1
|
Seidler JF, Sträßer K. Understanding nuclear mRNA export: Survival under stress. Mol Cell 2024; 84:3681-3691. [PMID: 39366354 DOI: 10.1016/j.molcel.2024.08.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/13/2024] [Accepted: 08/23/2024] [Indexed: 10/06/2024]
Abstract
Nuclear messenger RNA (mRNA) export is vital for cell survival under both physiological and stress conditions. To cope with stress, cells block bulk mRNA export while selectively exporting stress-specific mRNAs. Under physiological conditions, nuclear adaptor proteins recruit the mRNA exporter to the mRNA for export. By contrast, during stress conditions, the mRNA exporter is likely directly recruited to stress-specific mRNAs at their transcription sites to facilitate selective mRNA export. In this review, we summarize our current understanding of nuclear mRNA export. Importantly, we explore insights into the mechanisms that block bulk mRNA export and facilitate transcript-specific mRNA export under stress, highlighting the gaps that still need to be filled.
Collapse
Affiliation(s)
| | - Katja Sträßer
- Institute of Biochemistry, FB08, Justus Liebig University, 35392 Giessen, Germany; Cardio-Pulmonary Institute (CPI), EXC 2026, 35392 Giessen, Germany.
| |
Collapse
|
2
|
Heinrich S, Hondele M, Marchand D, Derrer CP, Zedan M, Oswald A, Malinovska L, Uliana F, Khawaja S, Mancini R, Grunwald D, Weis K. Glucose stress causes mRNA retention in nuclear Nab2 condensates. Cell Rep 2024; 43:113593. [PMID: 38113140 DOI: 10.1016/j.celrep.2023.113593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 10/12/2023] [Accepted: 11/30/2023] [Indexed: 12/21/2023] Open
Abstract
Nuclear mRNA export via nuclear pore complexes is an essential step in eukaryotic gene expression. Although factors involved in mRNA transport have been characterized, a comprehensive mechanistic understanding of this process and its regulation is lacking. Here, we use single-RNA imaging in yeast to show that cells use mRNA retention to control mRNA export during stress. We demonstrate that, upon glucose withdrawal, the essential RNA-binding factor Nab2 forms RNA-dependent condensate-like structures in the nucleus. This coincides with a reduced abundance of the DEAD-box ATPase Dbp5 at the nuclear pore. Depleting Dbp5, and consequently blocking mRNA export, is necessary and sufficient to trigger Nab2 condensation. The state of Nab2 condensation influences the extent of nuclear mRNA accumulation and can be recapitulated in vitro, where Nab2 forms RNA-dependent liquid droplets. We hypothesize that cells use condensation to regulate mRNA export and control gene expression during stress.
Collapse
Affiliation(s)
- Stephanie Heinrich
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland.
| | - Maria Hondele
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland; Biozentrum, Center for Molecular Life Sciences, University of Basel, 4056 Basel, Switzerland
| | - Désirée Marchand
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Carina Patrizia Derrer
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Mostafa Zedan
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Alexandra Oswald
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Liliana Malinovska
- Department of Biology, Institute of Molecular Systems Biology, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Federico Uliana
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Sarah Khawaja
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - Roberta Mancini
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland
| | - David Grunwald
- University of Massachusetts Chan Medical School, RNA Therapeutics Institute, Worcester, MA 01605, USA
| | - Karsten Weis
- Department of Biology, Institute of Biochemistry, Swiss Federal Institute of Technology (ETH), 8093 Zurich, Switzerland.
| |
Collapse
|
3
|
Arul Nambi Rajan A, Asada R, Montpetit B. Gle1 is required for tRNA to stimulate Dbp5 ATPase activity in vitro and promote Dbp5-mediated tRNA export in vivo in Saccharomyces cerevisiae. eLife 2024; 12:RP89835. [PMID: 38189406 PMCID: PMC10945473 DOI: 10.7554/elife.89835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024] Open
Abstract
Cells must maintain a pool of processed and charged transfer RNAs (tRNA) to sustain translation capacity and efficiency. Numerous parallel pathways support the processing and directional movement of tRNA in and out of the nucleus to meet this cellular demand. Recently, several proteins known to control messenger RNA (mRNA) transport were implicated in tRNA export. The DEAD-box Protein 5, Dbp5, is one such example. In this study, genetic and molecular evidence demonstrates that Dbp5 functions parallel to the canonical tRNA export factor Los1. In vivo co-immunoprecipitation data further shows Dbp5 is recruited to tRNA independent of Los1, Msn5 (another tRNA export factor), or Mex67 (mRNA export adaptor), which contrasts with Dbp5 recruitment to mRNA that is abolished upon loss of Mex67 function. However, as with mRNA export, overexpression of Dbp5 dominant-negative mutants indicates a functional ATPase cycle and that binding of Dbp5 to Gle1 is required by Dbp5 to direct tRNA export. Biochemical characterization of the Dbp5 catalytic cycle demonstrates the direct interaction of Dbp5 with tRNA (or double-stranded RNA) does not activate Dbp5 ATPase activity, rather tRNA acts synergistically with Gle1 to fully activate Dbp5. These data suggest a model where Dbp5 directly binds tRNA to mediate export, which is spatially regulated via Dbp5 ATPase activation at nuclear pore complexes by Gle1.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, DavisDavisUnited States
| | - Ryuta Asada
- Department of Viticulture and Enology, University of California, DavisDavisUnited States
| | - Ben Montpetit
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California, DavisDavisUnited States
- Department of Viticulture and Enology, University of California, DavisDavisUnited States
| |
Collapse
|
4
|
Rajan AAN, Asada R, Montpetit B. Gle1 is required for tRNA to stimulate Dbp5 ATPase activity in vitro and to promote Dbp5 mediated tRNA export in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547072. [PMID: 37425677 PMCID: PMC10327206 DOI: 10.1101/2023.06.29.547072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Cells must maintain a pool of processed and charged transfer RNAs (tRNA) to sustain translation capacity and efficiency. Numerous parallel pathways support the processing and directional movement of tRNA in and out of the nucleus to meet this cellular demand. Recently, several proteins known to control messenger RNA (mRNA) transport were implicated in tRNA export. The DEAD-box Protein 5, Dbp5, is one such example. In this study, genetic and molecular evidence demonstrates that Dbp5 functions parallel to the canonical tRNA export factor Los1. In vivo co-immunoprecipitation data further shows Dbp5 is recruited to tRNA independent of Los1, Msn5 (another tRNA export factor), or Mex67 (mRNA export adaptor), which contrasts with Dbp5 recruitment to mRNA that is abolished upon loss of Mex67 function. However, as with mRNA export, overexpression of Dbp5 dominant-negative mutants indicates a functional ATPase cycle and that binding of Dbp5 to Gle1 is required by Dbp5 to direct tRNA export. Biochemical characterization of the Dbp5 catalytic cycle demonstrates the direct interaction of Dbp5 with tRNA (or double stranded RNA) does not activate Dbp5 ATPase activity, rather tRNA acts synergistically with Gle1 to fully activate Dbp5. These data suggest a model where Dbp5 directly binds tRNA to mediate export, which is spatially regulated via Dbp5 ATPase activation at nuclear pore complexes by Gle1.
Collapse
Affiliation(s)
- Arvind Arul Nambi Rajan
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
| | - Ryuta Asada
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| | - Ben Montpetit
- Biochemistry, Molecular, Cellular and Developmental Biology Graduate Group, University of California Davis, Davis, CA, USA
- Department of Viticulture and Enology, University of California Davis, Davis, CA, USA
| |
Collapse
|
5
|
Weis K, Hondele M. The Role of DEAD-Box ATPases in Gene Expression and the Regulation of RNA-Protein Condensates. Annu Rev Biochem 2022; 91:197-219. [PMID: 35303788 DOI: 10.1146/annurev-biochem-032620-105429] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
DEAD-box ATPases constitute a very large protein family present in all cells, often in great abundance. From bacteria to humans, they play critical roles in many aspects of RNA metabolism, and due to their widespread importance in RNA biology, they have been characterized in great detail at both the structural and biochemical levels. DEAD-box proteins function as RNA-dependent ATPases that can unwind short duplexes of RNA, remodel ribonucleoprotein (RNP) complexes, or act as clamps to promote RNP assembly. Yet, it often remains enigmatic how individual DEAD-box proteins mechanistically contribute to specific RNA-processing steps. Here, we review the role of DEAD-box ATPases in the regulation of gene expression and propose that one common function of these enzymes is in the regulation of liquid-liquid phase separation of RNP condensates. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Karsten Weis
- Institute of Biochemistry, Department of Biology, ETH Zurich, Zurich, Switzerland;
| | - Maria Hondele
- Biozentrum, University of Basel, Basel, Switzerland;
| |
Collapse
|
6
|
Karbstein K. Attacking a DEAD problem: The role of DEAD-box ATPases in ribosome assembly and beyond. Methods Enzymol 2022; 673:19-38. [PMID: 35965007 PMCID: PMC10154911 DOI: 10.1016/bs.mie.2022.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
DEAD-box proteins are a subfamily of ATPases with similarity to RecA-type helicases that are involved in all aspects of RNA Biology. Despite their potential to regulate these processes via their RNA-dependent ATPase activity, their roles remain poorly characterized. Here I describe a roadmap to study these proteins in the context of ribosome assembly, the process that utilizes more than half of all DEAD-box proteins encoded in the yeast genome.
Collapse
Affiliation(s)
- Katrin Karbstein
- Department of Integrative Structural and Computational Biology, Scripps Florida, Jupiter, FL, United States; HHMI Faculty Scholar, Chevy Chase, MD, United States; The Skaggs Graduate School of Chemical and Biological Sciences, Scripps Florida, Jupiter, FL, United States.
| |
Collapse
|
7
|
Hanley SE, Willis SD, Cooper KF. Snx4-assisted vacuolar targeting of transcription factors defines a new autophagy pathway for controlling ATG expression. Autophagy 2021; 17:3547-3565. [PMID: 33678121 PMCID: PMC8632336 DOI: 10.1080/15548627.2021.1877934] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 01/14/2021] [Indexed: 12/18/2022] Open
Abstract
Autophagy, in part, is controlled by the repression and activation of autophagy-related (ATG) genes. Here, we describe a new selective autophagy pathway that targets functional transcriptional regulators to control their activity. This pathway is activated in response to nitrogen starvation and recycles transcriptional activators (Msn2 and Rim15) and a repressor (Ssn2/Med13) of ATG expression. Further analysis of Ssn2/Med13 vacuolar proteolysis revealed that this pathway utilizes the core autophagic machinery. However, it is independent of known nucleophagy mechanisms, receptor proteins, and the scaffold protein Atg11. Instead, Ssn2/Med13 exits the nucleus through the nuclear pore complex (NPC) and associates with the cytoplasmic nucleoporin Gle1, a member of the RNA remodeling complex. Dbp5 and Nup159, that act in concert with Gle1, are also required for Ssn2/Med13 clearance. Ssn2/Med13 is retrieved from the nuclear periphery and degraded by Atg17-initiated phagophores anchored to the vacuole. Efficient transfer to phagophores depends on the sorting nexin heterodimer Snx4/Atg24-Atg20, which binds to Atg17, and relocates to the perinucleus following nitrogen starvation. To conclude, this pathway defines a previously undescribed autophagy mechanism that targets select transcriptional regulators for rapid vacuolar proteolysis, utilizing the RNA remodeling complex, the sorting nexin heterodimer Snx4-Atg20, Atg17, and the core autophagic machinery. It is physiologically relevant as this Snx4-assisted vacuolar targeting pathway permits cells to fine-tune the autophagic response by controlling the turnover of both positive and negative regulators of ATG transcription.Abbreviations: AIM: Atg8 interacting motif; ATG: autophagy-related; CKM: CDK8 kinase module; IDR: intrinsically disordered region; IP6: phosphoinositide inositol hexaphosphate; NPC: nuclear pore complex; PAS: phagophore assembly site; UPS: ubiquitin-proteasomal system.
Collapse
Affiliation(s)
- Sara E. Hanley
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA
| | - Stephen D. Willis
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA
| | - Katrina F. Cooper
- Department of Molecular Biology, Graduate School of Biomedical Sciences, Rowan University, Stratford, NJ, USA
| |
Collapse
|
8
|
De Magistris P. The Great Escape: mRNA Export through the Nuclear Pore Complex. Int J Mol Sci 2021; 22:ijms222111767. [PMID: 34769195 PMCID: PMC8583845 DOI: 10.3390/ijms222111767] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 10/18/2021] [Accepted: 10/21/2021] [Indexed: 12/30/2022] Open
Abstract
Nuclear export of messenger RNA (mRNA) through the nuclear pore complex (NPC) is an indispensable step to ensure protein translation in the cytoplasm of eukaryotic cells. mRNA is not translocated on its own, but it forms ribonuclear particles (mRNPs) in association with proteins that are crucial for its metabolism, some of which; like Mex67/MTR2-NXF1/NXT1; are key players for its translocation to the cytoplasm. In this review, I will summarize our current body of knowledge on the basic characteristics of mRNA export through the NPC. To be granted passage, the mRNP cargo needs to bind transport receptors, which facilitate the nuclear export. During NPC transport, mRNPs undergo compositional and conformational changes. The interactions between mRNP and the central channel of NPC are described; together with the multiple quality control steps that mRNPs undergo at the different rings of the NPC to ensure only proper export of mature transcripts to the cytoplasm. I conclude by mentioning new opportunities that arise from bottom up approaches for a mechanistic understanding of nuclear export.
Collapse
|