1
|
Bustamante P, Ramos-Corominas MN, Martinez-Medina M. Contribution of Toxin-Antitoxin Systems to Adherent-Invasive E. coli Pathogenesis. Microorganisms 2024; 12:1158. [PMID: 38930540 PMCID: PMC11205521 DOI: 10.3390/microorganisms12061158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/24/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Pathobionts have been implicated in various chronic diseases, including Crohn's disease (CD), a multifactorial chronic inflammatory condition that primarily affects the gastrointestinal tract, causing inflammation and damage to the digestive system. While the exact cause of CD remains unclear, adherent-invasive Escherichia coli (AIEC) strains have emerged as key contributors to its pathogenesis. AIEC are characterized by their ability to adhere to and invade intestinal epithelial cells and survive and replicate inside macrophages. However, the mechanisms underlying the virulence and persistence of AIEC within their host remain the subject of intensive research. Toxin-antitoxin systems (TAs) play a potential role in AIEC pathogenesis and may be therapeutic targets. These systems generally consist of two components: a toxin harmful to the cell and an antitoxin that neutralizes the toxin's effects. They contribute to bacterial survival in adverse conditions and regulate bacterial growth and behavior, affecting various cellular processes in bacterial pathogens. This review focuses on the current information available to determine the roles of TAs in the pathogenicity of AIEC. Their contribution to the AIEC stress response, biofilm formation, phage inhibition, the maintenance of mobile genetic elements, and host lifestyles is discussed.
Collapse
Affiliation(s)
- Paula Bustamante
- Molecular and Cellular Microbiology Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago 8910060, Chile
| | - María Núria Ramos-Corominas
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, 17003 Girona, Spain; (M.N.R.-C.); (M.M.-M.)
| | - Margarita Martinez-Medina
- Microbiology of Intestinal Diseases, Biology Department, Universitat de Girona, 17003 Girona, Spain; (M.N.R.-C.); (M.M.-M.)
| |
Collapse
|
2
|
Merkushova AV, Shikov AE, Nizhnikov AA, Antonets KS. For Someone, You Are the Whole World: Host-Specificity of Salmonella enterica. Int J Mol Sci 2023; 24:13670. [PMID: 37761974 PMCID: PMC10530738 DOI: 10.3390/ijms241813670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/27/2023] [Accepted: 09/01/2023] [Indexed: 09/29/2023] Open
Abstract
Salmonella enterica is a bacterial pathogen known to cause gastrointestinal infections in diverse hosts, including humans and animals. Despite extensive knowledge of virulence mechanisms, understanding the factors driving host specificity remains limited. In this study, we performed a comprehensive pangenome-wide analysis of S. enterica to identify potential loci determining preference towards certain hosts. We used a dataset of high-quality genome assemblies grouped into 300 reference clusters with a special focus on four host groups: humans, pigs, cattle, and birds. The reconstructed pangenome was shown to be open and enriched with the accessory component implying high genetic diversity. Notably, phylogenetic inferences did not correspond to the distribution of affected hosts, as large compact phylogenetic groups were absent. By performing a pangenome-wide association study, we identified potential host specificity determinants. These included multiple genes encoding proteins involved in distinct infection stages, e.g., secretion systems, surface structures, transporters, transcription regulators, etc. We also identified antibiotic resistance loci in host-adapted strains. Functional annotation corroborated the results obtained with significant enrichments related to stress response, antibiotic resistance, ion transport, and surface or extracellular localization. We suggested categorizing the revealed specificity factors into three main groups: pathogenesis, resistance to antibiotics, and propagation of mobile genetic elements (MGEs).
Collapse
Affiliation(s)
- Anastasiya V. Merkushova
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.V.M.); (A.E.S.); (A.A.N.)
| | - Anton E. Shikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Anton A. Nizhnikov
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| | - Kirill S. Antonets
- Laboratory for Proteomics of Supra-Organismal Systems, All-Russia Research Institute for Agricultural Microbiology (ARRIAM), 196608 St. Petersburg, Russia; (A.V.M.); (A.E.S.); (A.A.N.)
- Faculty of Biology, St. Petersburg State University (SPbSU), 199034 St. Petersburg, Russia
| |
Collapse
|
3
|
Xu J, Wang Y, Liu F, Duan G, Yang H. Genome mining reveals the prevalence and extensive diversity of toxin-antitoxin systems in Staphylococcus aureus. Front Microbiol 2023; 14:1165981. [PMID: 37293231 PMCID: PMC10244574 DOI: 10.3389/fmicb.2023.1165981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/28/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Staphylococcus aureus (S. aureus) is a highly pathogenic and adaptable Gram-positive bacterium that exhibits persistence in various environments. The toxin-antitoxin (TA) system plays a crucial role in the defense mechanism of bacterial pathogens, allowing them to survive in stressful conditions. While TA systems in clinical pathogens have been extensively studied, there is limited knowledge regarding the diversity and evolutionary complexities of TA systems in S. aureus. Methods We conducted a comprehensive in silico survey using 621 publicly available S. aureus isolates. We employed bioinformatic search and prediction tools, including SLING, TADB2.0, and TASmania, to identify TA systems within the genomes of S. aureus. Results Our analysis revealed a median of seven TA systems per genome, with three type II TA groups (HD, HD_3, and YoeB) being present in over 80% of the strains. Additionally, we observed that TA genes were predominantly encoded in the chromosomal DNA, with some TA systems also found within the Staphylococcal Cassette Chromosomal mec (SCCmec) genomic islands. Discussion This study provides a comprehensive overview of the diversity and prevalence of TA systems in S. aureus. The findings enhance our understanding of these putative TA genes and their potential implications in S. aureus ecology and disease management. Moreover, this knowledge could guide the development of novel antimicrobial strategies.
Collapse
Affiliation(s)
| | | | | | | | - Haiyan Yang
- Department of Epidemiology, School of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
4
|
The RNA-Binding Protein ProQ Promotes Antibiotic Persistence in Salmonella. mBio 2022; 13:e0289122. [PMID: 36409088 PMCID: PMC9765298 DOI: 10.1128/mbio.02891-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Bacterial populations can survive exposure to antibiotics through transient phenotypic and gene expression changes. These changes can be attributed to a small subpopulation of bacteria, giving rise to antibiotic persistence. Although this phenomenon has been known for decades, much remains to be learned about the mechanisms that drive persister formation. The RNA-binding protein ProQ has recently emerged as a global regulator of gene expression. Here, we show that ProQ impacts persister formation in Salmonella. In vitro, ProQ contributes to growth arrest in a subset of cells that are able to survive treatment at high concentrations of different antibiotics. The underlying mechanism for ProQ-dependent persister formation involves the activation of metabolically costly processes, including the flagellar pathway and the type III protein secretion system encoded on Salmonella pathogenicity island 2. Importantly, we show that the ProQ-dependent phenotype is relevant during macrophage infection and allows Salmonella to survive the combined action of host immune defenses and antibiotics. Together, our data highlight the importance of ProQ in Salmonella persistence and pathogenesis. IMPORTANCE Bacteria can avoid eradication by antibiotics through a phenomenon known as persistence. Persister cells arise through phenotypic heterogeneity and constitute a small fraction of dormant cells within a population of actively growing bacteria, which is susceptible to antibiotic killing. In this study, we show that ProQ, an RNA-binding protein and global regulator of gene expression, promotes persisters in the human pathogen Salmonella enterica serovar Typhimurium. Bacteria lacking the proQ gene outcompete wild-type bacteria under laboratory conditions, are less prone to enter growth dormancy, and form fewer persister cells. The basis for these phenotypes lies in ProQ's ability to activate energy-consuming cellular processes, including flagellar motility and protein secretion. Importantly, we show that ProQ contributes to the persister phenotype during Salmonella infection of macrophages, indicating an important role of this global regulator in Salmonella pathogenesis.
Collapse
|
5
|
Massey JH, Newton ILG. Diversity and function of arthropod endosymbiont toxins. Trends Microbiol 2022; 30:185-198. [PMID: 34253453 PMCID: PMC8742837 DOI: 10.1016/j.tim.2021.06.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 02/03/2023]
Abstract
Bacterial endosymbionts induce dramatic phenotypes in their arthropod hosts, including cytoplasmic incompatibility, feminization, parthenogenesis, male killing, parasitoid defense, and pathogen blocking. The molecular mechanisms underlying these effects remain largely unknown but recent evidence suggests that protein toxins secreted by the endosymbionts play a role. Here, we describe the diversity and function of endosymbiont proteins with homology to known bacterial toxins. We focus on maternally transmitted endosymbionts belonging to the Wolbachia, Rickettsia, Arsenophonus, Hamiltonella, Spiroplasma, and Cardinium genera because of their ability to induce the above phenotypes. We identify at least 16 distinct toxin families with diverse enzymatic activities, including AMPylases, nucleases, proteases, and glycosyltransferases. Notably, several annotated toxins contain domains with homology to eukaryotic proteins, suggesting that arthropod endosymbionts mimic host biochemistry to manipulate host physiology, similar to bacterial pathogens.
Collapse
Affiliation(s)
| | - Irene L. G. Newton
- Department of Biology, Indiana University, Bloomington, Indiana, USA,Corresponding author,
| |
Collapse
|
6
|
Kamruzzaman M, Wu AY, Iredell JR. Biological Functions of Type II Toxin-Antitoxin Systems in Bacteria. Microorganisms 2021; 9:microorganisms9061276. [PMID: 34208120 PMCID: PMC8230891 DOI: 10.3390/microorganisms9061276] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/14/2022] Open
Abstract
After the first discovery in the 1980s in F-plasmids as a plasmid maintenance system, a myriad of toxin-antitoxin (TA) systems has been identified in bacterial chromosomes and mobile genetic elements (MGEs), including plasmids and bacteriophages. TA systems are small genetic modules that encode a toxin and its antidote and can be divided into seven types based on the nature of the antitoxin molecules and their mechanism of action to neutralise toxins. Among them, type II TA systems are widely distributed in chromosomes and plasmids and the best studied so far. Maintaining genetic material may be the major function of type II TA systems associated with MGEs, but the chromosomal TA systems contribute largely to functions associated with bacterial physiology, including the management of different stresses, virulence and pathogenesis. Due to growing interest in TA research, extensive work has been conducted in recent decades to better understand the physiological roles of these chromosomally encoded modules. However, there are still controversies about some of the functions associated with different TA systems. This review will discuss the most current findings and the bona fide functions of bacterial type II TA systems.
Collapse
Affiliation(s)
- Muhammad Kamruzzaman
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Correspondence: (M.K.); (J.R.I.)
| | - Alma Y. Wu
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
| | - Jonathan R. Iredell
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, The University of Sydney, Westmead, NSW 2145, Australia;
- Westmead Hospital, Westmead, NSW 2145, Australia
- Correspondence: (M.K.); (J.R.I.)
| |
Collapse
|
7
|
Yadav SK, Magotra A, Ghosh S, Krishnan A, Pradhan A, Kumar R, Das J, Sharma M, Jha G. Immunity proteins of dual nuclease T6SS effectors function as transcriptional repressors. EMBO Rep 2021; 22:e51857. [PMID: 33786997 PMCID: PMC8183406 DOI: 10.15252/embr.202051857] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/26/2021] [Accepted: 03/08/2021] [Indexed: 12/31/2022] Open
Abstract
Bacteria utilize type VI secretion system (T6SS) to deliver antibacterial toxins to target co-habiting bacteria. Here, we report that Burkholderia gladioli strain NGJ1 deploys certain T6SS effectors (TseTBg), having both DNase and RNase activities to kill target bacteria. RNase activity is prominent on NGJ1 as well as other bacterial RNA while DNase activity is pertinent to only other bacteria. The associated immunity (TsiTBg) proteins harbor non-canonical helix-turn-helix motifs and demonstrate transcriptional repression activity, similar to the antitoxins of type II toxin-antitoxin (TA) systems. Genome analysis reveals that homologs of TseTBg are either encoded as TA or T6SS effectors in diverse bacteria. Our results indicate that a new ORF (encoding a hypothetical protein) has evolved as a result of operonic fusion of TA type TseTBg homolog with certain T6SS-related genes by the action of IS3 transposable elements. This has potentially led to the conversion of a TA into T6SS effector in Burkholderia. Our study exemplifies that bacteria can recruit toxins of TA systems as T6SS weapons to diversify its arsenal to dominate during inter-bacterial competitions.
Collapse
Affiliation(s)
- Sunil Kumar Yadav
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Ankita Magotra
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Srayan Ghosh
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Aiswarya Krishnan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Amrita Pradhan
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Rahul Kumar
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Joyati Das
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Mamta Sharma
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| | - Gopaljee Jha
- Plant Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchAruna Asaf Ali MargIndia
| |
Collapse
|
8
|
Sarpong DD, Murphy ER. RNA Regulated Toxin-Antitoxin Systems in Pathogenic Bacteria. Front Cell Infect Microbiol 2021; 11:661026. [PMID: 34084755 PMCID: PMC8167048 DOI: 10.3389/fcimb.2021.661026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 04/29/2021] [Indexed: 01/05/2023] Open
Abstract
The dynamic host environment presents a significant hurdle that pathogenic bacteria must overcome to survive and cause diseases. Consequently, these organisms have evolved molecular mechanisms to facilitate adaptation to environmental changes within the infected host. Small RNAs (sRNAs) have been implicated as critical regulators of numerous pathways and systems in pathogenic bacteria, including that of bacterial Toxin-Antitoxin (TA) systems. TA systems are typically composed of two factors, a stable toxin, and a labile antitoxin which functions to protect against the potentially deleterious activity of the associated toxin. Of the six classes of bacterial TA systems characterized to date, the toxin component is always a protein. Type I and Type III TA systems are unique in that the antitoxin in these systems is an RNA molecule, whereas the antitoxin in all other TA systems is a protein. Though hotly debated, the involvement of TA systems in bacterial physiology is recognized by several studies, with the Type II TA system being the most extensively studied to date. This review focuses on RNA-regulated TA systems, highlighting the role of Type I and Type III TA systems in several pathogenic bacteria.
Collapse
Affiliation(s)
- David D. Sarpong
- Department of Biological Sciences, Ohio University, Athens, OH, United States
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
| | - Erin R. Murphy
- Infectious and Tropical Diseases Institute, Ohio University, Athens, OH, United States
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, United States
- Department of Biomedical Sciences, Ohio University, Heritage College of Osteopathic Medicine, Athens, OH, United States
| |
Collapse
|
9
|
Soria-Bustos J, Ares MA, Gómez-Aldapa CA, González-Y-Merchand JA, Girón JA, De la Cruz MA. Two Type VI Secretion Systems of Enterobacter cloacae Are Required for Bacterial Competition, Cell Adherence, and Intestinal Colonization. Front Microbiol 2020; 11:560488. [PMID: 33072020 PMCID: PMC7541819 DOI: 10.3389/fmicb.2020.560488] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 08/12/2020] [Indexed: 12/22/2022] Open
Abstract
Enterobacter cloacae has emerged as an opportunistic pathogen in healthcare-associated infections. Analysis of the genomic sequences of several E. cloacae strains revealed the presence of genes that code for expression of at least one type VI secretion system (T6SS). Here, we report that E. cloacae strain ATCC 13047 codes for two functional T6SS named T6SS-1 and T6SS-2. T6SS-1 and T6SS-2 were preferentially expressed in tryptic soy broth and tissue culture medium (DMEM), respectively. Mutants in T6SS-1-associated genes clpV1 and hcp1 significantly affected their ability of inter- and intra-bacterial killing indicating that T6SS-1 is required for bacterial competition. In addition, the Hcp effector protein was detected in supernatants of E. cloacae cultures and a functional T6SS-1 was required for the secretion of this protein. A clpV2 mutant was impaired in both biofilm formation and adherence to epithelial cells, supporting the notion that these phenotypes are T6SS-2 dependent. In vivo data strongly suggest that both T6SSs are required for intestinal colonization because single and double mutants in clpV1 and clpV2 genes were defective in gut colonization in mice. We conclude that the two T6SSs are involved in the pathogenesis scheme of E. cloacae with specialized functions in the interaction with other bacteria and with host cells.
Collapse
Affiliation(s)
- Jorge Soria-Bustos
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Miguel A Ares
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Carlos A Gómez-Aldapa
- Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, Carretera Pachuca-Tulancingo Km 4.5 Mineral de la Reforma, Hidalgo, Mexico
| | - Jorge A González-Y-Merchand
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Jorge A Girón
- Centro de Detección Biomolecular, Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
| | - Miguel A De la Cruz
- Unidad de Investigación Médica en Enfermedades Infecciosas y Parasitarias, Hospital de Pediatría, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|