1
|
Chen Y, Li Y, Xu Y, Lv Q, Ye Y, Gu J. Revealing the role of natural killer cells in ankylosing spondylitis: identifying diagnostic biomarkers and therapeutic targets. Ann Med 2025; 57:2457523. [PMID: 39853176 PMCID: PMC11770870 DOI: 10.1080/07853890.2025.2457523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Ankylosing spondylitis (AS) is a chronic autoimmune disease that primarily affects the axial joints. Immune cells play a key role in the pathogenesis of AS. This study integrated bioinformatics methods with experimental validation to explore the role of natural killer (NK) cells in AS. METHODS Two microarray datasets, GSE25101 and GSE73754, were selected, and the scRNA-seq data were obtained from GSE194315 and Liu's research. Differentially expressed genes (DEGs) and functional enrichment analysis were performed respectively. Weighted gene co-expression network analysis (WGCNA) was conducted to identify key modules of co-expressed genes and genes involved in NK cell function. The diagnostic value of the identified key genes was evaluated using ROC curves, logistic regression analysis, and a nomogram. Real-time PCR (RT-PCR) was used to quantified the expression of genes. Statistical analysis was conducted using the R software package, and a p-value of less than 0.05 was considered statistically significant. RESULTS Pathways enrichment analysis revealed the involvement of NK cell-mediated immune pathways and regulation of the innate immune response, indicating the crucial role of innate immunity, especially NK cells, in AS pathogenesis. The construction of a co-expression network revealed that the MElightyellow module was most relevant to the NK cell-mediated immune pathway. IL2RB, CD247, PLEKHF1, EOMES, S1PR5, FGFBP2 from the MElightyellow module were identified as key genes involved in NK cell-mediated immune response and served as potential diagnostic biomarkers for AS, with moderate to high diagnostic values based on AUC values. Further analysis using scRNA-seq profiling revealed the higher expression level of IL2RB, CD247, PLEKHF1, S1PR5, FGFBP2 in NK cells compared to that in other cell types. CD247, PLEKHF1, EOMES, S1PR5, and FGFBP2 were reduced expressed in AS patients as compare to control group verified by scRNA-seq data, CD247, EOMES, FGFBP2, IL2RB and S1PR5 were reduced expressed verified by RT-PCR, and PLEKHF1, S1PR5, and FGFBP2 was upregulated after TNF-α blocker therapy. CONCLUSION The study revealed the potential role of NK cells and identified IL2RB, CD247, PLEKHF1, EOMES, S1PR5, and FGFBP2 as key genes associated with NK cells in the pathogenesis of AS.
Collapse
Affiliation(s)
- Yuling Chen
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yan Li
- Department of Scientific Center, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yuan Xu
- Department of Clinical Laboratory, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Qing Lv
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
| | - Yuanchun Ye
- School of Science, Shenzhen Campus of Sun Yat-sen University, Shenzhen, People’s Republic of China
| | - Jieruo Gu
- Department of Rheumatology and Immunology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, Guangdong Province, People’s Republic of China
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong ProvincePeople’s Republic of China
| |
Collapse
|
2
|
Ritari J, Koskela S, Hyvärinen K, FinnGen, Ollila H, Partanen J. Disease associations of natural killer (NK) cell KIR gene content variation in 352,783 Finns. Hum Immunol 2024; 85:111177. [PMID: 39546901 DOI: 10.1016/j.humimm.2024.111177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 09/30/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Allelic, gene presence/absence, and gene-copy number variations in the KIR genes encoding Natural Killer (NK) cell surface receptors have been reported to be associated in case-control studies with infectious and autoimmune diseases, and relapse after stem cell transplantation. To understand more comprehensively the role of KIR gene presence/absence variation and HLA-KIR interactions in disease susceptibility, we imputed from genome SNP data the presence and absence of 10 KIR genes in the FinnGen cohort. The cohort consists of 352,783 Finns with extensive phenotypes from the national health registries. We tested associations between 762 FinnGen phenotypes and presence/absence variation based on imputation of KIR genes using 5,900 SNPs located in the KIR genomic segment. Our results provide a platform to query HLA-KIR associations in a large population cohort. We found 13 phenotype - KIR gene or KIR - HLA C combination associations with false discovery rate < 0.05. These results differ from the very high number of associations between HLA alleles and diseases reported earlier in the FinnGen cohort. Five of the 13 significant associations included malignant phenotypes, e.g., melanoma, thyroid gland neoplasm, and haematopoietic malignancy, supporting the essential role of NK cells in controlling malignancy.
Collapse
Affiliation(s)
- Jarmo Ritari
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - Satu Koskela
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland; Blood Service Biobank, Finnish Red Cross Blood Service, Vantaa, Finland
| | - Kati Hyvärinen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland
| | - FinnGen
- Members of the FinnGen Consortium are Listed in Supplementary Table 1, Finland
| | - Hanna Ollila
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Finland; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA; Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Jukka Partanen
- Research and Development, Finnish Red Cross Blood Service, Helsinki, Finland; Blood Service Biobank, Finnish Red Cross Blood Service, Vantaa, Finland.
| |
Collapse
|
3
|
Wen P, Zhao Y, Yang M, Yang P, Nan K, Liu L, Xu P. Identification of necroptosis-related genes in ankylosing spondylitis by bioinformatics and experimental validation. J Cell Mol Med 2024; 28:e18557. [PMID: 39031474 PMCID: PMC11258886 DOI: 10.1111/jcmm.18557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/15/2024] [Accepted: 07/08/2024] [Indexed: 07/22/2024] Open
Abstract
The pathogenesis of ankylosing spondylitis (AS) remains unclear, and while recent studies have implicated necroptosis in various autoimmune diseases, an investigation of its relationship with AS has not been reported. In this study, we utilized the Gene Expression Omnibus database to compare gene expressions between AS patients and healthy controls, identifying 18 differentially expressed necroptosis-related genes (DENRGs), with 8 upregulated and 10 downregulated. Through the application of three machine learning algorithms-least absolute shrinkage and selection operation, support vector machine-recursive feature elimination and random forest-two hub genes, FASLG and TARDBP, were pinpointed. These genes demonstrated high specificity and sensitivity for AS diagnosis, as evidenced by receiver operating characteristic curve analysis. These findings were further supported by external datasets and cellular experiments, which confirmed the downregulation of FASLG and upregulation of TARDBP in AS patients. Immune cell infiltration analysis suggested that CD4+ T cells, CD8+ T cells, NK cells and neutrophils may be associated with the development of AS. Notably, in the group with high FASLG expression, there was a significant infiltration of CD8+ T cells, memory-activated CD4+ T cells and resting NK cells, with relatively less infiltration of memory-resting CD4+ T cells and neutrophils. Conversely, in the group with high TARDBP expression, there was enhanced infiltration of naïve CD4+ T cells and M0 macrophages, with a reduced presence of memory-resting CD4+ T cells. In summary, FASLG and TARDBP may contribute to AS pathogenesis by regulating the immune microenvironment and immune-related signalling pathways. These findings offer new insights into the molecular mechanisms of AS and suggest potential new targets for therapeutic strategies.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Yan Zhao
- Department of Laboratory, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Mingyi Yang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Peng Yang
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Kai Nan
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Lin Liu
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| | - Peng Xu
- Department of Joint Surgery, Honghui HospitalXi'an Jiaotong UniversityShaanxiChina
| |
Collapse
|
4
|
Santiago-Lamelas L, Castro-Santos P, Carracedo Á, Olloquequi J, Díaz-Peña R. Unveiling the Significance of HLA and KIR Diversity in Underrepresented Populations. Biomedicines 2024; 12:1333. [PMID: 38927540 PMCID: PMC11202227 DOI: 10.3390/biomedicines12061333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Human leukocyte antigen (HLA) molecules and their relationships with natural killer (NK) cells, specifically through their interaction with killer-cell immunoglobulin-like receptors (KIRs), exhibit robust associations with the outcomes of diverse diseases. Moreover, genetic variations in HLA and KIR immune system genes offer limitless depths of complexity. In recent years, a surge of high-powered genome-wide association studies (GWASs) utilizing single nucleotide polymorphism (SNP) arrays has occurred, significantly advancing our understanding of disease pathogenesis. Additionally, advances in HLA reference panels have enabled higher resolution and more reliable imputation, allowing for finer-grained evaluation of the association between sequence variations and disease risk. However, it is essential to note that the majority of these GWASs have focused primarily on populations of Caucasian and Asian origins, neglecting underrepresented populations in Latin America and Africa. This omission not only leads to disparities in health care access but also restricts our knowledge of novel genetic variants involved in disease pathogenesis within these overlooked populations. Since the KIR and HLA haplotypes prevalent in each population are clearly modelled by the specific environment, the aim of this review is to encourage studies investigating HLA/KIR involvement in infection and autoimmune diseases, reproduction, and transplantation in underrepresented populations.
Collapse
Affiliation(s)
- Lucía Santiago-Lamelas
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
| | - Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Jordi Olloquequi
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
- Departament de Bioquímica i Fisiologia, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, 08028 Barcelona, Spain
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica, SERGAS, Grupo de Medicina Xenomica-USC, Instituto de Investigación Sanitaria de Santiago (IDIS), 15706 Santiago de Compostela, Spain; (L.S.-L.); (P.C.-S.); (Á.C.)
- Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3460000, Chile
| |
Collapse
|
5
|
Bordbar A, Manches O, Nowatzky J. Biology of HLA class I associated inflammatory diseases. Best Pract Res Clin Rheumatol 2024; 38:101977. [PMID: 39085016 PMCID: PMC11441793 DOI: 10.1016/j.berh.2024.101977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/15/2024] [Accepted: 07/15/2024] [Indexed: 08/02/2024]
Abstract
Human leukocyte antigen (HLA) class I association is a well-established feature of common and uncommon inflammatory diseases, but it is unknown whether it impacts the pathogenesis of these disorders. The "arthritogenic peptide" hypothesis proposed initially for HLA-B27-associated ankylosing spondylitis (AS) seems the most intuitive to serve as a model for other HLA class I-associated diseases, but evidence supporting it has been scarce. Recent technological advances and the discovery of epistatic relationships between disease-associated HLA class I and endoplasmic reticulum aminopeptidase (ERAP) coding variants have led to the generation of new data and conceptual approaches to the problem requiring its re-examination. Continued success in these endeavors holds promise to resolve a Gordian Knot in human immunobiology. It may ultimately benefit patients by enabling the development of new therapies and precision tools for assessing disease risk and predicting treatment responses.
Collapse
Affiliation(s)
- Ali Bordbar
- New York University Grossman School of Medicine, Department of Medicine, New York, NY, USA
| | - Olivier Manches
- New York University Grossman School of Medicine, Department of Medicine, New York, NY, USA
| | - Johannes Nowatzky
- New York University Grossman School of Medicine, Department of Medicine, New York, NY, USA; New York University Grossman School of Medicine, Department of Pathology, USA; New York University Grossman School of Medicine, Department of Medicine Division of Rheumatology, NYU Langone Ocular Rheumatology Program, New York, NY, USA; New York University Grossman School of Medicine, Department of Medicine, Division of Rheumatology, NYU Langone Center for Behçet's Disease, New York, NY, USA.
| |
Collapse
|
6
|
Kuiper JJ, Prinz JC, Stratikos E, Kuśnierczyk P, Arakawa A, Springer S, Mintoff D, Padjen I, Shumnalieva R, Vural S, Kötter I, van de Sande MG, Boyvat A, de Boer JH, Bertsias G, de Vries N, Krieckaert CL, Leal I, Vidovič Valentinčič N, Tugal-Tutkun I, El Khaldi Ahanach H, Costantino F, Glatigny S, Mrazovac Zimak D, Lötscher F, Kerstens FG, Bakula M, Viera Sousa E, Böhm P, Bosman K, Kenna TJ, Powis SJ, Breban M, Gul A, Bowes J, Lories RJ, Nowatzky J, Wolbink GJ, McGonagle DG, Turkstra F. EULAR study group on ‘MHC-I-opathy’: identifying disease-overarching mechanisms across disciplines and borders. Ann Rheum Dis 2023:ard-2022-222852. [PMID: 36987655 DOI: 10.1136/ard-2022-222852] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 01/25/2023] [Indexed: 03/29/2023]
Abstract
The ‘MHC-I (major histocompatibility complex class I)-opathy’ concept describes a family of inflammatory conditions with overlapping clinical manifestations and a strong genetic link to the MHC-I antigen presentation pathway. Classical MHC-I-opathies such as spondyloarthritis, Behçet’s disease, psoriasis and birdshot uveitis are widely recognised for their strong association with certain MHC-I alleles and gene variants of the antigen processing aminopeptidases ERAP1 and ERAP2 that implicates altered MHC-I peptide presentation to CD8+T cells in the pathogenesis. Progress in understanding the cause and treatment of these disorders is hampered by patient phenotypic heterogeneity and lack of systematic investigation of the MHC-I pathway.Here, we discuss new insights into the biology of MHC-I-opathies that strongly advocate for disease-overarching and integrated molecular and clinical investigation to decipher underlying disease mechanisms. Because this requires transformative multidisciplinary collaboration, we introduce the EULAR study group on MHC-I-opathies to unite clinical expertise in rheumatology, dermatology and ophthalmology, with fundamental and translational researchers from multiple disciplines such as immunology, genomics and proteomics, alongside patient partners. We prioritise standardisation of disease phenotypes and scientific nomenclature and propose interdisciplinary genetic and translational studies to exploit emerging therapeutic strategies to understand MHC-I-mediated disease mechanisms. These collaborative efforts are required to address outstanding questions in the etiopathogenesis of MHC-I-opathies towards improving patient treatment and prognostication.
Collapse
Affiliation(s)
- Jonas Jw Kuiper
- Department of Ophthalmology, Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Jörg C Prinz
- University Hospital, department of Dermatology and Allergy, Ludwig Maximilians University Munich, Munchen, Germany
| | - Efstratios Stratikos
- Laboratory of Biochemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Piotr Kuśnierczyk
- Laboratory of Immunogenetics and Tissue Immunology, Institute of Immunology and Experimental Therapy Ludwik Hirszfeld Polish Academy of Sciences, Wroclaw, Poland
| | - Akiko Arakawa
- University Hospital, department of Dermatology and Allergy, Ludwig Maximilians University Munich, Munchen, Germany
| | | | - Dillon Mintoff
- Department of Dermatology, Mater Dei Hospital, Msida, Malta
- Department of Pathology, University of Malta Faculty of Medicine and Surgery, Msida, Malta
| | - Ivan Padjen
- Division of Clinical Immunology and Rheumatology, University Hospital Centre Zagreb Department of Internal Medicine, Zagreb, Croatia
- University of Zagreb School of Medicine, Zagreb, Croatia
| | - Russka Shumnalieva
- Clinic of Rheumatology, Department of Rheumatology, Medical University of Sofia, Sofia, Bulgaria
| | - Seçil Vural
- School of Medicine, Department of Dermatology, Koç University, Istanbul, Turkey
| | - Ina Kötter
- Clinic for Rheumatology and Immunology, Bad Bramdsted Hospital, Bad Bramstedt, Germany
- Division of Rheumatology and Systemic Inflammatory Diseases, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marleen G van de Sande
- University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center (ARC) | Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Ayşe Boyvat
- Department of Dermatology, Ankara University Faculty of Medicine, Ankara, Turkey
| | - Joke H de Boer
- Department of Ophthalmology, Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - George Bertsias
- Department of Rheumatology and Clinical Immunology, University of Crete School of Medicine, Iraklio, Greece
- Laboratory of Autoimmunity-Inflammation, Institute of Molecular Biology and Biotechnology, Heraklion, Greece
| | - Niek de Vries
- University of Amsterdam, Department of Rheumatology & Clinical Immunology and Department of Experimental Immunology, Amsterdam Institute for Infection & Immunity, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Amsterdam Rheumatology and Immunology Center (ARC) | Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Charlotte Lm Krieckaert
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| | - Inês Leal
- Department of Ophthalmology, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte EPE, Lisboa, Portugal
- Centro de Estudeos das Ciencias da Visão, Universidade de Lisboa Faculdade de Medicina, Lisboa, Portugal
| | - Nataša Vidovič Valentinčič
- University Eye Clinic, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Ilknur Tugal-Tutkun
- Department of Ophthalmology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - Hanane El Khaldi Ahanach
- Departement of Ophthalmology, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
- Department of Ophthalmology, Onze Lieve Vrouwe Gasthuis, Amsterdam, The Netherlands
| | - Félicie Costantino
- Service de Rheumatology, Hospital Ambroise-Pare, Boulogne-Billancourt, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, University Paris-Saclay, Montigny-le-Bretonneux, France
| | - Simon Glatigny
- Infection & Inflammation, UMR 1173, Inserm, UVSQ/Université Paris Saclay, Montigny-le-Bretonneux, France
- Laboratoire d'Excellence Inflamex, Paris, France
| | | | - Fabian Lötscher
- Department of Rheumatology and Immunology, Inselspital University Hospital Bern, University of Bern, Bern, Switzerland
| | - Floor G Kerstens
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| | - Marija Bakula
- Division of Clinical Immunology and Rheumatology, University Hospital Centre Zagreb Department of Internal Medicine, Zagreb, Croatia
| | - Elsa Viera Sousa
- Rheumatology Research Unit Molecular João Lobo Antunes, University of Lisbon Medical Faculty, Lisboa, Portugal
- Rheumatology DepartmentSanta Maria Centro Hospital, Academic Medical Centre of Lisbon, Lisboa, Portugal
| | - Peter Böhm
- Patientpartner, German League against Rheumatism, Bonn, Germany
| | - Kees Bosman
- Patientpartner, Nationale Vereniging ReumaZorg, Nijmegen, The Netherlands
| | - Tony J Kenna
- Translational Research Institute, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Simon J Powis
- School of Medicine, University of St Andrews School of Medicine, St Andrews, UK
| | - Maxime Breban
- Service de Rheumatology, Hospital Ambroise-Pare, Boulogne-Billancourt, France
- Infection & Inflammation, UMR 1173, Inserm, UVSQ, University Paris-Saclay, Montigny-le-Bretonneux, France
| | - Ahmet Gul
- Division of Rheumatology, Istanbul University Istanbul Faculty of Medicine, Istanbul, Turkey
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Centre for Musculoskeletal Research, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Center, The University of Manchester, Manchester, UK
- NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester University NHS Foundation Trust, Manchester, UK
| | - Rik Ju Lories
- Department of Rheumatology, KU Leuven University Hospitals Leuven, Leuven, Belgium
- Skeletal Biology and Engineering Research Center, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Johannes Nowatzky
- Department of Medicine, Division of Rheumatology, NYU Langone Behçet's Disease Program, NYU Langone Ocular Rheumatology Program, New York University Grossman School of Medicine, New York University, New York, New York, USA
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
| | - Gerrit Jan Wolbink
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department Immunopathology, Sanquin Research, Amsterdam, The Netherlands
| | - Dennis G McGonagle
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
- NIHR Leeds Biomedical Research Centre, Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | - Franktien Turkstra
- Amsterdam Rheumatology and immunology Center (ARC)| Reade, Amsterdam, The Netherlands
- Department of Rheumatology, Reade Hoofdlocatie Dr Jan van Breemenstraat, Amsterdam, The Netherlands
| |
Collapse
|
7
|
Kenyon M, Maguire S, Rueda Pujol A, O'Shea F, McManus R. The genetic backbone of ankylosing spondylitis: how knowledge of genetic susceptibility informs our understanding and management of disease. Rheumatol Int 2022; 42:2085-2095. [PMID: 35939079 PMCID: PMC9548471 DOI: 10.1007/s00296-022-05174-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 07/20/2022] [Indexed: 11/25/2022]
Abstract
Ankylosing spondylitis (AS) is a seronegative, chronic inflammatory arthritis with high genetic burden. A strong association with HLA-B27 has long been established, but to date its contribution to disease aetiology remains unresolved. Recent insights through genome wide studies reveal an increasing array of immunogenetic risk variants extraneous to the HLA complex in AS cohorts. These genetic traits build a complex profile of disease causality, highlighting several molecular pathways associated with the condition. This and other evidence strongly implicates T-cell-driven pathology, revolving around the T helper 17 cell subset as an important contributor to disease. This prominence of the T helper 17 cell subset has presented the opportunity for therapeutic intervention through inhibition of interleukins 17 and 23 which drive T helper 17 activity. While targeting of interleukin 17 has proven effective, this success has not been replicated with interleukin 23 inhibition in AS patients. Evidence points to significant genetic diversity between AS patients which may, in part, explain the observed refractoriness among a proportion of patients. In this review we discuss the impact of genetics on our understanding of AS and its relationship with closely linked pathologies. We further explore how genetics can be used in the development of therapeutics and as a tool to assist in the diagnosis and management of patients. This evidence indicates that genetic profiling should play a role in the clinician’s choice of therapy as part of a precision medicine strategy towards disease management.
Collapse
Affiliation(s)
- Marcus Kenyon
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland.
| | - Sinead Maguire
- Department of Rheumatology, St James' Hospital, Dublin, Ireland
| | - Anna Rueda Pujol
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Finbar O'Shea
- Department of Rheumatology, St James' Hospital, Dublin, Ireland
| | - Ross McManus
- Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
8
|
Hanson AL, Sahhar J, Ngian GS, Roddy J, Walker J, Stevens W, Nikpour M, Assassi S, Proudman S, Mayes MD, Kenna TJ, Brown MA. Contribution of HLA and KIR Alleles to Systemic Sclerosis Susceptibility and Immunological and Clinical Disease Subtypes. Front Genet 2022; 13:913196. [PMID: 35754823 PMCID: PMC9214260 DOI: 10.3389/fgene.2022.913196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 05/03/2022] [Indexed: 01/24/2023] Open
Abstract
Systemic sclerosis (SSc) is an autoinflammatory, fibrotic condition of unknown aetiology. The presence of detectable autoantibodies against diverse nuclear antigens, as well as strong HLA associations with disease, suggest autoimmune involvement, however the links between endogenous and exogenous risk factors and SSc pathology remain undetermined. We have conducted a genetic analysis of HLA inheritance in two independent and meta-analysed cohorts of 1,465 SSc cases and 13,273 controls, including stratified association analyses in clinical and autoantibody positive subgroups of disease. Additionally, we have used patient genotypes to impute gene dosages across the KIR locus, encoding paired activating and inhibitory lymphocyte receptors for Class I HLA ligands, to conduct the largest analysis of KIR-HLA epistatic interactions in SSc to date. We confirm previous Class II HLA associations with SSc risk and report a new Class I association with haplotype HLA-B*44:03-HLA-C*16:01 at genome-wide significance (GWS). We further report statistically significant HLA associations with clinical and serological subtypes of disease through direct case-case comparison, and report a new association of HLA-DRB1*15:01, previously shown to bind topoisomerase-1 derived peptides, with anti-topoisomerase (ATA) positive disease. Finally, we identify genetic epistasis between KIRs and HLA class I ligands, suggesting genetic modulation of lymphocyte activation may further contribute to an individual’s underlying disease risk. Taken together, these findings support future functional investigation into endogenous immunological and environmental stimuli for disrupted immune tolerance in SSc.
Collapse
Affiliation(s)
- Aimee L Hanson
- Department of Medicine, University of Queensland, Brisbane, QLD, Australia.,Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Joanne Sahhar
- Department of Medicine, Clayton and Monash Health, Monash University, Melbourne, VIC, Australia
| | - Gene-Siew Ngian
- Department of Medicine, Clayton and Monash Health, Monash University, Melbourne, VIC, Australia
| | - Janet Roddy
- Department of Rheumatology, Royal Perth Hospital, Perth, WA, Australia
| | - Jennifer Walker
- Rheumatology Unit, Flinders Medical Centre, Adelaide, SA, Australia
| | - Wendy Stevens
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, VIC, Australia.,Department of Rheumatology, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Mandana Nikpour
- Department of Medicine, University of Melbourne, St Vincent's Hospital, Melbourne, VIC, Australia.,Department of Rheumatology, St Vincent's Hospital, Melbourne, VIC, Australia
| | - Shervin Assassi
- Division of Rheumatology, University of Texas, Houston, TX, United States
| | - Susanna Proudman
- Rheumtology Unit, Royal Adelaide Hospital, Adelaide, SA, Australia.,Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Maureen D Mayes
- Division of Rheumatology, University of Texas, Houston, TX, United States
| | - Tony J Kenna
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD, Australia
| | - Matthew A Brown
- Genomics England, Charterhouse Square, London, United Kingdom.,Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom
| |
Collapse
|
9
|
Laborde CM, Larzabal L, González-Cantero Á, Castro-Santos P, Díaz-Peña R. Advances of Genomic Medicine in Psoriatic Arthritis. J Pers Med 2022; 12:jpm12010035. [PMID: 35055350 PMCID: PMC8780979 DOI: 10.3390/jpm12010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/16/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Psoriatic arthritis (PsA) is a common type of inflammatory arthritis found in up to 40% of patients with psoriasis. Although early diagnosis is important for reducing the risk of irreversible structural damage, there are no adequate screening tools for this purpose, and there are no clear markers of predisposition to the disease. Much evidence indicates that PsA disorder is complex and heterogeneous, where genetic and environmental factors converge to trigger inflammatory events and the development of the disease. Nevertheless, the etiologic events that underlie PsA are complex and not completely understood. In this review, we describe the existing data in PsA in order to highlight the need for further research in this disease to progress in the knowledge of its pathobiology and to obtain early diagnosis tools for these patients.
Collapse
Affiliation(s)
| | | | - Álvaro González-Cantero
- Department of Dermatology, Hospital Universitario Ramon y Cajal, 28034 Madrid, Spain;
- Faculty of Medicine, Universidad Francisco de Vitoria, Ctra. Pozuelo-Majadahonda, 28223 Pozuelo de Alarcón, 28034 Madrid, Spain
| | - Patricia Castro-Santos
- Immunology, Centro de Investigaciones Biomédicas (CINBIO), Universidad de Vigo, 36310 Vigo, Spain;
| | - Roberto Díaz-Peña
- Faculty of Health Sciences, Universidad Autónoma de Chile, Talca 3460000, Chile
- Correspondence: or ; Tel.: +34-981-955-073
| |
Collapse
|
10
|
Bian B, Couvy-Duchesne B, Wray NR, McRae AF. OUP accepted manuscript. Brain Commun 2022; 4:fcac078. [PMID: 35441133 PMCID: PMC9014537 DOI: 10.1093/braincomms/fcac078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/08/2021] [Accepted: 03/28/2022] [Indexed: 11/13/2022] Open
Abstract
Genetic variants in the human leukocyte antigen and killer cell immunoglobulin-like receptor regions have been associated with many brain-related diseases, but how they shape brain structure and function remains unclear. To identify the genetic variants in HLA and KIR genes associated with human brain phenotypes, we performed a genetic association study of ∼30 000 European unrelated individuals using brain MRI phenotypes generated by the UK Biobank (UKB). We identified 15 HLA alleles in HLA class I and class II genes significantly associated with at least one brain MRI-based phenotypes (P < 5 × 10−8). These associations converged on several main haplotypes within the HLA. In particular, the human leukocyte antigen alleles within an ancestral haplotype 8.1 were associated with multiple MRI measures, including grey matter volume, cortical thickness (TH) and diffusion MRI (dMRI) metrics. These alleles have been strongly associated with schizophrenia. Additionally, associations were identified between HLA-DRB1*04∼DQA1*03:01∼DQB1*03:02 and isotropic volume fraction of diffusion MRI in multiple white matter tracts. This haplotype has been reported to be associated with Parkinson’s disease. These findings suggest shared genetic associations between brain MRI biomarkers and brain-related diseases. Additionally, we identified 169 associations between the complement component 4 (C4) gene and imaging phenotypes. We found that C4 gene copy number was associated with cortical TH and dMRI metrics. No KIR gene copy numbers were associated with image-derived phenotypes at genome-wide threshold. To address the multiple testing burden in the phenome-wide association study, we performed a multi-trait association analysis using trait-based association test that uses extended Simes procedure and identified MRI image-specific associations. This study contributes to insight into how critical immune genes affect brain-related traits as well as the development of neurological and neuropsychiatric disorders.
Collapse
Affiliation(s)
- Beilei Bian
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Baptiste Couvy-Duchesne
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Paris Brain Institute, CNRS, INRIA, Paris, France
| | - Naomi R. Wray
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Allan F. McRae
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
- Correspondence to: Allan F. McRae The University of Queensland Brisbane, QLD 4072, Australia E-mail:
| |
Collapse
|
11
|
Barbosa CRR, Barton J, Shepherd AJ, Mishto M. Mechanistic diversity in MHC class I antigen recognition. Biochem J 2021; 478:4187-4202. [PMID: 34940832 PMCID: PMC8786304 DOI: 10.1042/bcj20200910] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/20/2022]
Abstract
Throughout its evolution, the human immune system has developed a plethora of strategies to diversify the antigenic peptide sequences that can be targeted by the CD8+ T cell response against pathogens and aberrations of self. Here we provide a general overview of the mechanisms that lead to the diversity of antigens presented by MHC class I complexes and their recognition by CD8+ T cells, together with a more detailed analysis of recent progress in two important areas that are highly controversial: the prevalence and immunological relevance of unconventional antigen peptides; and cross-recognition of antigenic peptides by the T cell receptors of CD8+ T cells.
Collapse
Affiliation(s)
- Camila R. R. Barbosa
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| | - Justin Barton
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Adrian J. Shepherd
- Department of Biological Sciences and Institute of Structural and Molecular Biology, Birkbeck, University of London, WC1E 7HX London, U.K
| | - Michele Mishto
- Centre for Inflammation Biology and Cancer Immunology (CIBCI) & Peter Gorer Department of Immunobiology, King's College London, SE1 1UL London, U.K
- Francis Crick Institute, NW1 1AT London, U.K
| |
Collapse
|
12
|
Gulino GR, Van Mechelen M, Lories R. Cellular and molecular diversity in spondyloarthritis. Semin Immunol 2021; 58:101521. [PMID: 34763975 DOI: 10.1016/j.smim.2021.101521] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/03/2021] [Indexed: 12/14/2022]
Abstract
The spondyloarthritides are a cluster of inflammatory rheumatic diseases characterized by different diagnostic entities with heterogeneous phenotypes. The current classification system groups spondyloarthritis patients in two main categories, axial and peripheral spondyloarthritis, providing a framework wherein the clinical picture guides the treatment. However, the heterogeneity of the clinical manifestations of the pathologies, even when residing in the same group, highlights the importance of analyzing the smallest features of each entity to understand how different cellular subsets evolve, what the underlying mechanisms are and what biological markers can be identified and validated to evaluate the stage of disease and the corresponding efficacy of treatments. In this review, we will focus mostly on axial spondyloarthritis, report current knowledge concerning the cellular populations involved in its pathophysiology, and their molecular diversity. We will discuss the implications of such a diversity, and their meaning in terms of patients' stratification.
Collapse
Affiliation(s)
- G R Gulino
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium
| | - M Van Mechelen
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Belgium
| | - R Lories
- Department of Development and Regeneration, Skeletal Biology and Engineering Research Center, Laboratory of Tissue Homeostasis and Disease, KU Leuven, Belgium; Division of Rheumatology, University Hospitals Leuven, Belgium.
| |
Collapse
|
13
|
Rosas-Madrigal S, Villarreal-Molina MT, Flores-Rivera J, Rivas-Alonso V, Macias-Kauffer LR, Ordoñez G, Chima-Galán MDC, Acuña-Alonzo V, Macín-Pérez G, Barquera R, Granados J, Valle-Rios R, Corona T, Carnevale A, Romero-Hidalgo S. Interaction of HLA Class II rs9272219 and TMPO rs17028450 (Arg690Cys) Variants Affects Neuromyelitis Optica Spectrum Disorder Susceptibility in an Admixed Mexican Population. Front Genet 2021; 12:647343. [PMID: 34335680 PMCID: PMC8320513 DOI: 10.3389/fgene.2021.647343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 06/23/2021] [Indexed: 12/02/2022] Open
Abstract
Neuromyelitis Optica Spectrum Disorder (NMOSD) is a demyelinating autoimmune disease of the central nervous system, more prevalent in individuals of non-European ancestry. Few studies have analyzed genetic risk factors in NMOSD, and HLA class II gene variation has been associated NMOSD risk in various populations including Mexicans. Thymopoietin (TMPO) has not been tested as a candidate gene for NMOSD or other autoimmune disease, however, experimental evidence suggests this gene may be involved in negative selection of autoreactive T cells and autoimmunity. We thus investigated whether the missense TMPO variant rs17028450 (Arg630Cys, frequent in Latin America) is associated with NMOSD, and whether this variant shows an interaction with HLA-class II rs9272219, previously associated with NMOSD risk. A total of 119 Mexican NMOSD patients, 1208 controls and 357 Native Mexican individuals were included. The HLA rs9272219 “T” risk allele frequency ranged from 21 to 68%, while the rs17028450 “T” minor allele frequency was as high as 18% in Native Mexican groups. Both rs9272219 and rs17028450 were significantly associated with NMOSD risk under additive models (OR = 2.48; p = 8 × 10–10 and OR = 1.59; p = 0.0075, respectively), and a significant interaction between both variants was identified with logistic regression models (p = 0.048). Individuals bearing both risk alleles had an estimated 3.9-fold increased risk of NMOSD. To our knowledge, this is the first study reporting an association of TMPO gene variation with an autoimmune disorder and the interaction of specific susceptibility gene variants, that may contribute to the genetic architecture of NMOSD in admixed Latin American populations.
Collapse
Affiliation(s)
- Sandra Rosas-Madrigal
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | | | - José Flores-Rivera
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), Mexico City, Mexico
| | - Verónica Rivas-Alonso
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), Mexico City, Mexico
| | - Luis Rodrigo Macias-Kauffer
- Unidad de Genómica de Poblaciones Aplicada a La Salud, Facultad de Química, UNAM/INMEGEN, Mexico City, Mexico
| | | | | | | | | | - Rodrigo Barquera
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Julio Granados
- Departamento de Trasplantes, Instituto Nacional de Ciencias Medicas y Nutrición "Salvador Zubirán", Mexico City, Mexico
| | - Ricardo Valle-Rios
- División de Investigación, Facultad de Medicina, Unidad de Investigación en Inmunología y Proteómica, Hospital Infantil de México Federico Gómez, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Teresa Corona
- Laboratorio Clínico de Enfermedades Neurodegenerativas, Instituto Nacional de Neurología y Neurocirugía "Manuel Velasco Suarez" (INNN), Mexico City, Mexico
| | - Alessandra Carnevale
- Laboratorio de Enfermedades Mendelianas, Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| | - Sandra Romero-Hidalgo
- Departamento de Genómica Computacional, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City, Mexico
| |
Collapse
|
14
|
Hosseinikhah SM, Barani M, Rahdar A, Madry H, Arshad R, Mohammadzadeh V, Cucchiarini M. Nanomaterials for the Diagnosis and Treatment of Inflammatory Arthritis. Int J Mol Sci 2021; 22:3092. [PMID: 33803502 PMCID: PMC8002885 DOI: 10.3390/ijms22063092] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/04/2021] [Accepted: 03/16/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomaterials have received increasing attention due to their unique chemical and physical properties for the treatment of rheumatoid arthritis (RA), the most common complex multifactorial joint-associated autoimmune inflammatory disorder. RA is characterized by an inflammation of the synovium with increased production of proinflammatory cytokines (IL-1, IL-6, IL-8, and IL-10) and by the destruction of the articular cartilage and bone, and it is associated with the development of cardiovascular disorders such as heart attack and stroke. While a number of imaging tools allow for the monitoring and diagnosis of inflammatory arthritis, and despite ongoing work to enhance their sensitivity and precision, the proper assessment of RA remains difficult particularly in the early stages of the disease. Our goal here is to describe the benefits of applying various nanomaterials as next-generation RA imaging and detection tools using contrast agents and nanosensors and as improved drug delivery systems for the effective treatment of the disease.
Collapse
Affiliation(s)
- Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran;
| | - Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 761691411, Iran;
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 538-9861, Iran
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| | - Rabia Arshad
- Department of Pharmacy, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Vahideh Mohammadzadeh
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Science, Mashhad 91886-17871, Iran;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, D-66421 Homburg/Saar, Germany;
| |
Collapse
|
15
|
Kuiper JJW, Venema WJ. HLA-A29 and Birdshot Uveitis: Further Down the Rabbit Hole. Front Immunol 2020; 11:599558. [PMID: 33262772 PMCID: PMC7687429 DOI: 10.3389/fimmu.2020.599558] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/16/2020] [Indexed: 12/26/2022] Open
Abstract
HLA class I alleles constitute established risk factors for non-infectious uveitis and preemptive genotyping of HLA class I alleles is standard practice in the diagnostic work-up. The HLA-A29 serotype is indispensable to Birdshot Uveitis (BU) and renders this enigmatic eye condition a unique model to better understand how the antigen processing and presentation machinery contributes to non-infectious uveitis or chronic inflammatory conditions in general. This review will discuss salient points regarding the protein structure of HLA-A29 and how key amino acid positions impact the peptide binding preference and interaction with T cells. We discuss to what extent the risk genes ERAP1 and ERAP2 uniquely affect HLA-A29 and how the discovery of a HLA-A29-specific submotif may impact autoantigen discovery. We further provide a compelling argument to solve the long-standing question why BU only affects HLA-A29-positive individuals from Western-European ancestry by exploiting data from the 1000 Genomes Project. We combine novel insights from structural and immunopeptidomic studies and discuss the functional implications of genetic associations across the HLA class I antigen presentation pathway to refine the etiological basis of Birdshot Uveitis.
Collapse
Affiliation(s)
- Jonas J. W. Kuiper
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| | - Wouter J. Venema
- Department of Ophthalmology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, University of Utrecht, Utrecht, Netherlands
| |
Collapse
|