1
|
Zhang C, Liu J, Wu J, Ranjan K, Cui X, Wang X, Zhang D, Zhu S. Key molecular DNA damage responses of human cells to radiation. Front Cell Dev Biol 2024; 12:1422520. [PMID: 39050891 PMCID: PMC11266142 DOI: 10.3389/fcell.2024.1422520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 06/19/2024] [Indexed: 07/27/2024] Open
Abstract
Our understanding of the DNA damage responses of human cells to radiation has increased remarkably over the recent years although some notable signaling events remain to be discovered. Here we provide a brief account of the key molecular events of the responses to reflect the current understanding of the key underlying mechanisms involved.
Collapse
Affiliation(s)
- Chencheng Zhang
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jibin Liu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
| | - Jun Wu
- Nantong Tumor Hospital, Nantong, China
| | - Kamakshi Ranjan
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Xiaopeng Cui
- Department of General Surgery, The Affiliated Hospital of Nantong University, Nantong, China
| | - Xingdan Wang
- Department of Radiotherapy, Nantong Tumor Hospital, The Affiliated Tumor Hospital of Nantong University, Nantong, China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, United States
| | - Shudong Zhu
- Cancer Research Center, Nantong Tumor Hospital, Nantong, China
- Cancer Research Institute, The Affiliated Tumor Hospital of Nantong University, Nantong, China
- Cancer Research Center, Nantong, China
- Argus Pharmaceuticals, Changsha, China
| |
Collapse
|
2
|
Boavida A, Napolitano LM, Santos D, Cortone G, Jegadesan NK, Onesti S, Branzei D, Pisani FM. FANCJ DNA helicase is recruited to the replisome by AND-1 to ensure genome stability. EMBO Rep 2024; 25:876-901. [PMID: 38177925 PMCID: PMC10897178 DOI: 10.1038/s44319-023-00044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/05/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024] Open
Abstract
FANCJ, a DNA helicase linked to Fanconi anemia and frequently mutated in cancers, counteracts replication stress by dismantling unconventional DNA secondary structures (such as G-quadruplexes) that occur at the DNA replication fork in certain sequence contexts. However, how FANCJ is recruited to the replisome is unknown. Here, we report that FANCJ directly binds to AND-1 (the vertebrate ortholog of budding yeast Ctf4), a homo-trimeric protein adaptor that connects the CDC45/MCM2-7/GINS replicative DNA helicase with DNA polymerase α and several other factors at DNA replication forks. The interaction between FANCJ and AND-1 requires the integrity of an evolutionarily conserved Ctf4-interacting protein (CIP) box located between the FANCJ helicase motifs IV and V. Disruption of the CIP box significantly reduces FANCJ association with the replisome, causing enhanced DNA damage, decreased replication fork recovery and fork asymmetry in cells unchallenged or treated with Pyridostatin, a G-quadruplex-binder, or Mitomycin C, a DNA inter-strand cross-linking agent. Cancer-relevant FANCJ CIP box variants display reduced AND-1-binding and enhanced DNA damage, a finding that suggests their potential role in cancer predisposition.
Collapse
Affiliation(s)
- Ana Boavida
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
- Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | | | - Diana Santos
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
- Università degli Studi della Campania "Luigi Vanvitelli", Caserta, Italy
| | - Giuseppe Cortone
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy
| | | | - Silvia Onesti
- Structural Biology Laboratory, Elettra-Sincrotrone Trieste, Trieste, Italy
| | - Dana Branzei
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
- Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Francesca M Pisani
- Istituto di Biochimica e Biologia Cellulare, Consiglio Nazionale delle Ricerche, Naples, Italy.
| |
Collapse
|
3
|
Horan TS, Ascenção CFR, Mellor C, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in double strand break repair processing, but not crossover formation during prophase I of meiosis in male mice. PLoS Genet 2024; 20:e1011175. [PMID: 38377115 PMCID: PMC10906868 DOI: 10.1371/journal.pgen.1011175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/01/2024] [Accepted: 02/07/2024] [Indexed: 02/22/2024] Open
Abstract
Meiotic recombination between homologous chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs). Approximately 10% of these DSBs result in crossovers (COs), sites of physical DNA exchange between homologs that are critical to correct chromosome segregation. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers, the latter representing the defining marks of CO sites. The regulation of CO number and position is poorly understood, but undoubtedly requires the coordinated action of multiple repair pathways. In a previous report, we found gene-trap disruption of the DNA helicase, FANCJ (BRIP1/BACH1), elicited elevated numbers of MLH1 foci and chiasmata. In somatic cells, FANCJ interacts with numerous DNA repair proteins including MLH1, and we hypothesized that FANCJ functions with MLH1 to regulate the major CO pathway. To further elucidate the meiotic function of FANCJ, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, truncation of the N-terminal Helicase domain, and a C-terminal dual-tagged allele. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, none of our Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 in meiosis. Instead, FANCJ co-localizes with BRCA1 and TOPBP1, forming discrete foci along the chromosome cores beginning in early meiotic prophase I and densely localized to unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data indicate a role for FANCJ in early DSB repair, but they rule out a role for FANCJ in MLH1-mediated CO events.
Collapse
Affiliation(s)
- Tegan S. Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| | - Carolline F. R. Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Christopher Mellor
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, United States of America
| | - Marcus B. Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
- Weill Institute for Cell and Molecular Biology, Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Paula E. Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, New York, United States of America
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
4
|
Kulikowicz T, Sommers JA, Fuchs KF, Wu Y, Brosh RM. Purification and biochemical characterization of the G4 resolvase and DNA helicase FANCJ. Methods Enzymol 2024; 695:1-27. [PMID: 38521581 DOI: 10.1016/bs.mie.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
G-quadruplex (G4) DNA or RNA poses a unique nucleic acid structure in genomic transactions. Because of the unique topology presented by G4, cells have exquisite mechanisms and pathways to metabolize G4 that arise in guanine-rich regions of the genome such as telomeres, promoter regions, ribosomal DNA, and other chromosomal elements. G4 resolvases are often represented by a class of molecular motors known as helicases that disrupt the Hoogsteen hydrogen bonds in G4 by harnessing the chemical energy of nucleoside triphosphate hydrolysis. Of special interest to researchers in the field, including us, is the human FANCJ DNA helicase that efficiently resolves G4 DNA structures. Notably, FANCJ mutations are linked to Fanconi Anemia and are prominent in breast and ovarian cancer. Since our discovery that FANCJ efficiently resolves G4 DNA structures 15 years ago, we and other labs have characterized mechanistic aspects of FANCJ-catalyzed G4 resolution and its biological importance in genomic integrity and cellular DNA replication. In addition to its G4 resolvase function, FANCJ is also a classic DNA helicase that acts on conventional duplex DNA structures, which are relevant to the enzyme's role in interstrand cross link repair, double-strand break repair via homologous recombination, and response to replication stress. Here, we describe detailed procedures for the purification of recombinant FANCJ protein and characterization of its G4 resolvase and duplex DNA helicase activity.
Collapse
Affiliation(s)
- Tomasz Kulikowicz
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Joshua A Sommers
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Kathleen F Fuchs
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD, United States.
| |
Collapse
|
5
|
Horan TS, Ascenção CFR, Mellor CA, Wang M, Smolka MB, Cohen PE. The DNA helicase FANCJ (BRIP1) functions in Double Strand Break repair processing, but not crossover formation during Prophase I of meiosis in male mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561296. [PMID: 37873301 PMCID: PMC10592954 DOI: 10.1101/2023.10.06.561296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
During meiotic prophase I, recombination between homologous parental chromosomes is initiated by the formation of hundreds of programmed double-strand breaks (DSBs), each of which must be repaired with absolute fidelity to ensure genome stability of the germline. One outcome of these DSB events is the formation of Crossovers (COs), the sites of physical DNA exchange between homologs that are critical to ensure the correct segregation of parental chromosomes. However, COs account for only a small (~10%) proportion of all DSB repair events; the remaining 90% are repaired as non-crossovers (NCOs), most by synthesis dependent strand annealing. Virtually all COs are formed by coordinated efforts of the MSH4/MSH5 and MLH1/MLH3 heterodimers. The number and positioning of COs is exquisitely controlled via mechanisms that remain poorly understood, but which undoubtedly require the coordinated action of multiple repair pathways downstream of the initiating DSB. In a previous report we found evidence suggesting that the DNA helicase and Fanconi Anemia repair protein, FANCJ (BRIP1/BACH1), functions to regulate meiotic recombination in mouse. A gene-trap disruption of Fancj showed an elevated number of MLH1 foci and COs. FANCJ is known to interact with numerous DNA repair proteins in somatic cell repair contexts, including MLH1, BLM, BRCA1, and TOPBP1, and we hypothesized that FANCJ regulates CO formation through a direct interaction with MLH1 to suppress the major CO pathway. To further elucidate the function of FANCJ in meiosis, we produced three new Fancj mutant mouse lines via CRISPR/Cas9 gene editing: a full-gene deletion, a mutant line lacking the MLH1 interaction site and the N-terminal region of the Helicase domain, and a C-terminal 6xHIS-HA dual-tagged allele of Fancj. We also generated an antibody against the C-terminus of the mouse FANCJ protein. Surprisingly, while Fanconi-like phenotypes are observed within the somatic cell lineages of the full deletion Fancj line, none of the Fancj mutants show any change in either MLH1 focus counts during pachynema or total CO number at diakinesis of prophase I of meiosis. We find evidence that FANCJ and MLH1 do not interact in meiosis; further, FANCJ does not co-localize with MSH4, MLH1, or MLH3 during late prophase I. Instead, FANCJ forms discrete foci along the chromosome cores beginning in early meiotic prophase I, occasionally co-localizing with MSH4, and then becomes densely localized on unsynapsed chromosome axes in late zygonema and to the XY chromosomes in early pachynema. Strikingly, this localization strongly overlaps with BRCA1 and TOPBP1. Fancj mutants also exhibit a subtle persistence of DSBs in pachynema. Collectively, these data suggest a role for FANCJ in early DSB repair events, and possibly in the formation of NCOs, but they rule out a role for FANCJ in MLH1-mediated CO events. Thus, the role of FANCJ in meiotic cells involves different pathways and different interactors to those described in somatic cell lineages.
Collapse
Affiliation(s)
- Tegan S Horan
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
| | - Carolline F R Ascenção
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | | | - Meng Wang
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853
| | - Marcus B Smolka
- Cornell Reproductive Sciences Center, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| | - Paula E Cohen
- Department of Biomedical Sciences, Cornell University, Ithaca, NY 14853
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853
| |
Collapse
|
6
|
RAD51 paralogs: Expanding roles in replication stress responses and repair. Curr Opin Pharmacol 2022; 67:102313. [PMID: 36343481 DOI: 10.1016/j.coph.2022.102313] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/26/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Mammalian RAD51 paralogs are essential for cell survival and are critical for RAD51-mediated repair of DNA double-strand breaks (DSBs) by homologous recombination (HR). However, the molecular mechanism by which RAD51 paralogs participate in HR is largely unclear. Germline mutations in RAD51 paralogs are associated with breast and ovarian cancers and Fanconi anemia-like disorder, underscoring the crucial roles of RAD51 paralogs in genome maintenance and tumor suppression. Despite their discovery over three decades ago, the essential functions of RAD51 paralogs in cell survival and genome stability remain obscure. Recent studies unravel DSB repair independent functions of RAD51 paralogs in replication stress responses. Here, we highlight the recent findings that uncovered the novel functions of RAD51 paralogs in replication fork progression, its stability, and restart and discuss RAD51 paralogs as a potential therapeutic target for cancer treatment.
Collapse
|
7
|
NEIL3 contributes to the Fanconi anemia/BRCA pathway by promoting the downstream double-strand break repair step. Cell Rep 2022; 41:111600. [PMID: 36351389 DOI: 10.1016/j.celrep.2022.111600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
|
8
|
Peake JD, Noguchi E. Fanconi anemia: current insights regarding epidemiology, cancer, and DNA repair. Hum Genet 2022; 141:1811-1836. [PMID: 35596788 DOI: 10.1007/s00439-022-02462-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Fanconi anemia is a genetic disorder that is characterized by bone marrow failure, as well as a predisposition to malignancies including leukemia and squamous cell carcinoma (SCC). At least 22 genes are associated with Fanconi anemia, constituting the Fanconi anemia DNA repair pathway. This pathway coordinates multiple processes and proteins to facilitate the repair of DNA adducts including interstrand crosslinks (ICLs) that are generated by environmental carcinogens, chemotherapeutic crosslinkers, and metabolic products of alcohol. ICLs can interfere with DNA transactions, including replication and transcription. If not properly removed and repaired, ICLs cause DNA breaks and lead to genomic instability, a hallmark of cancer. In this review, we will discuss the genetic and phenotypic characteristics of Fanconi anemia, the epidemiology of the disease, and associated cancer risk. The sources of ICLs and the role of ICL-inducing chemotherapeutic agents will also be discussed. Finally, we will review the detailed mechanisms of ICL repair via the Fanconi anemia DNA repair pathway, highlighting critical regulatory processes. Together, the information in this review will underscore important contributions to Fanconi anemia research in the past two decades.
Collapse
Affiliation(s)
- Jasmine D Peake
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA
| | - Eishi Noguchi
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, 245 N. 15th Street, Philadelphia, PA, 19102, USA.
| |
Collapse
|
9
|
Park D, Gharghabi M, Reczek CR, Plow R, Yungvirt C, Aldaz CM, Huebner K. Wwox Binding to the Murine Brca1-BRCT Domain Regulates Timing of Brip1 and CtIP Phospho-Protein Interactions with This Domain at DNA Double-Strand Breaks, and Repair Pathway Choice. Int J Mol Sci 2022; 23:ijms23073729. [PMID: 35409089 PMCID: PMC8999063 DOI: 10.3390/ijms23073729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/21/2022] [Accepted: 03/24/2022] [Indexed: 11/16/2022] Open
Abstract
Wwox-deficient human cells show elevated homologous recombination, leading to resistance to killing by double-strand break-inducing agents. Human Wwox binds to the Brca1 981-PPLF-984 Wwox-binding motif, likely blocking the pChk2 phosphorylation site at Brca1-S988. This phosphorylation site is conserved across mammalian species; the PPLF motif is conserved in primates but not in rodents. We now show that murine Wwox does not bind Brca1 near the conserved mouse Brca1 phospho-S971 site, leaving it open for Chk2 phosphorylation and Brca1 activation. Instead, murine Wwox binds to Brca1 through its BRCT domain, where pAbraxas, pBrip1, and pCtIP, of the A, B, and C binding complexes, interact to regulate double-strand break repair pathway response. In Wwox-deficient mouse cells, the Brca1-BRCT domain is thus accessible for immediate binding of these phospho-proteins. We confirm elevated homologous recombination in Wwox-silenced murine cells, as in human cells. Wwox-deficient murine cells showed increased ionizing radiation-induced Abraxas, Brca1, and CtIP foci and long resected single-strand DNA, early after ionizing radiation. Wwox deletion increased the basal level of Brca1-CtIP interaction and the expression level of the MRN-CtIP protein complex, key players in end-resection, and facilitated Brca1 release from foci. Inhibition of phospho-Chk2 phosphorylation of Brca1-S971 delays the end-resection; the delay of premature end-resection by combining Chk2 inhibition with ionizing radiation or carboplatin treatment restored ionizing radiation and platinum sensitivity in Wwox-deficient murine cells, as in human cells, supporting the use of murine in vitro and in vivo models in preclinical cancer treatment research.
Collapse
Affiliation(s)
- Dongju Park
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
- Correspondence: (D.P.); (K.H.); Tel.: +1-614-685-9124 (D.P.); +1-614-292-4850 (K.H.)
| | - Mehdi Gharghabi
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
- Department of Outcomes and Translational Sciences, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Colleen R. Reczek
- Department of Pathology & Cell Biology, Columbia University Irving Medical Center, Columbia University, New York, NY 10032, USA;
| | - Rebecca Plow
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
| | - Charles Yungvirt
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
| | - C. Marcelo Aldaz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1881 East Road, Houston, TX 77054, USA;
| | - Kay Huebner
- Department of Cancer Biology and Genetics, The Comprehensive Cancer Center, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA; (M.G.); (R.P.); (C.Y.)
- Correspondence: (D.P.); (K.H.); Tel.: +1-614-685-9124 (D.P.); +1-614-292-4850 (K.H.)
| |
Collapse
|
10
|
Brosh RM, Wu Y. An emerging picture of FANCJ's role in G4 resolution to facilitate DNA replication. NAR Cancer 2021; 3:zcab034. [PMID: 34873585 DOI: 10.1093/narcan/zcab034] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/28/2021] [Accepted: 08/13/2021] [Indexed: 02/06/2023] Open
Abstract
A well-accepted hallmark of cancer is genomic instability, which drives tumorigenesis. Therefore, understanding the molecular and cellular defects that destabilize chromosomal integrity is paramount to cancer diagnosis, treatment and cure. DNA repair and the replication stress response are overarching paradigms for maintenance of genomic stability, but the devil is in the details. ATP-dependent helicases serve to unwind DNA so it is replicated, transcribed, recombined and repaired efficiently through coordination with other nucleic acid binding and metabolizing proteins. Alternatively folded DNA structures deviating from the conventional anti-parallel double helix pose serious challenges to normal genomic transactions. Accumulating evidence suggests that G-quadruplex (G4) DNA is problematic for replication. Although there are multiple human DNA helicases that can resolve G4 in vitro, it is debated which helicases are truly important to resolve such structures in vivo. Recent advances have begun to elucidate the principal helicase actors, particularly in cellular DNA replication. FANCJ, a DNA helicase implicated in cancer and the chromosomal instability disorder Fanconi Anemia, takes center stage in G4 resolution to allow smooth DNA replication. We will discuss FANCJ's role with its protein partner RPA to remove G4 obstacles during DNA synthesis, highlighting very recent advances and implications for cancer therapy.
Collapse
Affiliation(s)
- Robert M Brosh
- Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | - Yuliang Wu
- Department of Biochemistry, Microbiology and Immunology, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
11
|
Abstract
DNA double-strand breaks (DSBs) are cytotoxic lesions that threaten genome integrity and cell viability. Typically, cells repair DSBs by either nonhomologous end joining (NHEJ) or homologous recombination (HR). The relative use of these two pathways depends on many factors, including cell cycle stage and the nature of the DNA ends. A critical determinant of repair pathway selection is the initiation of 5'→3' nucleolytic degradation of DNA ends, a process referred to as DNA end resection. End resection is essential to create single-stranded DNA overhangs, which serve as the substrate for the Rad51 recombinase to initiate HR and are refractory to NHEJ repair. Here, we review recent insights into the mechanisms of end resection, how it is regulated, and the pathological consequences of its dysregulation.
Collapse
Affiliation(s)
- Petr Cejka
- Faculty of Biomedical Sciences, Institute for Research in Biomedicine, Università della Svizzera italiana (USI), 6500 Bellinzona, Switzerland; .,Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH) Zürich, 8093 Zürich, Switzerland
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University Irving Medical Center, New York, NY 10032, USA; .,Department of Genetics & Development, Columbia University Irving Medical Center, New York, NY 10032, USA
| |
Collapse
|
12
|
Branzei D, Szakal B. DNA helicases in homologous recombination repair. Curr Opin Genet Dev 2021; 71:27-33. [PMID: 34271541 DOI: 10.1016/j.gde.2021.06.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022]
Abstract
Helicases are in the spotlight of DNA metabolism and are critical for DNA repair in all domains of life. At their biochemical core, they bind and hydrolyze ATP, converting this energy to translocate unidirectionally, with different strand polarities and substrate binding specificities, along one strand of a nucleic acid. In doing so, DNA and RNA helicases separate duplex strands or remove nucleoprotein complexes, affecting DNA repair and the architecture of replication forks. In this review, we focus on recent advances on the roles and regulations of DNA helicases in homologous recombination repair, a critical pathway for mending damaged chromosomes and for ensuring genome integrity.
Collapse
Affiliation(s)
- Dana Branzei
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy; Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy.
| | - Barnabas Szakal
- IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
| |
Collapse
|
13
|
Begum NA, Haque F, Stanlie A, Husain A, Mondal S, Nakata M, Taniguchi T, Taniguchi H, Honjo T. Phf5a regulates DNA repair in class switch recombination via p400 and histone H2A variant deposition. EMBO J 2021; 40:e106393. [PMID: 33938017 PMCID: PMC8204862 DOI: 10.15252/embj.2020106393] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 11/09/2022] Open
Abstract
Antibody class switch recombination (CSR) is a locus-specific genomic rearrangement mediated by switch (S) region transcription, activation-induced cytidine deaminase (AID)-induced DNA breaks, and their resolution by non-homologous end joining (NHEJ)-mediated DNA repair. Due to the complex nature of the recombination process, numerous cofactors are intimately involved, making it important to identify rate-limiting factors that impact on DNA breaking and/or repair. Using an siRNA-based loss-of-function screen of genes predicted to encode PHD zinc-finger-motif proteins, we identify the splicing factor Phf5a/Sf3b14b as a novel modulator of the DNA repair step of CSR. Loss of Phf5a severely impairs AID-induced recombination, but does not perturb DNA breaks and somatic hypermutation. Phf5a regulates NHEJ-dependent DNA repair by preserving chromatin integrity to elicit optimal DNA damage response and subsequent recruitment of NHEJ factors at the S region. Phf5a stabilizes the p400 histone chaperone complex at the locus, which in turn promotes deposition of H2A variant such as H2AX and H2A.Z that are critical for the early DNA damage response and NHEJ, respectively. Depletion of Phf5a or p400 blocks the repair of both AID- and I-SceI-induced DNA double-strand breaks, supporting an important contribution of this axis to programmed as well as aberrant recombination.
Collapse
Affiliation(s)
- Nasim A Begum
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Farazul Haque
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Andre Stanlie
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
- BioMedicine DesignPfizer Inc.CambridgeMAUSA
| | - Afzal Husain
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of BiochemistryFaculty of Life SciencesAligarh Muslim UniversityAligarhIndia
| | - Samiran Mondal
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
- Department of ChemistryRammohan CollegeKolkataIndia
| | - Mikiyo Nakata
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| | - Takako Taniguchi
- Division of Disease ProteomicsInstitute for Enzyme ResearchUniversity of TokushimaTokushimaJapan
| | - Hisaaki Taniguchi
- Division of Disease ProteomicsInstitute for Enzyme ResearchUniversity of TokushimaTokushimaJapan
| | - Tasuku Honjo
- Department of Immunology and Genomic MedicineGraduate School of MedicineKyoto UniversityKyotoJapan
| |
Collapse
|
14
|
Calvo JA, Fritchman B, Hernandez D, Persky NS, Johannessen CM, Piccioni F, Kelch BA, Cantor SB. Comprehensive Mutational Analysis of the BRCA1-Associated DNA Helicase and Tumor-Suppressor FANCJ/BACH1/BRIP1. Mol Cancer Res 2021; 19:1015-1025. [PMID: 33619228 DOI: 10.1158/1541-7786.mcr-20-0828] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/27/2021] [Accepted: 02/18/2021] [Indexed: 12/15/2022]
Abstract
FANCJ (BRIP1/BACH1) is a hereditary breast and ovarian cancer (HBOC) gene encoding a DNA helicase. Similar to HBOC genes, BRCA1 and BRCA2, FANCJ is critical for processing DNA inter-strand crosslinks (ICL) induced by chemotherapeutics, such as cisplatin. Consequently, cells deficient in FANCJ or its catalytic activity are sensitive to ICL-inducing agents. Unfortunately, the majority of FANCJ clinical mutations remain uncharacterized, limiting therapeutic opportunities to effectively use cisplatin to treat tumors with mutated FANCJ. Here, we sought to perform a comprehensive screen to identify FANCJ loss-of-function (LOF) mutations. We developed a FANCJ lentivirus mutation library representing approximately 450 patient-derived FANCJ nonsense and missense mutations to introduce FANCJ mutants into FANCJ knockout (K/O) HeLa cells. We performed a high-throughput screen to identify FANCJ LOF mutants that, as compared with wild-type FANCJ, fail to robustly restore resistance to ICL-inducing agents, cisplatin or mitomycin C (MMC). On the basis of the failure to confer resistance to either cisplatin or MMC, we identified 26 missense and 25 nonsense LOF mutations. Nonsense mutations elucidated a relationship between location of truncation and ICL sensitivity, as the majority of nonsense mutations before amino acid 860 confer ICL sensitivity. Further validation of a subset of LOF mutations confirmed the ability of the screen to identify FANCJ mutations unable to confer ICL resistance. Finally, mapping the location of LOF mutations to a new homology model provides additional functional information. IMPLICATIONS: We identify 51 FANCJ LOF mutations, providing important classification of FANCJ mutations that will afford additional therapeutic strategies for affected patients.
Collapse
Affiliation(s)
- Jennifer A Calvo
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Briana Fritchman
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Nicole S Persky
- The Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | | | - Brian A Kelch
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts
| | - Sharon B Cantor
- Department of Molecular Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts.
| |
Collapse
|
15
|
Animal models of Fanconi anemia: A developmental and therapeutic perspective on a multifaceted disease. Semin Cell Dev Biol 2021; 113:113-131. [PMID: 33558144 DOI: 10.1016/j.semcdb.2020.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022]
Abstract
Fanconi anemia (FA) is a genetic disorder characterized by developmental abnormalities, progressive bone marrow failure, and increased susceptibility to cancer. FA animal models have been useful to understand the pathogenesis of the disease. Herein, we review FA developmental models that have been developed to simulate human FA, focusing on zebrafish and mouse models. We summarize the recapitulated phenotypes observed in these in vivo models including bone, gametogenesis and sterility defects, as well as marrow failure. We also discuss the relevance of aldehydes in pathogenesis of FA, emphasizing on hematopoietic defects. In addition, we provide a summary of potential therapeutic agents, such as aldehyde scavengers, TGFβ inhibitors, and gene therapy for FA. The diversity of FA animal models makes them useful for understanding FA etiology and allows the discovery of new therapies.
Collapse
|
16
|
Structure-function analysis of TOPBP1's role in ATR signaling using the DSB-mediated ATR activation in Xenopus egg extracts (DMAX) system. Sci Rep 2021; 11:467. [PMID: 33432091 PMCID: PMC7801695 DOI: 10.1038/s41598-020-80626-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/23/2020] [Indexed: 11/20/2022] Open
Abstract
The protein kinase ATR is activated at sites of DNA double-strand breaks where it plays important roles in promoting DNA end resection and regulating cell cycle progression. TOPBP1 is a multi BRCT repeat containing protein that activates ATR at DSBs. Here we have developed an experimental tool, the DMAX system, to study the biochemical mechanism for TOPBP1-mediated ATR signalling. DMAX combines simple, linear dsDNA molecules with Xenopus egg extracts and results in a physiologically relevant, DSB-induced activation of ATR. We find that DNAs of 5000 nucleotides, at femtomolar concentration, potently activate ATR in this system. By combining immunodepletion and add-back of TOPBP1 point mutants we use DMAX to determine which of TOPBP1’s nine BRCT domains are required for recruitment of TOPBP1 to DSBs and which domains are needed for ATR-mediated phosphorylation of CHK1. We find that BRCT1 and BRCT7 are important for recruitment and that BRCT5 functions downstream of recruitment to promote ATR-mediated phosphorylation of CHK1. We also show that BRCT7 plays a second role, independent of recruitment, in promoting ATR signalling. These findings supply a new research tool for, and new insights into, ATR biology.
Collapse
|
17
|
Awate S, Sommers JA, Datta A, Nayak S, Bellani MA, Yang O, Dunn CA, Nicolae CM, Moldovan GL, Seidman MM, Cantor SB, Brosh RM. FANCJ compensates for RAP80 deficiency and suppresses genomic instability induced by interstrand cross-links. Nucleic Acids Res 2020; 48:9161-9180. [PMID: 32797166 DOI: 10.1093/nar/gkaa660] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 07/24/2020] [Accepted: 07/28/2020] [Indexed: 12/16/2022] Open
Abstract
FANCJ, a DNA helicase and interacting partner of the tumor suppressor BRCA1, is crucial for the repair of DNA interstrand crosslinks (ICL), a highly toxic lesion that leads to chromosomal instability and perturbs normal transcription. In diploid cells, FANCJ is believed to operate in homologous recombination (HR) repair of DNA double-strand breaks (DSB); however, its precise role and molecular mechanism is poorly understood. Moreover, compensatory mechanisms of ICL resistance when FANCJ is deficient have not been explored. In this work, we conducted a siRNA screen to identify genes of the DNA damage response/DNA repair regime that when acutely depleted sensitize FANCJ CRISPR knockout cells to a low concentration of the DNA cross-linking agent mitomycin C (MMC). One of the top hits from the screen was RAP80, a protein that recruits repair machinery to broken DNA ends and regulates DNA end-processing. Concomitant loss of FANCJ and RAP80 not only accentuates DNA damage levels in human cells but also adversely affects the cell cycle checkpoint, resulting in profound chromosomal instability. Genetic complementation experiments demonstrated that both FANCJ's catalytic activity and interaction with BRCA1 are important for ICL resistance when RAP80 is deficient. The elevated RPA and RAD51 foci in cells co-deficient of FANCJ and RAP80 exposed to MMC are attributed to single-stranded DNA created by Mre11 and CtIP nucleases. Altogether, our cell-based findings together with biochemical studies suggest a critical function of FANCJ to suppress incompletely processed and toxic joint DNA molecules during repair of ICL-induced DNA damage.
Collapse
Affiliation(s)
- Sanket Awate
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Joshua A Sommers
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Arindam Datta
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Sumeet Nayak
- Department of Cancer Biology, University of Massachusetts Medical School - UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Marina A Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Olivia Yang
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University, Baltimore, MD, USA
| | - Christopher A Dunn
- Flow Cytometry Unit, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Claudia M Nicolae
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - George-Lucian Moldovan
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| | - Sharon B Cantor
- Department of Cancer Biology, University of Massachusetts Medical School - UMASS Memorial Cancer Center, Worcester, MA, USA
| | - Robert M Brosh
- Laboratory of Molecular Gerontology, National Institute on Aging, NIH, Baltimore, MD, USA
| |
Collapse
|
18
|
Huselid E, Bunting SF. The Regulation of Homologous Recombination by Helicases. Genes (Basel) 2020; 11:genes11050498. [PMID: 32369918 PMCID: PMC7290689 DOI: 10.3390/genes11050498] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 11/16/2022] Open
Abstract
Homologous recombination is essential for DNA repair, replication and the exchange of genetic material between parental chromosomes during meiosis. The stages of recombination involve complex reorganization of DNA structures, and the successful completion of these steps is dependent on the activities of multiple helicase enzymes. Helicases of many different families coordinate the processing of broken DNA ends, and the subsequent formation and disassembly of the recombination intermediates that are necessary for template-based DNA repair. Loss of recombination-associated helicase activities can therefore lead to genomic instability, cell death and increased risk of tumor formation. The efficiency of recombination is also influenced by the ‘anti-recombinase’ effect of certain helicases, which can direct DNA breaks toward repair by other pathways. Other helicases regulate the crossover versus non-crossover outcomes of repair. The use of recombination is increased when replication forks and the transcription machinery collide, or encounter lesions in the DNA template. Successful completion of recombination in these situations is also regulated by helicases, allowing normal cell growth, and the maintenance of genomic integrity.
Collapse
|