1
|
Daitch AK, Smith EL, Goley ED. OpgH is an essential regulator of Caulobacter morphology. mBio 2024; 15:e0144324. [PMID: 39145657 PMCID: PMC11389396 DOI: 10.1128/mbio.01443-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 08/16/2024] Open
Abstract
Bacterial growth and division rely on intricate regulation of morphogenetic complexes to remodel the cell envelope without compromising envelope integrity. Significant progress has been made in recent years towards understanding the regulation of cell wall metabolic enzymes. However, other cell envelope components play a role in morphogenesis as well. A primary factor required to protect envelope integrity in low osmolarity environments is OpgH, the synthase of osmoregulated periplasmic glucans (OPGs). Here, we demonstrate that OpgH is essential in the α-proteobacterium Caulobacter crescentus. Unexpectedly, depletion of OpgH or attempted complementation with a catalytically dead OpgH variant results in striking asymmetric bulging and cell lysis. These shape defects are accompanied by reduced cell wall synthesis and mislocalization of morphogenetic complexes. Interestingly, overactivation of the CenKR two-component system that has been implicated in cell envelope stress homeostasis in α-proteobacteria phenocopies the morphogenetic defects associated with OpgH depletion. Each of these perturbations leads to an increase in the levels of the elongasome protein, MreB, and decreases in the levels of divisome proteins FtsZ and MipZ as well as OpgH, itself. Constitutive production of OpgH during CenKR overactivation prevents cell bulging, but cells still exhibit morphogenetic defects. We propose that OPG depletion activates CenKR, leading to changes in the expression of cell envelope-related genes, but that OPGs also exert CenKR-independent effects on morphogenesis. Our data establish a surprising function for an OpgH homolog in morphogenesis and reveal an essential role of OpgH in maintaining cell morphology in Caulobacter.IMPORTANCEBacteria must synthesize and fortify the cell envelope in a tightly regulated manner to orchestrate growth and adaptation. Osmoregulated periplasmic glucans (OPGs) are important, but poorly understood, constituents of Gram-negative cell envelopes that contribute to envelope integrity and protect against osmotic stress. Here, we determined that the OPG synthase OpgH plays a surprising, essential role in morphogenesis in Caulobacter crescentus. Loss of OpgH causes asymmetric cell bulging and lysis via misregulation of the localization and activity of morphogenetic complexes. Overactivation of the CenKR two-component system involved in envelope homeostasis phenocopies OpgH depletion, suggesting that depletion of OpgH activates CenKR. Because cell envelope integrity is critical for bacterial survival, understanding how OpgH activity contributes to morphogenesis and maintenance of envelope integrity could aid in the development of antibiotic therapies.
Collapse
Affiliation(s)
- Allison K Daitch
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erika L Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
2
|
Barrows JM, Talavera-Figueroa BK, Payne IP, Smith EL, Goley ED. GTPase activity regulates FtsZ ring positioning in Caulobacter crescentus. Mol Biol Cell 2024; 35:ar97. [PMID: 38758654 PMCID: PMC11244171 DOI: 10.1091/mbc.e23-09-0365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024] Open
Abstract
Bacterial cell division is crucial for replication and requires careful coordination via proteins collectively called the divisome. The tubulin-like GTPase FtsZ is the master regulator of this process and serves to recruit downstream divisome proteins and regulate their activities. Upon assembling at mid-cell, FtsZ exhibits treadmilling motion driven by GTP binding and hydrolysis. Treadmilling is proposed to play roles in Z-ring condensation and in distribution and regulation of peptidoglycan (PG) cell wall enzymes. FtsZ polymer superstructure and dynamics are central to its function, yet their regulation is incompletely understood. We addressed these gaps in knowledge by evaluating the contribution of GTPase activity to FtsZ's function in vitro and in Caulobacter crescentus cells. We observed that a lethal mutation that abrogates FtsZ GTP hydrolysis impacts FtsZ dynamics and Z-ring positioning, but not constriction. Aberrant Z-ring positioning was due to insensitivity to the FtsZ regulator MipZ when GTPase activity is reduced. Z-ring mislocalization resulted in DNA damage, likely due to constriction over the nucleoid. Collectively, our results indicate that GTP hydrolysis serves primarily to position the Z-ring at mid-cell in Caulobacter. Proper Z-ring localization is required for effective coordination with chromosome segregation to prevent DNA damage and ensure successful cell division.
Collapse
Affiliation(s)
- Jordan M. Barrows
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | - Isaac P. Payne
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Erika L. Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
3
|
Chincha AAIA, Marone MP, Pia AKR, Freire L, Amorim-Neto DP, Carazzolle MF, Sant'Ana AS. Phenotypic, genotypic, and resistome of mesophilic spore-forming bacteria isolated from pasteurized liquid whole egg. Food Res Int 2024; 184:114215. [PMID: 38609213 DOI: 10.1016/j.foodres.2024.114215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 02/22/2024] [Accepted: 03/06/2024] [Indexed: 04/14/2024]
Abstract
The production of whole-liquid eggs is of significant economic and nutritional importance. This study aimed to assess the phenotypic and genotypic diversity of mesophilic aerobic spore-forming bacteria (n = 200) isolated from pasteurized whole liquid egg and liquid egg yolk. The majority of the isolates were identified as belonging to the genera Bacillus (86 %), followed by Brevibacillus (10 %) and Lysinibacillus (4 %). For the phenotypic characterization, isolates were subjected to various heat shocks, with the most significant reductions observed at 80 °C/30 min and 90 °C/10 min for isolates recovered from raw materials. On the other hand, the decrease was similar for isolates recovered from raw material and final product at 100 °C/5 min and 110 °C/5 min. Genotypic genes related to heat resistance (cdnL, spoVAD, dacB, clpC, dnaK, and yitF/Tn1546) were examined for genotypic characterization. The dnaK gene showed a positive correlation with the highest thermal condition tested (110 °C/5 min), while 100 °C/5 min had the highest number of positively correlated genes (clpC, cdnL, yitF/Tn1546, and spoVAD). Whole Genome Sequencing of four strains revealed genes related to sporulation, structure formation, initiation and regulation, stress response, and DNA repair in vegetative cells. The findings of this study indicate that these mesophilic aerobic spore-forming bacteria may adopt several strategies to persist through the process and reach the final product. As the inactivation of these microorganisms during egg processing is challenging, preventing raw materials contamination and their establishment in processing premises must be reinforced.
Collapse
Affiliation(s)
- Alexandra A I A Chincha
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marina P Marone
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil
| | - Arthur K R Pia
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Luisa Freire
- Faculty of Pharmaceutical Sciences, Food and Nutrition, Federal University of Mato Grosso do Sul. Campo Grande, Mato Grosso do Sul, Brazil
| | - Dionisio P Amorim-Neto
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil
| | - Marcelo F Carazzolle
- Laboratory of Genomics and BioEnergy, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas, Campinas, SP, Brazil; Center for Computing and Engineering Sciences, University of Campinas, Campinas, SP, Brazil
| | - Anderson S Sant'Ana
- Department of Food Science and Nutrition, Faculty of Food Engineering, University of Campinas, Campinas, SP, Brazil.
| |
Collapse
|
4
|
Smith EL, Goley ED. House of CarDs: Functional insights into the transcriptional regulator CdnL. Mol Microbiol 2024:10.1111/mmi.15268. [PMID: 38664995 PMCID: PMC11502505 DOI: 10.1111/mmi.15268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/12/2024] [Accepted: 04/11/2024] [Indexed: 07/07/2024]
Abstract
Regulation of bacterial transcription is a complex and multi-faceted phenomenon that is critical for growth and adaptation. Proteins in the CarD_CdnL_TRCF family are widespread, often essential, regulators of transcription of genes required for growth and metabolic homeostasis. Research in the last decade has described the mechanistic and structural bases of CarD-CdnL-mediated regulation of transcription initiation. More recently, studies in a range of bacteria have begun to elucidate the physiological roles of CarD-CdnL proteins as well as mechanisms by which these proteins, themselves, are regulated. A theme has emerged wherein regulation of CarD-CdnL proteins is central to bacterial adaptation to stress and/or changing environmental conditions.
Collapse
Affiliation(s)
- Erika L. Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| |
Collapse
|
5
|
Smith EL, Panis G, Woldemeskel SA, Viollier PH, Chien P, Goley ED. Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in Caulobacter. PNAS NEXUS 2024; 3:pgae154. [PMID: 38650860 PMCID: PMC11034885 DOI: 10.1093/pnasnexus/pgae154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
In response to nutrient deprivation, bacteria activate a conserved stress response pathway called the stringent response (SR). During SR activation in Caulobacter crescentus, SpoT synthesizes the secondary messengers guanosine 5'-diphosphate 3'-diphosphate and guanosine 5'-triphosphate 3'-diphosphate (collectively known as (p)ppGpp), which affect transcription by binding RNA polymerase (RNAP) to down-regulate anabolic genes. (p)ppGpp also impacts the expression of anabolic genes by controlling the levels and activities of their transcriptional regulators. In Caulobacter, a major regulator of anabolic genes is the transcription factor CdnL. If and how CdnL is controlled during the SR and why that might be functionally important are unclear. In this study, we show that CdnL is down-regulated posttranslationally during starvation in a manner dependent on SpoT and the ClpXP protease. Artificial stabilization of CdnL during starvation causes misregulation of ribosomal and metabolic genes. Functionally, we demonstrate that the combined action of SR transcriptional regulators and CdnL clearance allows for rapid adaptation to nutrient repletion. Moreover, cells that are unable to clear CdnL during starvation are outcompeted by wild-type cells when subjected to nutrient fluctuations. We hypothesize that clearance of CdnL during the SR, in conjunction with direct binding of (p)ppGpp and DksA to RNAP, is critical for altering the transcriptome in order to permit cell survival during nutrient stress.
Collapse
Affiliation(s)
- Erika L Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Gaël Panis
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Selamawit Abi Woldemeskel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva 1211, Switzerland
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, MA 01003, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
6
|
Smith EL, Panis G, Woldemeskel SA, Viollier PH, Chien P, Goley ED. Regulation of the transcription factor CdnL promotes adaptation to nutrient stress in Caulobacter. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572625. [PMID: 38187569 PMCID: PMC10769358 DOI: 10.1101/2023.12.20.572625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
In response to nutrient deprivation, bacteria activate a conserved stress response pathway called the stringent response (SR). During SR activation in Caulobacter crescentus, SpoT synthesizes the secondary messengers (p)ppGpp, which affect transcription by binding RNA polymerase to downregulate anabolic genes. (p)ppGpp also impacts expression of anabolic genes by controlling the levels and activities of their transcriptional regulators. In Caulobacter, a major regulator of anabolic genes is the transcription factor CdnL. If and how CdnL is controlled during the SR and why that might be functionally important is unclear. Here, we show that CdnL is downregulated post-translationally during starvation in a manner dependent on SpoT and the ClpXP protease. Inappropriate stabilization of CdnL during starvation causes misregulation of ribosomal and metabolic genes. Functionally, we demonstrate that the combined action of SR transcriptional regulators and CdnL clearance allows for rapid adaptation to nutrient repletion. Moreover, cells that are unable to clear CdnL during starvation are outcompeted by wild-type cells when subjected to nutrient fluctuations. We hypothesize that clearance of CdnL during the SR, in conjunction with direct binding of (p)ppGpp and DksA to RNAP, is critical for altering the transcriptome in order to permit cell survival during nutrient stress.
Collapse
Affiliation(s)
- Erika L. Smith
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| | - Gaäl Panis
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland, 1211
| | - Selamawit Abi Woldemeskel
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
- BlueRock Therapeutics, Cambridge, Massachusetts, 02142 (current)
| | - Patrick H. Viollier
- Department of Microbiology and Molecular Medicine, University of Geneva, Geneva, Switzerland, 1211
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, Amherst, Massachusetts, 01003
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, 21205
| |
Collapse
|
7
|
Daitch AK, Goley ED. OpgH is an essential regulator of Caulobacter morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.28.555136. [PMID: 37693447 PMCID: PMC10491104 DOI: 10.1101/2023.08.28.555136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Bacterial growth and division rely on intricate regulation of morphogenetic complexes to remodel the cell envelope without compromising envelope integrity. Significant progress has been made in recent years towards understanding the regulation of cell wall metabolic enzymes. However, other cell envelope components play a role in morphogenesis as well. Components required to maintain osmotic homeostasis are among these understudied envelope-associated enzymes that may contribute to cell morphology. A primary factor required to protect envelope integrity in low osmolarity environments is OpgH, the synthase of osmoregulated periplasmic glucans (OPGs). Here, we demonstrate that OpgH is essential in the α-proteobacterium Caulobacter crescentus. Unexpectedly, depletion of OpgH results in striking asymmetric bulging and cell lysis, accompanied by misregulation of cell wall insertion and mislocalization of morphogenetic complexes. The enzymatic activity of OpgH is required for normal cell morphology as production of an OpgH mutant that disrupts a conserved glycosyltransferase motif phenocopies the depletion. Our data establish a surprising function for an OpgH homolog in morphogenesis and reveal an essential role of OpgH in maintaining proper cell morphology during normal growth and division in Caulobacter.
Collapse
Affiliation(s)
- Allison K. Daitch
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
- Current position: Johns Hopkins Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD, United States of America
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, United States of America
| |
Collapse
|
8
|
Zhu DX, Stallings CL. Transcription regulation by CarD in mycobacteria is guided by basal promoter kinetics. J Biol Chem 2023; 299:104724. [PMID: 37075846 PMCID: PMC10232725 DOI: 10.1016/j.jbc.2023.104724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 03/30/2023] [Accepted: 04/11/2023] [Indexed: 04/21/2023] Open
Abstract
Bacterial pathogens like Mycobacterium tuberculosis (Mtb) employ transcription factors to adapt their physiology to the diverse environments within their host. CarD is a conserved bacterial transcription factor that is essential for viability in Mtb. Unlike classical transcription factors that recognize promoters by binding to specific DNA sequence motifs, CarD binds directly to the RNA polymerase to stabilize the open complex intermediate (RPo) during transcription initiation. We previously showed using RNA-sequencing that CarD is capable of both activating and repressing transcription in vivo. However, it is unknown how CarD achieves promoter-specific regulatory outcomes in Mtb despite binding indiscriminate of DNA sequence. We propose a model where CarD's regulatory outcome depends on the promoter's basal RPo stability and test this model using in vitro transcription from a panel of promoters with varying levels of RPo stability. We show that CarD directly activates full-length transcript production from the Mtb ribosomal RNA promoter rrnAP3 (AP3) and that the degree of transcription activation by CarD is negatively correlated with RPo stability. Using targeted mutations in the extended -10 and discriminator region of AP3, we show that CarD directly represses transcription from promoters that form relatively stable RPo. DNA supercoiling also influenced RPo stability and affected the direction of CarD regulation, indicating that the outcome of CarD activity can be regulated by factors beyond promoter sequence. Our results provide experimental evidence for how RNA polymerase-binding transcription factors like CarD can exert specific regulatory outcomes based on the kinetic properties of a promoter.
Collapse
Affiliation(s)
- Dennis X Zhu
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA
| | - Christina L Stallings
- Department of Molecular Microbiology, Center for Women's Infectious Disease Research, Washington University School of Medicine, St Louis, Missouri, USA.
| |
Collapse
|
9
|
Barrows JM, Goley ED. Synchronized Swarmers and Sticky Stalks: Caulobacter crescentus as a Model for Bacterial Cell Biology. J Bacteriol 2023; 205:e0038422. [PMID: 36715542 PMCID: PMC9945503 DOI: 10.1128/jb.00384-22] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
First isolated and classified in the 1960s, Caulobacter crescentus has been instrumental in the study of bacterial cell biology and differentiation. C. crescentus is a Gram-negative alphaproteobacterium that exhibits a dimorphic life cycle composed of two distinct cell types: a motile swarmer cell and a nonmotile, division-competent stalked cell. Progression through the cell cycle is accentuated by tightly controlled biogenesis of appendages, morphological transitions, and distinct localization of developmental regulators. These features as well as the ability to synchronize populations of cells and follow their progression make C. crescentus an ideal model for answering questions relevant to how development and differentiation are achieved at the single-cell level. This review will explore the discovery and development of C. crescentus as a model organism before diving into several key features and discoveries that have made it such a powerful organism to study. Finally, we will summarize a few of the ongoing areas of research that are leveraging knowledge gained over the last century with C. crescentus to highlight its continuing role at the forefront of cell and developmental biology.
Collapse
Affiliation(s)
- Jordan M. Barrows
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin D. Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Daitch AK, Orsburn BC, Chen Z, Alvarez L, Eberhard CD, Sundararajan K, Zeinert R, Kreitler DF, Jakoncic J, Chien P, Cava F, Gabelli SB, Goley ED. EstG is a novel esterase required for cell envelope integrity in Caulobacter. Curr Biol 2023; 33:228-240.e7. [PMID: 36516849 PMCID: PMC9877181 DOI: 10.1016/j.cub.2022.11.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 10/17/2022] [Accepted: 11/17/2022] [Indexed: 12/15/2022]
Abstract
Proper regulation of the bacterial cell envelope is critical for cell survival. Identification and characterization of enzymes that maintain cell envelope homeostasis is crucial, as they can be targets for effective antibiotics. In this study, we have identified a novel enzyme, called EstG, whose activity protects cells from a variety of lethal assaults in the ⍺-proteobacterium Caulobacter crescentus. Despite homology to transpeptidase family cell wall enzymes and an ability to protect against cell-wall-targeting antibiotics, EstG does not demonstrate biochemical activity toward cell wall substrates. Instead, EstG is genetically connected to the periplasmic enzymes OpgH and BglX, responsible for synthesis and hydrolysis of osmoregulated periplasmic glucans (OPGs), respectively. The crystal structure of EstG revealed similarities to esterases and transesterases, and we demonstrated esterase activity of EstG in vitro. Using biochemical fractionation, we identified a cyclic hexamer of glucose as a likely substrate of EstG. This molecule is the first OPG described in Caulobacter and establishes a novel class of OPGs, the regulation and modification of which are important for stress survival and adaptation to fluctuating environments. Our data indicate that EstG, BglX, and OpgH comprise a previously unknown OPG pathway in Caulobacter. Ultimately, we propose that EstG is a novel enzyme that instead of acting on the cell wall, acts on cyclic OPGs to provide resistance to a variety of cellular stresses.
Collapse
Affiliation(s)
- Allison K Daitch
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Benjamin C Orsburn
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Zan Chen
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Laura Alvarez
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Colten D Eberhard
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Kousik Sundararajan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Rilee Zeinert
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Dale F Kreitler
- National Synchrotron Light Source II, Bldg 745, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA
| | - Jean Jakoncic
- National Synchrotron Light Source II, Bldg 745, Brookhaven National Laboratory, P.O. Box 5000, Upton, NY 11973-5000, USA
| | - Peter Chien
- Department of Biochemistry and Molecular Biology, University of Massachusetts-Amherst, 240 Thatcher Road, Amherst, MA 01003, USA
| | - Felipe Cava
- Department of Molecular Biology and Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, 901 87 Umeå, Sweden
| | - Sandra B Gabelli
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; Department of Oncology, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA; Department of Medicine, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, 725 N Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
11
|
Martínez-Absalón S, Guadarrama C, Dávalos A, Romero D. RdsA Is a Global Regulator That Controls Cell Shape and Division in Rhizobium etli. Front Microbiol 2022; 13:858440. [PMID: 35464952 PMCID: PMC9022086 DOI: 10.3389/fmicb.2022.858440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/10/2022] [Indexed: 11/13/2022] Open
Abstract
Unlike other bacteria, cell growth in rhizobiales is unipolar and asymmetric. The regulation of cell division, and its coordination with metabolic processes is an active field of research. In Rhizobium etli, gene RHE_PE00024, located in a secondary chromosome, is essential for growth. This gene encodes a predicted hybrid histidine kinase sensor protein, participating in a, as yet undescribed, two-component signaling system. In this work, we show that a conditional knockdown mutant (cKD24) in RHE_PE00024 (hereby referred as rdsA, after rhizobium division and shape) generates a striking phenotype, where nearly 64% of the cells present a round shape, with stochastic and uncoordinated cell division. For rod-shaped cells, a large fraction (12 to 29%, depending on their origin) present growth from the old pole, a sector that is normally inactive for growth in a wild-type cell. A fraction of the cells (1 to 3%) showed also multiple ectopic polar growths. Homodimerization of RdsA appears to be required for normal function. RNAseq analysis of mutant cKD24 reveals global changes, with downregulated genes in at least five biological processes: cell division, wall biogenesis, respiration, translation, and motility. These modifications may affect proper structuring of the divisome, as well as peptidoglycan synthesis. Together, these results indicate that the hybrid histidine kinase RdsA is an essential global regulator influencing cell division and cell shape in R. etli.
Collapse
Affiliation(s)
- Sofía Martínez-Absalón
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Carmen Guadarrama
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Araceli Dávalos
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - David Romero
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| |
Collapse
|
12
|
Myers KS, Noguera DR, Donohue TJ. Promoter Architecture Differences among Alphaproteobacteria and Other Bacterial Taxa. mSystems 2021; 6:e0052621. [PMID: 34254822 PMCID: PMC8407463 DOI: 10.1128/msystems.00526-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/17/2021] [Indexed: 11/20/2022] Open
Abstract
Much of our knowledge of bacterial transcription initiation has been derived from studying the promoters of Escherichia coli and Bacillus subtilis. Given the expansive diversity across the bacterial phylogeny, it is unclear how much of this knowledge can be applied to other organisms. Here, we report on bioinformatic analyses of promoter sequences of the primary σ factor (σ70) by leveraging publicly available transcription start site (TSS) sequencing data sets for nine bacterial species spanning five phyla. This analysis identifies previously unreported differences in the -35 and -10 elements of σ70-dependent promoters in several groups of bacteria. We found that Actinobacteria and Betaproteobacteria σ70-dependent promoters lack the TTG triad in their -35 element, which is predicted to be conserved across the bacterial phyla. In addition, the majority of the Alphaproteobacteria σ70-dependent promoters analyzed lacked the thymine at position -7 that is highly conserved in other phyla. Bioinformatic examination of the Alphaproteobacteria σ70-dependent promoters identifies a significant overrepresentation of essential genes and ones encoding proteins with common cellular functions downstream of promoters containing an A, C, or G at position -7. We propose that transcription of many σ70-dependent promoters in Alphaproteobacteria depends on the transcription factor CarD, which is an essential protein in several members of this phylum. Our analysis expands the knowledge of promoter architecture across the bacterial phylogeny and provides new information that can be used to engineer bacteria for use in medical, environmental, agricultural, and biotechnological processes. IMPORTANCE Transcription of DNA to RNA by RNA polymerase is essential for cells to grow, develop, and respond to stress. Understanding the process and control of transcription is important for health, disease, the environment, and biotechnology. Decades of research on a few bacteria have identified promoter DNA sequences that are recognized by the σ subunit of RNA polymerase. We used bioinformatic analyses to reveal previously unreported differences in promoter DNA sequences across the bacterial phylogeny. We found that many Actinobacteria and Betaproteobacteria promoters lack a sequence in their -35 DNA recognition element that was previously assumed to be conserved and that Alphaproteobacteria lack a thymine residue at position -7, also previously assumed to be conserved. Our work reports important new information about bacterial transcription, illustrates the benefits of studying bacteria across the phylogenetic tree, and proposes new lines of future investigation.
Collapse
Affiliation(s)
- Kevin S. Myers
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Daniel R. Noguera
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Civil & Environmental Engineering, University of Wisconsin—Madison, Madison, Wisconsin, USA
| | - Timothy J. Donohue
- Wisconsin Energy Institute and Great Lakes Bioenergy Research Center, University of Wisconsin—Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin—Madison, Madison, Wisconsin, USA
| |
Collapse
|
13
|
Abstract
Bioinformatic analysis showed previously that a majority of promoters in the photoheterotrophic alphaproteobacterium Rhodobacter sphaeroides lack the thymine at the last position of the -10 element (-7T), a base that is very highly conserved in promoters in bacteria other than alphaproteobacteria. The absence of -7T was correlated with low promoter activity using purified R. sphaeroides RNA polymerase (RNAP), but the transcription factor CarD compensated by activating almost all promoters lacking -7T tested in vitro, including rRNA promoters. Here, we show that a previously uncharacterized R. sphaeroides promoter, the promoter for carD itself, has high basal activity relative to other tested R. sphaeroides promoters despite lacking -7T, and its activity is inhibited rather than activated by CarD. This high basal activity is dependent on a consensus-extended -10 element (TGn) and specific features in the spacer immediately upstream of the extended -10 element. CarD negatively autoregulates its own promoter by producing abortive transcripts, limiting promoter escape, and reducing full-length mRNA synthesis. This mechanism of negative regulation differs from that employed by classical repressors, in which the transcription factor competes with RNA polymerase for binding to the promoter, and with the mechanism of negative regulation used by transcription factors like DksA/ppGpp and TraR that allosterically inhibit the rate of open complex formation. IMPORTANCE R. sphaeroides CarD activates many promoters by binding directly to RNAP and DNA just upstream of the -10 element. In contrast, we show here that CarD inhibits its own promoter using the same interactions with RNAP and DNA used for activation. Inhibition results from increasing abortive transcript formation, thereby decreasing promoter escape and full-length RNA synthesis. We propose that the combined interactions of RNAP with CarD, with the extended -10 element and with features in the adjacent -10/-35 spacer DNA, stabilize the promoter complex, reducing promoter clearance. These findings support previous predictions that the effects of CarD on transcription can be either positive or negative, depending on the kinetic properties of the specific promoter.
Collapse
|
14
|
Light-Triggered Carotenogenesis in Myxococcus xanthus: New Paradigms in Photosensory Signaling, Transduction and Gene Regulation. Microorganisms 2021; 9:microorganisms9051067. [PMID: 34063365 PMCID: PMC8156234 DOI: 10.3390/microorganisms9051067] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 11/17/2022] Open
Abstract
Myxobacteria are Gram-negative δ-proteobacteria found predominantly in terrestrial habitats and often brightly colored due to the biosynthesis of carotenoids. Carotenoids are lipophilic isoprenoid pigments that protect cells from damage and death by quenching highly reactive and toxic oxidative species, like singlet oxygen, generated upon growth under light. The model myxobacterium Myxococcus xanthus turns from yellow in the dark to red upon exposure to light because of the photoinduction of carotenoid biosynthesis. How light is sensed and transduced to bring about regulated carotenogenesis in order to combat photooxidative stress has been extensively investigated in M. xanthus using genetic, biochemical and high-resolution structural methods. These studies have unearthed new paradigms in bacterial light sensing, signal transduction and gene regulation, and have led to the discovery of prototypical members of widely distributed protein families with novel functions. Major advances have been made over the last decade in elucidating the molecular mechanisms underlying the light-dependent signaling and regulation of the transcriptional response leading to carotenogenesis in M. xanthus. This review aims to provide an up-to-date overview of these findings and their significance.
Collapse
|
15
|
Wang J, Alvarez L, Bulgheresi S, Cava F, den Blaauwen T. PBP4 Is Likely Involved in Cell Division of the Longitudinally Dividing Bacterium Candidatus Thiosymbion Oneisti. Antibiotics (Basel) 2021; 10:antibiotics10030274. [PMID: 33803189 PMCID: PMC7999549 DOI: 10.3390/antibiotics10030274] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/24/2021] [Accepted: 03/06/2021] [Indexed: 11/16/2022] Open
Abstract
Peptidoglycan (PG) is essential for bacterial survival and maintaining cell shape. The rod-shaped model bacterium Escherichia coli has a set of seven endopeptidases that remodel the PG during cell growth. The gamma proteobacterium Candidatus Thiosymbion oneisti is also rod-shaped and attaches to the cuticle of its nematode host by one pole. It widens and divides by longitudinal fission using the canonical proteins MreB and FtsZ. The PG layer of Ca. T. oneisti has an unusually high peptide cross-linkage of 67% but relatively short glycan chains with an average length of 12 disaccharides. Curiously, it has only two predicted endopeptidases, MepA and PBP4. Cellular localization of symbiont PBP4 by fluorescently labeled antibodies reveals its polar localization and its accumulation at the constriction sites, suggesting that PBP4 is involved in PG biosynthesis during septum formation. Isolated symbiont PBP4 protein shows a different selectivity for β-lactams compared to its homologue from E. coli. Bocillin-FL binding by PBP4 is activated by some β-lactams, suggesting the presence of an allosteric binding site. Overall, our data point to a role of PBP4 in PG cleavage during the longitudinal cell division and to a PG that might have been adapted to the symbiotic lifestyle.
Collapse
Affiliation(s)
- Jinglan Wang
- Bacterial Cell Biology & Physiology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
| | - Laura Alvarez
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; (L.A.); (F.C.)
| | - Silvia Bulgheresi
- Environmental Cell Biology, University of Vienna, Althanstrasse 14 (UZA I), 1090 Vienna, Austria;
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, SE-901 87 Umeå, Sweden; (L.A.); (F.C.)
| | - Tanneke den Blaauwen
- Bacterial Cell Biology & Physiology, Faculty of Science, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands;
- Correspondence:
| |
Collapse
|
16
|
The DUF1013 protein TrcR tracks with RNA polymerase to control the bacterial cell cycle and protect against antibiotics. Proc Natl Acad Sci U S A 2021; 118:2010357118. [PMID: 33602809 DOI: 10.1073/pnas.2010357118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
How DNA-dependent RNA polymerase (RNAP) acts on bacterial cell cycle progression during transcription elongation is poorly investigated. A forward genetic selection for Caulobacter crescentus cell cycle mutants unearthed the uncharacterized DUF1013 protein (TrcR, transcriptional cell cycle regulator). TrcR promotes the accumulation of the essential cell cycle transcriptional activator CtrA in late S-phase but also affects transcription at a global level to protect cells from the quinolone antibiotic nalidixic acid that induces a multidrug efflux pump and from the RNAP inhibitor rifampicin that blocks transcription elongation. We show that TrcR associates with promoters and coding sequences in vivo in a rifampicin-dependent manner and that it interacts physically and genetically with RNAP. We show that TrcR function and its RNAP-dependent chromatin recruitment are conserved in symbiotic Sinorhizobium sp. and pathogenic Brucella spp Thus, TrcR represents a hitherto unknown antibiotic target and the founding member of the DUF1013 family, an uncharacterized class of transcriptional regulators that track with RNAP during the elongation phase to promote transcription during the cell cycle.
Collapse
|
17
|
Henry KK, Ross W, Myers KS, Lemmer KC, Vera JM, Landick R, Donohue TJ, Gourse RL. A majority of Rhodobacter sphaeroides promoters lack a crucial RNA polymerase recognition feature, enabling coordinated transcription activation. Proc Natl Acad Sci U S A 2020; 117:29658-29668. [PMID: 33168725 PMCID: PMC7703639 DOI: 10.1073/pnas.2010087117] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Using an in vitro transcription system with purified RNA polymerase (RNAP) to investigate rRNA synthesis in the photoheterotrophic α-proteobacterium Rhodobacter sphaeroides, we identified a surprising feature of promoters recognized by the major holoenzyme. Transcription from R. sphaeroides rRNA promoters was unexpectedly weak, correlating with absence of -7T, the very highly conserved thymine found at the last position in -10 elements of promoters in most bacterial species. Thymine substitutions for adenine at position -7 in the three rRNA promoters strongly increased intrinsic promoter activity, indicating that R. sphaeroides RNAP can utilize -7T when present. rRNA promoters were activated by purified R. sphaeroides CarD, a transcription factor found in many bacterial species but not in β- and γ-proteobacteria. Overall, CarD increased the activity of 15 of 16 native R. sphaeroides promoters tested in vitro that lacked -7T, whereas it had no effect on three of the four native promoters that contained -7T. Genome-wide bioinformatic analysis of promoters from R. sphaeroides and two other α-proteobacterial species indicated that 30 to 43% contained -7T, whereas 90 to 99% of promoters from non-α-proteobacteria contained -7T. Thus, promoters lacking -7T appear to be widespread in α-proteobacteria and may have evolved away from consensus to enable their coordinated regulation by transcription factors like CarD. We observed a strong reduction in R. sphaeroides CarD levels when cells enter stationary phase, suggesting that reduced activation by CarD may contribute to inhibition of rRNA transcription when cells enter stationary phase, the stage of growth when bacterial ribosome synthesis declines.
Collapse
Affiliation(s)
- Kemardo K Henry
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
| | - Wilma Ross
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706;
| | - Kevin S Myers
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Kimberly C Lemmer
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Jessica M Vera
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Robert Landick
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
- Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706
| | - Timothy J Donohue
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706
- Great Lakes Bioenergy Research Center, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI 53726
| | - Richard L Gourse
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706;
| |
Collapse
|
18
|
Barrows JM, Sundararajan K, Bhargava A, Goley ED. FtsA Regulates Z-Ring Morphology and Cell Wall Metabolism in an FtsZ C-Terminal Linker-Dependent Manner in Caulobacter crescentus. J Bacteriol 2020; 202:e00693-19. [PMID: 31932314 PMCID: PMC7167480 DOI: 10.1128/jb.00693-19] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 01/03/2020] [Indexed: 01/28/2023] Open
Abstract
Bacterial cell division requires the assembly of a multiprotein division machinery, or divisome, that remodels the cell envelope to cause constriction. The cytoskeletal protein FtsZ forms a ringlike scaffold for the divisome at the incipient division site. FtsZ has three major regions: a conserved GTPase domain that polymerizes into protofilaments on binding GTP, a C-terminal conserved peptide (CTC) required for binding membrane-anchoring proteins, and a C-terminal linker (CTL) region of varied length and low sequence conservation. Recently, we demonstrated that the CTL regulates FtsZ polymerization properties in vitro and Z-ring structure and cell wall metabolism in vivo In Caulobacter crescentus, an FtsZ variant lacking the CTL (designated ΔCTL) can recruit all known divisome members and drive local cell wall synthesis but has dominant lethal effects on cell wall metabolism. To understand the underlying mechanism of the CTL-dependent regulation of cell wall metabolism, we expressed chimeras of FtsZ domains from C. crescentus and Escherichia coli and observed that the E. coli GTPase domain fused to the C. crescentus CTC phenocopies C. crescentus ΔCTL. By investigating the contributions of FtsZ-binding partners, we identified variants of FtsA, a known membrane anchor for FtsZ, that delay or exacerbate the ΔCTL phenotype. Additionally, we observed that the ΔCTL protein forms extended helical structures in vivo upon FtsA overproduction. We propose that misregulation downstream of defective ΔCTL assembly is propagated through the interaction between the CTC and FtsA. Overall, our study provides mechanistic insights into the CTL-dependent regulation of cell wall enzymes downstream of FtsZ polymerization.IMPORTANCE Bacterial cell division is essential and requires the recruitment and regulation of a complex network of proteins needed to initiate and guide constriction and cytokinesis. FtsZ serves as a master regulator for this process, and its function is highly dependent on both its assembly into the canonical Z ring and interactions with protein binding partners, all of which results in the activation of enzymes that remodel the cell wall to drive constriction. Using mutants of FtsZ, we have elaborated on the role of its C-terminal linker domain in regulating Z-ring stability and dynamics, as well as the requirement for its conserved C-terminal domain and interaction with the membrane-anchoring protein FtsA for regulating the process of cell wall remodeling for constriction.
Collapse
Affiliation(s)
- Jordan M Barrows
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kousik Sundararajan
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anant Bhargava
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Erin D Goley
- Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|