticulum. Lysyl hydroxylase 1 (LH1) is required to hydroxylate lysine for cross-linking and carbohydrate attachment within collagen triple helical sequences. Additionally, a recent study of prolyl 3-hydroxylase 3 (P3H3) demonstrated that this enzyme may be critical for LH1 activity; however, the details surrounding its involvement remain unclear. If P3H3 is an LH1 chaperone that is critical for LH1 activity, P3H3 and LH1 null mice should display a similar deficiency in lysyl hydroxylation. To test this hypothesis, we compared the amount and location of hydroxylysine in the triple helical domains of type V and I collagen from P3H3 null, LH1 null, and wild-type mice. The amount of hydroxylysine in type V collagen was reduced in P3H3 null mice, but surprisingly type V collagen from LH1 null mice contained as much hydroxylysine as type V collagen from wild-type mice. In type I collagen, our results indicate that LH1 plays a global enzymatic role in lysyl hydroxylation. P3H3 is also involved in lysyl hydroxylation, particularly at cross-link formation sites, but is not required for all lysyl hydroxylation sites. In summary, our study suggests that LH1 and P3H3 likely have two distinct mechanisms to recognize different collagen types and to distinguish cross-link formation sites from other sites in type I collagen.
Collapse
Affiliation(s)
- Yoshihiro Ishikawa
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA; Research Department, Shriners Hospital for Children, Portland, Oregon, USA; Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California, USA.
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Ibaraki, Japan
| | - Keith Zientek
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Nobuyo Mizuno
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Olesya Semenova
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Sara F Tufa
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Douglas R Keene
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | - Paul Holden
- Research Department, Shriners Hospital for Children, Portland, Oregon, USA
| | | | - Douglas B Gould
- Department of Ophthalmology, University of California San Francisco, School of Medicine, San Francisco, California, USA; Department of Anatomy, University of California, San Francisco, School of Medicine, San Francisco, California USA
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Hans Peter Bächinger
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
12
|
Takeyari S, Kubota T, Ohata Y, Fujiwara M, Kitaoka T, Taga Y, Mizuno K, Ozono K. 4-Phenylbutyric acid enhances the mineralization of osteogenesis imperfecta iPSC-derived osteoblasts. J Biol Chem 2021; 296:100027. [PMID: 33154166 PMCID: PMC7948972 DOI: 10.1074/jbc.ra120.014709] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 10/26/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023] Open
Abstract
Osteogenesis imperfecta (OI) is a heritable brittle bone disease mainly caused by mutations in the two type I collagen genes. Collagen synthesis is a complex process including trimer formation, glycosylation, secretion, extracellular matrix (ECM) formation, and mineralization. Using OI patient-derived fibroblasts and induced pluripotent stem cells (iPSCs), we investigated the effect of 4-phenylbutyric acid (4-PBA) on collagen synthesis to test its potential as a new treatment for OI. Endoplasmic reticulum (ER) retention of type I collagen was observed by immunofluorescence staining in OI patient-derived fibroblasts with glycine substitution and exon skipping mutations. Liquid chromatography-mass spectrometry analysis revealed excessive glycosylation of secreted type I collagen at the specific sites in OI cells. The misfolding of the type I collagen triple helix in the ECM was demonstrated by the incorporation of heat-dissociated collagen hybridizing peptide in OI cells. Type I collagen was produced excessively by OI fibroblasts with a glycine mutation, but this excessive production was normalized when OI fibroblasts were cultured on control fibroblast-derived ECM. We also found that mineralization was impaired in osteoblasts differentiated from OI iPSCs. In summary, treatment with 4-PBA normalizes the excessive production of type I collagen, reduces ER retention, partially improves misfolding of the type I collagen helix in ECM, and improves osteoblast mineralization. Thus, 4-PBA may improve not only ER retention, but also type I collagen synthesis and mineralization in human cells from OI patients.
Collapse
Affiliation(s)
- Shinji Takeyari
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takuo Kubota
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.
| | - Yasuhisa Ohata
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Makoto Fujiwara
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taichi Kitaoka
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yuki Taga
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Kazunori Mizuno
- Nippi Research Institute of Biomatrix, Toride, Ibaraki, Japan
| | - Keiichi Ozono
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
13
|
Salo AM, Myllyharju J. Prolyl and lysyl hydroxylases in collagen synthesis. Exp Dermatol 2020; 30:38-49. [PMID: 32969070 DOI: 10.1111/exd.14197] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/15/2022]
Abstract
Collagens are the most abundant proteins in the extracellular matrix. They provide a framework to build organs and tissues and give structural support to make them resistant to mechanical load and forces. Several intra- and extracellular modifications are needed to make functional collagen molecules, intracellular post-translational modifications of proline and lysine residues having key roles in this. In this article, we provide a review on the enzymes responsible for the proline and lysine modifications, that is collagen prolyl 4-hydroxylases, 3-hydroxylases and lysyl hydroxylases, and discuss their biological functions and involvement in diseases.
Collapse
Affiliation(s)
- Antti M Salo
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| | - Johanna Myllyharju
- Oulu Center for Cell-Matrix Research, Biocenter Oulu and Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
14
|
Yamaguchi H, Terajima M, Kitami M, Wang J, He L, Saeki M, Yamauchi M, Komatsu Y. IFT20 is critical for collagen biosynthesis in craniofacial bone formation. Biochem Biophys Res Commun 2020; 533:739-744. [PMID: 32988591 DOI: 10.1016/j.bbrc.2020.09.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 10/23/2022]
Abstract
Intraflagellar transport (IFT) is essential for assembling primary cilia required for bone formation. Disruption of IFT frequently leads to bone defects in humans. While it has been well studied about the function of IFT in osteogenic cell proliferation and differentiation, little is known about its role in collagen biosynthesis during bone formation. Here we show that IFT20, the smallest IFT protein in the IFT-B complex, is important for collagen biosynthesis in mice. Deletion of Ift20 in craniofacial osteoblasts displayed bone defects in the face. While collagen protein levels are unaffected by loss of Ift20, collagen cross-linking was significantly altered. In both Ift20:Wnt1-Cre and Ift20:Ocn-Cre mice the bones exhibit increased hydroxylysine-aldehyde deived cross-linking, and decreased lysine-aldehyde derived cross-linking. To obtain insight into the molecular mechanisms, we examined the expression levels of telopeptidyl lysyl hydroxylase 2 (LH2), and associated chaperone complexes. The results demonstrated that, while LH2 levels were unaffected by loss of Ift20, its chaperone, FKBP65, was significantly increased in Ift20:Wnt1-Cre and Ift20:Ocn-Cre mouse calvaria as well as femurs. These results suggest that IFT20 plays a pivotal role in collagen biosynthesis by regulating, in part, telopeptidyl lysine hydroxylation and cross-linking in bone. To the best of our knowledge, this is the first to demonstrate that the IFT components control collagen post-translational modifications. This provides a novel insight into the craniofacial bone defects associated with craniofacial skeletal ciliopathies.
Collapse
Affiliation(s)
- Hiroyuki Yamaguchi
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Masahiko Terajima
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Megumi Kitami
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan; Center for Advanced Oral Science, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Jianbo Wang
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Li He
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA
| | - Makio Saeki
- Division of Dental Pharmacology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, 951-8514, Japan
| | - Mitsuo Yamauchi
- Division of Oral and Craniofacial Health Sciences, Adams School of Dentistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
| | - Yoshihiro Komatsu
- Department of Pediatrics, The University of Texas Medical School at Houston, Houston, TX, 77030, USA; Graduate Program in Genetics and Epigenetics, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
15
|
Köhler A, Mörgelin M, Gebauer JM, Öcal S, Imhof T, Koch M, Nagata K, Paulsson M, Aumailley M, Baumann U, Zaucke F, Sengle G. New specific HSP47 functions in collagen subfamily chaperoning. FASEB J 2020; 34:12040-12052. [DOI: 10.1096/fj.202000570r] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 05/29/2020] [Accepted: 06/26/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Anna Köhler
- Faculty of Medicine Center for Biochemistry University of Cologne Cologne Germany
| | - Matthias Mörgelin
- Division of Infection Medicine Department of Clinical Sciences Lund University Lund Sweden
- Colzyx AB Lund Sweden
| | - Jan M. Gebauer
- Faculty of Mathematics and Natural Sciences Institute of Biochemistry University of Cologne Cologne Germany
| | - Sinan Öcal
- Faculty of Mathematics and Natural Sciences Institute of Biochemistry University of Cologne Cologne Germany
| | - Thomas Imhof
- Faculty of Medicine Center for Biochemistry University of Cologne Cologne Germany
- Medical Faculty Institute for Dental Research and Oral Musculoskeletal Biology University of Cologne Cologne Germany
| | - Manuel Koch
- Medical Faculty Institute for Dental Research and Oral Musculoskeletal Biology University of Cologne Cologne Germany
| | - Kazuhiro Nagata
- Institute for Protein Dynamics Kyoto Sangyo University Kyoto Japan
| | - Mats Paulsson
- Faculty of Medicine Center for Biochemistry University of Cologne Cologne Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB) Cologne Germany
- Cluster of Excellence Cellular Stress Responses in Aging‐Associated Diseases (CECAD) University of Cologne Cologne Germany
- Center for Molecular Medicine Cologne (CMMC) Cologne Germany
| | - Monique Aumailley
- Faculty of Medicine Center for Biochemistry University of Cologne Cologne Germany
| | - Ulrich Baumann
- Faculty of Mathematics and Natural Sciences Institute of Biochemistry University of Cologne Cologne Germany
| | - Frank Zaucke
- Dr. Rolf M. Schwiete Research Unit for Osteoarthritis Orthopedic University Hospital, Friedrichsheim gGmbh Frankfurt/Main Germany
| | - Gerhard Sengle
- Faculty of Medicine Center for Biochemistry University of Cologne Cologne Germany
- Cologne Center for Musculoskeletal Biomechanics (CCMB) Cologne Germany
- Center for Molecular Medicine Cologne (CMMC) Cologne Germany
- Department of Pediatrics and Adolescent Medicine Faculty of Medicine University Hospital CologneUniversity of Cologne Cologne Germany
| |
Collapse
|
16
|
Abstract
As the crucial non-cellular component of tissues, the extracellular matrix (ECM) provides both physical support and signaling regulation to cells. Some ECM molecules provide a fibrillar environment around cells, while others provide a sheet-like basement membrane scaffold beneath epithelial cells. In this Review, we focus on recent studies investigating the mechanical, biophysical and signaling cues provided to developing tissues by different types of ECM in a variety of developing organisms. In addition, we discuss how the ECM helps to regulate tissue morphology during embryonic development by governing key elements of cell shape, adhesion, migration and differentiation. Summary: This Review discusses our current understanding of how the extracellular matrix helps guide developing tissues by influencing cell adhesion, migration, shape and differentiation, emphasizing the biophysical cues it provides.
Collapse
Affiliation(s)
- David A Cruz Walma
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, 20892-4370, USA
| |
Collapse
|
17
|
Ure DR, Trepanier DJ, Mayo PR, Foster RT. Cyclophilin inhibition as a potential treatment for nonalcoholic steatohepatitis (NASH). Expert Opin Investig Drugs 2019; 29:163-178. [PMID: 31868526 DOI: 10.1080/13543784.2020.1703948] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Daren R. Ure
- Hepion Pharmaceuticals Inc, Edmonton, AB, Canada
| | | | | | | |
Collapse
|
18
|
Terajima M, Taga Y, Sricholpech M, Kayashima Y, Sumida N, Maeda N, Hattori S, Yamauchi M. Role of Glycosyltransferase 25 Domain 1 in Type I Collagen Glycosylation and Molecular Phenotypes. Biochemistry 2019; 58:5040-5051. [PMID: 31726007 DOI: 10.1021/acs.biochem.8b00984] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Glycosylation in type I collagen occurs as O-linked galactosyl- (G-) lesser and glucosylgalactosyl-hydroxylysine (GG-Hyl); however, its biological significance is still not well understood. To investigate the function of this modification in bone, we have generated preosteoblast MC3T3-E1 (MC)-derived clones, short hairpin (Sh) clones, in which Glt25d1 gene expression was stably suppressed. In Sh clones, the GLT25D1 protein levels were markedly diminished in comparison to controls (MC and those transfected with the empty vector). In Sh collagen, levels of both G- and GG-Hyl were significantly diminished with a concomitant increase in the level of free-Hyl. In addition, the level of immature divalent cross-links significantly diminished while the level of the mature trivalent cross-link increased. As determined by mass spectrometric analysis, seven glycosylation sites were identified in type I collagen and the most predominant site was at the helical cross-linking site, α1-87. At all of the glycosylation sites, the relative levels of G- and GG-Hyl were markedly diminished, i.e., by ∼50-75%, in Sh collagen, and at five of these sites, the level of Lys hydroxylation was significantly increased. The collagen fibrils in Sh clones were larger, and mineralization was impaired. These results indicate that GLT25D1 catalyzes galactosylation of Hyl throughout the type I collagen molecule and that this modification may regulate maturation of collagen cross-linking, fibrillogenesis, and mineralization.
Collapse
Affiliation(s)
- Masahiko Terajima
- Oral and Craniofacial Health Sciences, School of Dentistry , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Yuki Taga
- Nippi Research Institute of Biomatrix , Ibaraki 302-0017 , Japan
| | - Marnisa Sricholpech
- Department of Oral Surgery and Oral Medicine, Faculty of Dentistry , Srinakharinwirot University , Bangkok 10110 , Thailand
| | - Yukako Kayashima
- Department of Pathology and Laboratory Medicine , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Noriko Sumida
- Oral and Craniofacial Health Sciences, School of Dentistry , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Nobuyo Maeda
- Department of Pathology and Laboratory Medicine , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| | - Shunji Hattori
- Nippi Research Institute of Biomatrix , Ibaraki 302-0017 , Japan
| | - Mitsuo Yamauchi
- Oral and Craniofacial Health Sciences, School of Dentistry , The University of North Carolina , Chapel Hill , North Carolina 27599 , United States
| |
Collapse
|