1
|
Bolkent S. Cellular and molecular mechanisms of asymmetric stem cell division in tissue homeostasis. Genes Cells 2024; 29:1099-1110. [PMID: 39379096 PMCID: PMC11609605 DOI: 10.1111/gtc.13172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 09/09/2024] [Accepted: 09/25/2024] [Indexed: 10/10/2024]
Abstract
The asymmetric cell division determines cell diversity and distinct sibling cell fates by mechanisms linked to mitosis. Many adult stem cells divide asymmetrically to balance self-renewal and differentiation. The process of asymmetric cell division involves an axis of polarity and, second, the localization of cell fate determinants at the cell poles. Asymmetric division of stem cells is achieved by intrinsic and extrinsic fate determinants such as signaling molecules, epigenetics factors, molecules regulating gene expression, and polarized organelles. At least some stem cells perform asymmetric and symmetric cell divisions during development. Asymmetric division ensures that the number of stem cells remains constant throughout life. The asymmetric division of stem cells plays an important role in biological events such as embryogenesis, tissue regeneration and carcinogenesis. This review summarizes recent advances in the regulation of asymmetric stem cell division in model organisms.
Collapse
Affiliation(s)
- Sema Bolkent
- Cerrahpaşa Faculty of Medicine, Department of Medical BiologyIstanbul University‐CerrahpaşaCerrahpaşaIstanbulTurkey
| |
Collapse
|
2
|
Xie Y, Wang M, Mo B, Liang C. Plant kinetochore complex: composition, function, and regulation. FRONTIERS IN PLANT SCIENCE 2024; 15:1467236. [PMID: 39464281 PMCID: PMC11503545 DOI: 10.3389/fpls.2024.1467236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/25/2024] [Indexed: 10/29/2024]
Abstract
The kinetochore complex, an important protein assembly situated on the centromere, plays a pivotal role in chromosome segregation during cell division. Like in animals and fungi, the plant kinetochore complex is important for maintaining chromosome stability, regulating microtubule attachment, executing error correction mechanisms, and participating in signaling pathways to ensure accurate chromosome segregation. This review summarizes the composition, function, and regulation of the plant kinetochore complex, emphasizing the interactions of kinetochore proteins with centromeric DNAs (cenDNAs) and RNAs (cenRNAs). Additionally, the applications of the centromeric histone H3 variant (the core kinetochore protein CENH3, first identified as CENP-A in mammals) in the generation of ploidy-variable plants and synthesis of plant artificial chromosomes (PACs) are discussed. The review serves as a comprehensive roadmap for researchers delving into plant kinetochore exploration, highlighting the potential of kinetochore proteins in driving technological innovations in synthetic genomics and plant biotechnology.
Collapse
Affiliation(s)
- Yuqian Xie
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Mingliang Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Beixin Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| | - Chao Liang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, China
| |
Collapse
|
3
|
Fellmeth JE, Jang JK, Persaud M, Sturm H, Changela N, Parikh A, McKim KS. A dynamic population of prophase CENP-C is required for meiotic chromosome segregation. PLoS Genet 2023; 19:e1011066. [PMID: 38019881 PMCID: PMC10721191 DOI: 10.1371/journal.pgen.1011066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 12/14/2023] [Accepted: 11/14/2023] [Indexed: 12/01/2023] Open
Abstract
The centromere is an epigenetic mark that is a loading site for the kinetochore during meiosis and mitosis. This mark is characterized by the H3 variant CENP-A, known as CID in Drosophila. In Drosophila, CENP-C is critical for maintaining CID at the centromeres and directly recruits outer kinetochore proteins after nuclear envelope break down. These two functions, however, happen at different times in the cell cycle. Furthermore, in Drosophila and many other metazoan oocytes, centromere maintenance and kinetochore assembly are separated by an extended prophase. We have investigated the dynamics of function of CENP-C during the extended meiotic prophase of Drosophila oocytes and found that maintaining high levels of CENP-C for metaphase I requires expression during prophase. In contrast, CID is relatively stable and does not need to be expressed during prophase to remain at high levels in metaphase I of meiosis. Expression of CID during prophase can even be deleterious, causing ectopic localization to non-centromeric chromatin, abnormal meiosis and sterility. CENP-C prophase loading is required for multiple meiotic functions. In early meiotic prophase, CENP-C loading is required for sister centromere cohesion and centromere clustering. In late meiotic prophase, CENP-C loading is required to recruit kinetochore proteins. CENP-C is one of the few proteins identified in which expression during prophase is required for meiotic chromosome segregation. An implication of these results is that the failure to maintain recruitment of CENP-C during the extended prophase in oocytes would result in chromosome segregation errors in oocytes.
Collapse
Affiliation(s)
- Jessica E. Fellmeth
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Janet K. Jang
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Manisha Persaud
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Hannah Sturm
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Neha Changela
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Aashka Parikh
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| | - Kim S. McKim
- Waksman Institute and Department of Genetics, Rutgers, the State University of New Jersey, Piscataway, New Jersey, United States of America
| |
Collapse
|
4
|
Zion EH, Ringwalt D, Rinaldi K, Kahney EW, Li Y, Chen X. Old and newly synthesized histones are asymmetrically distributed in Drosophila intestinal stem cell divisions. EMBO Rep 2023; 24:e56404. [PMID: 37255015 PMCID: PMC10328082 DOI: 10.15252/embr.202256404] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 04/30/2023] [Accepted: 05/16/2023] [Indexed: 06/01/2023] Open
Abstract
We report that preexisting (old) and newly synthesized (new) histones H3 and H4 are asymmetrically partitioned during the division of Drosophila intestinal stem cells (ISCs). Furthermore, the inheritance patterns of old and new H3 and H4 in postmitotic cell pairs correlate with distinct expression patterns of Delta, an important cell fate gene. To understand the biological significance of this phenomenon, we expressed a mutant H3T3A to compromise asymmetric histone inheritance. Under this condition, we observe an increase in Delta-symmetric cell pairs and overpopulated ISC-like, Delta-positive cells. Single-cell RNA-seq assays further indicate that H3T3A expression compromises ISC differentiation. Together, our results indicate that asymmetric histone inheritance potentially contributes to establishing distinct cell identities in a somatic stem cell lineage, consistent with previous findings in Drosophila male germline stem cells.
Collapse
Affiliation(s)
- Emily H Zion
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Daniel Ringwalt
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | | | | | - Yingying Li
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
| | - Xin Chen
- Department of BiologyThe Johns Hopkins UniversityBaltimoreMDUSA
- Howard Hughes Medical InstituteBaltimoreMDUSA
| |
Collapse
|
5
|
Gleason RJ, Chen X. Epigenetic dynamics during germline development: insights from Drosophila and C. elegans. Curr Opin Genet Dev 2023; 78:102017. [PMID: 36549194 PMCID: PMC10100592 DOI: 10.1016/j.gde.2022.102017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/08/2022] [Accepted: 11/22/2022] [Indexed: 12/24/2022]
Abstract
Gametogenesis produces the only cell type within a metazoan that contributes both genetic and epigenetic information to the offspring. Extensive epigenetic dynamics are required to express or repress gene expression in a precise spatiotemporal manner. On the other hand, early embryos must be extensively reprogrammed as they begin a new life cycle, involving intergenerational epigenetic inheritance. Seminal work in both Drosophila and C. elegans has elucidated the role of various regulators of epigenetic inheritance, including (1) histones, (2) histone-modifying enzymes, and (3) small RNA-dependent epigenetic regulation in the maintenance of germline identity. This review highlights recent discoveries of epigenetic regulation during the stepwise changes of transcription and chromatin structure that takes place during germline stem cell self-renewal, maintenance of germline identity, and intergenerational epigenetic inheritance. Findings from these two species provide precedence and opportunity to extend relevant studies to vertebrates.
Collapse
Affiliation(s)
- Ryan J. Gleason
- Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| | - Xin Chen
- HHMI, Department of Biology, The Johns Hopkins University, 3400 N. Charles St., Baltimore, MD 21218, USA
| |
Collapse
|
6
|
Urban JA, Ranjan R, Chen X. Asymmetric Histone Inheritance: Establishment, Recognition, and Execution. Annu Rev Genet 2022; 56:113-143. [PMID: 35905975 PMCID: PMC10054593 DOI: 10.1146/annurev-genet-072920-125226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The discovery of biased histone inheritance in asymmetrically dividing Drosophila melanogaster male germline stem cells demonstrates one means to produce two distinct daughter cells with identical genetic material. This inspired further studies in different systems, which revealed that this phenomenon may be a widespread mechanism to introduce cellular diversity. While the extent of asymmetric histone inheritance could vary among systems, this phenomenon is proposed to occur in three steps: first, establishment of histone asymmetry between sister chromatids during DNA replication; second, recognition of sister chromatids carrying asymmetric histone information during mitosis; and third, execution of this asymmetry in the resulting daughter cells. By compiling the current knowledge from diverse eukaryotic systems, this review comprehensively details and compares known chromatin factors, mitotic machinery components, and cell cycle regulators that may contribute to each of these three steps. Also discussed are potential mechanisms that introduce and regulate variable histone inheritance modes and how these different modes may contribute to cell fate decisions in multicellular organisms.
Collapse
Affiliation(s)
- Jennifer A Urban
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA;
| | - Rajesh Ranjan
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| | - Xin Chen
- Department of Biology, The Johns Hopkins University, Baltimore, Maryland, USA; .,Howard Hughes Medical Institute, The Johns Hopkins University, Baltimore, Maryland, USA; ,
| |
Collapse
|
7
|
Mitotic drive in asymmetric epigenetic inheritance. Biochem Soc Trans 2022; 50:675-688. [PMID: 35437581 PMCID: PMC9162470 DOI: 10.1042/bst20200267] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/14/2023]
Abstract
Asymmetric cell division (ACD) produces two daughter cells with distinct cell fates. This division mode is widely used during development and by adult stem cells during tissue homeostasis and regeneration, which can be regulated by both extrinsic cues such as signaling molecules and intrinsic factors such as epigenetic information. While the DNA replication process ensures that the sequences of sister chromatids are identical, how epigenetic information is re-distributed during ACD has remained largely unclear in multicellular organisms. Studies of Drosophila male germline stem cells (GSCs) have revealed that sister chromatids incorporate pre-existing and newly synthesized histones differentially and segregate asymmetrically during ACD. To understand the underlying molecular mechanisms of this phenomenon, two key questions must be answered: first, how and when asymmetric histone information is established; and second, how epigenetically distinct sister chromatids are distinguished and segregated. Here, we discuss recent advances which help our understanding of this interesting and important cell division mode.
Collapse
|
8
|
Ghosh S, Lehner CF. Incorporation of CENP-A/CID into centromeres during early Drosophila embryogenesis does not require RNA polymerase II-mediated transcription. Chromosoma 2022; 131:1-17. [PMID: 35015118 PMCID: PMC9079035 DOI: 10.1007/s00412-022-00767-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/24/2022]
Abstract
In many species, centromere identity is specified epigenetically by special nucleosomes containing a centromere-specific histone H3 variant, designated as CENP-A in humans and CID in Drosophila melanogaster. After partitioning of centromere-specific nucleosomes onto newly replicated sister centromeres, loading of additional CENP-A/CID into centromeric chromatin is required for centromere maintenance in proliferating cells. Analyses with cultured cells have indicated that transcription of centromeric DNA by RNA polymerase II is required for deposition of new CID into centromere chromatin. However, a dependence of centromeric CID loading on transcription is difficult to reconcile with the notion that the initial embryonic stages appear to proceed in the absence of transcription in Drosophila, as also in many other animal species. To address the role of RNA polymerase II–mediated transcription for CID loading in early Drosophila embryos, we have quantified the effects of alpha-amanitin and triptolide on centromeric CID-EGFP levels. Our analyses demonstrate that microinjection of these two potent inhibitors of RNA polymerase II–mediated transcription has at most a marginal effect on centromeric CID deposition during progression through the early embryonic cleavage cycles. Thus, we conclude that at least during early Drosophila embryogenesis, incorporation of CID into centromeres does not depend on RNA polymerase II–mediated transcription.
Collapse
Affiliation(s)
- Samadri Ghosh
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Christian F Lehner
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
9
|
Jeffery D, Lochhead M, Almouzni G. CENP-A: A Histone H3 Variant with Key Roles in Centromere Architecture in Healthy and Diseased States. Results Probl Cell Differ 2022; 70:221-261. [PMID: 36348109 DOI: 10.1007/978-3-031-06573-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Centromeres are key architectural components of chromosomes. Here, we examine their construction, maintenance, and functionality. Focusing on the mammalian centromere- specific histone H3 variant, CENP-A, we highlight its coevolution with both centromeric DNA and its chaperone, HJURP. We then consider CENP-A de novo deposition and the importance of centromeric DNA recently uncovered with the added value from new ultra-long-read sequencing. We next review how to ensure the maintenance of CENP-A at the centromere throughout the cell cycle. Finally, we discuss the impact of disrupting CENP-A regulation on cancer and cell fate.
Collapse
Affiliation(s)
- Daniel Jeffery
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Marina Lochhead
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France
| | - Geneviève Almouzni
- Equipe Labellisée Ligue contre le Cancer, Institut Curie, PSL Research University, CNRS, Sorbonne Université, Nuclear Dynamics Unit, UMR3664, Paris, France.
| |
Collapse
|
10
|
Kochendoerfer AM, Modafferi F, Dunleavy EM. Centromere function in asymmetric cell division in Drosophila female and male germline stem cells. Open Biol 2021; 11:210107. [PMID: 34727723 PMCID: PMC8564616 DOI: 10.1098/rsob.210107] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The centromere is the constricted chromosomal region required for the correct separation of the genetic material at cell division. The kinetochore protein complex assembles at the centromere and captures microtubules emanating from the centrosome to orchestrate chromosome segregation in mitosis and meiosis. Asymmetric cell division (ACD) is a special type of mitosis that generates two daughter cells with different fates. Epigenetic mechanisms operating at the centromere have been proposed to contribute to ACD. Recent studies have shown that an asymmetric distribution of CENP-A-the centromere-specific histone H3 variant-between sister chromatids can bias chromosome segregation in ACD. In stem cells, this leads to non-random sister chromatid segregation, which can affect cell fate. These findings support the 'silent sister' hypothesis, according to which the mechanisms of ACD are epigenetically regulated through centromeres. Here, we review the recent data implicating centromeres in ACDs and cell fate in Drosophila melanogaster female and male germline stem cells.
Collapse
Affiliation(s)
- Antje M. Kochendoerfer
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Federica Modafferi
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| | - Elaine M. Dunleavy
- Centre for Chromosome Biology, Biomedical Sciences, National University of Ireland Galway, Galway H91 TK33, Ireland
| |
Collapse
|