1
|
Nakamura A, Masuya M, Shinmei M, Tawara I, Nosaka T, Ono R. Bahcc1 is critical for the aberrant epigenetic program in a mouse model of MLL-ENL-mediated leukemia. Blood Adv 2024; 8:2193-2206. [PMID: 38452334 PMCID: PMC11061229 DOI: 10.1182/bloodadvances.2023011320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 02/16/2024] [Accepted: 03/06/2024] [Indexed: 03/09/2024] Open
Abstract
ABSTRACT In leukemogenesis, genotoxic stress in hematopoietic stem and progenitor cells (HSPCs) drives individual context-dependent programs of malignant transformation. In light of the various differentiation stages of HSPCs based on a recently revised definition using CD150/CD48, our analyses showed that a subpopulation of long-term repopulating HSCs was most susceptible to MLL-ENL-mediated transformation. An analysis of the molecular mechanism identified Bromo-adjacent homology domain and coiled-coil containing 1 (Bahcc1), which encodes a reader molecule of trimethylated histone H3 lysine 27 (H3K27me3), as a candidate gene involved in distinct susceptibility to leukemic transformation. Interestingly, Bahcc1 was previously reported to be highly expressed in acute myeloid leukemia (AML) with an unfavorable prognosis, including some cases of MLL-rearranged AML. We found that MLL-ENL upregulated Bahcc1 through binding to its promoter, and that Bahcc1 was involved in MLL-ENL-mediated immortalization at least partly through repression of H3K27me3-marked Cdkn1c. Analyses using bone marrow transplantation in mice showed that depletion of Bahcc1 suppressed the leukemogenic activity of MLL-ENL. In a public database, high BAHCC1 expression was found to be associated with a poor prognosis in pediatric AML, in which BAHCC1 expression was significantly lower in MLL-AF9-AML than in other MLL-fusion-AML. These findings shed light on the distinct immortalization potential of HSPCs and suggest a novel MLL-fusion-Bahcc1 axis, which may lead to development of molecular targeted therapy against MLL-fusion-mediated leukemia.
Collapse
MESH Headings
- Animals
- Humans
- Mice
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Disease Models, Animal
- Epigenesis, Genetic
- Gene Expression Regulation, Leukemic
- Hematopoietic Stem Cells/metabolism
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/metabolism
- Myeloid-Lymphoid Leukemia Protein/genetics
- Myeloid-Lymphoid Leukemia Protein/metabolism
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
Collapse
Affiliation(s)
- Akihide Nakamura
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Masahiro Masuya
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Makoto Shinmei
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Isao Tawara
- Department of Hematology and Oncology, Mie University Graduate School of Medicine, Tsu, Japan
| | - Tetsuya Nosaka
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
| | - Ryoichi Ono
- Department of Microbiology and Molecular Genetics, Mie University Graduate School of Medicine, Tsu, Japan
| |
Collapse
|
2
|
Verma S, Lin X, Coulson-Thomas VJ. The Potential Reversible Transition between Stem Cells and Transient-Amplifying Cells: The Limbal Epithelial Stem Cell Perspective. Cells 2024; 13:748. [PMID: 38727284 PMCID: PMC11083486 DOI: 10.3390/cells13090748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Stem cells (SCs) undergo asymmetric division, producing transit-amplifying cells (TACs) with increased proliferative potential that move into tissues and ultimately differentiate into a specialized cell type. Thus, TACs represent an intermediary state between stem cells and differentiated cells. In the cornea, a population of stem cells resides in the limbal region, named the limbal epithelial stem cells (LESCs). As LESCs proliferate, they generate TACs that move centripetally into the cornea and differentiate into corneal epithelial cells. Upon limbal injury, research suggests a population of progenitor-like cells that exists within the cornea can move centrifugally into the limbus, where they dedifferentiate into LESCs. Herein, we summarize recent advances made in understanding the mechanism that governs the differentiation of LESCs into TACs, and thereafter, into corneal epithelial cells. We also outline the evidence in support of the existence of progenitor-like cells in the cornea and whether TACs could represent a population of cells with progenitor-like capabilities within the cornea. Furthermore, to gain further insights into the dynamics of TACs in the cornea, we outline the most recent findings in other organ systems that support the hypothesis that TACs can dedifferentiate into SCs.
Collapse
Affiliation(s)
- Sudhir Verma
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
- Deen Dayal Upadhyaya College, University of Delhi, Delhi 110078, India
| | - Xiao Lin
- College of Optometry, University of Houston, 4901 Calhoun Road, Houston, TX 77204, USA;
| | | |
Collapse
|
3
|
Van HT, Xie G, Dong P, Liu Z, Ge K. KMT2 Family of H3K4 Methyltransferases: Enzymatic Activity-dependent and -independent Functions. J Mol Biol 2024; 436:168453. [PMID: 38266981 PMCID: PMC10957308 DOI: 10.1016/j.jmb.2024.168453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/11/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Histone-lysine N-methyltransferase 2 (KMT2) methyltransferases are critical for gene regulation, cell differentiation, animal development, and human diseases. KMT2 biological roles are often attributed to their methyltransferase activities on lysine 4 of histone H3 (H3K4). However, recent data indicate that KMT2 proteins also possess non-enzymatic functions. In this review, we discuss the current understanding of KMT2 family, with a focus on their enzymatic activity-dependent and -independent functions. Six mammalian KMT2 proteins of three subgroups, KMT2A/B (MLL1/2), KMT2C/D (MLL3/4), and KMT2F/G (SETD1A/B or SET1A/B), have shared and distinct protein domains, catalytic substrates, genomic localizations, and associated complex subunits. Recent studies have revealed the importance of KMT2C/D in enhancer regulation, differentiation, development, tumor suppression and highlighted KMT2C/D enzymatic activity-dependent and -independent roles in mouse embryonic development and cell differentiation. Catalytic dependent and independent functions for KMT2A/B and KMT2F/G in gene regulation, differentiation, and development are less understood. Finally, we provide our perspectives and lay out future research directions that may help advance the investigation on enzymatic activity-dependent and -independent biological roles and working mechanisms of KMT2 methyltransferases.
Collapse
Affiliation(s)
- Hieu T Van
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| | - Guojia Xie
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| | - Peng Dong
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Zhe Liu
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA.
| | - Kai Ge
- Adipocyte Biology and Gene Regulation Section, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 50, Room 4149, 50 South Dr, Bethesda, MD 20892, USA.
| |
Collapse
|
4
|
Choi J, Lee H. NFIB-MLL1 complex is required for the stemness and Dlx5-dependent osteogenic differentiation of C3H10T1/2 mesenchymal stem cells. J Biol Chem 2023; 299:105193. [PMID: 37633334 PMCID: PMC10519831 DOI: 10.1016/j.jbc.2023.105193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/11/2023] [Accepted: 08/18/2023] [Indexed: 08/28/2023] Open
Abstract
Despite significant progress in our understanding of the molecular mechanism of mesenchymal stem cell (MSC) differentiation, less is known about the factors maintaining the stemness and plasticity of MSCs. Here, we show that the NFIB-MLL1 complex plays key roles in osteogenic differentiation and stemness of C3H10T1/2 MSCs. We find that depletion of either NFIB or MLL1 results in a severely hampered osteogenic potential and failed activation of key osteogenic transcription factors, such as Dlx5, Runx2, and Osx, following osteogenic stimuli. In addition, the NFIB-MLL1 complex binds directly to the promoter of Dlx5, and exogenous expression of Myc-Dlx5, but not the activation of either the BMP- or the Wnt-signaling pathway, is sufficient to restore the osteogenic potential of cells depleted of NFIB or MLL1. Moreover, chromatin immunoprecipitation (ChIP) and ChIP-sequencing analysis showed that the NFIB-MLL1 complex mediates the deposition of trimethylated histone H3K4 at both Dlx5 and Cebpa, key regulator genes that function at the early stages of osteogenic and adipogenic differentiation, respectively, in uncommitted C3H10T1/2 MSCs. Surprisingly, the depletion of either NFIB or MLL1 leads to decreased trimethylated histone H3K4 and results in elevated trimethylated histone H3K9 at those developmental genes. Furthermore, gene expression profiling and ChIP-sequencing analysis revealed lineage-specific changes in chromatin landscape and gene expression in response to osteogenic stimuli. Taken together, these data provide evidence for the hitherto unknown role of the NFIB-MLL1 complex in the maintenance and lineage-specific differentiation of C3H10T1/2 MSCs and support the epigenetic regulatory mechanism underlying the stemness and plasticity of MSCs.
Collapse
Affiliation(s)
- Janghyun Choi
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, South Korea.
| | - Hansol Lee
- Department of Biological Sciences, College of Natural Science, Inha University, Incheon, South Korea.
| |
Collapse
|
5
|
Li S, Li H, Liu D, Xing Q, Chen X, Zhang H, Wen J, Zhu H, Liang D, Li Z, Wu L. Identification of novel mendelian disorders of the epigenetic machinery (MDEMs) associated functional mutations and neurodevelopmental disorders. QJM 2023; 116:355-364. [PMID: 36625521 DOI: 10.1093/qjmed/hcad005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/01/2023] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Mendelian disorders of the epigenetic machinery (MDEMs) are a newly identified group of neurodevelopmental disorders (NDDs) and multiple congenital anoMalies caused by mutations in genes encoding components of the epigenetic machinery. Many studies have shown that MDEM-associated mutations may disrupt the balance between chromatin states and trigger dysplasia. AIM To help eight Chinese families with neurodevelopmental disorders acquire a definitive diagnosis. METHODS In this study, we used whole-exome sequencing (WES) to diagnose eight unrelated Chinese families with NDDs. We also verified the potential pathogenic variants by Sanger sequencing and analyzed the changes in gene expression along with histone methylation modifications. RESULTS Eight variants of six epigenetic machinery genes were identified, six of which were novel. Six variants were pathogenic (P) or likely pathogenic (LP), while two novel missense variants (c.5113T>C in CHD1 and c.10444C>T in KMT2D) were classified to be variants of uncertain significance (VUS). Further functional studies verified that c.5113T>C in CHD1 results in decreased protein levels and increased chromatin modifications (H3K27me3). In addition, c.10444C>T in KMT2D led to a significant decrease in mRNA transcription and chromatin modifications (H3K4me1). Based on experimental evidence, these two VUS variants could be classified as LP. CONCLUSION This study provided a definitive diagnosis of eight families with NDDs and expanded the mutation spectrum of MDEMs, enriching the pathogenesis study of variants in epigenetic machinery genes.
Collapse
Affiliation(s)
- Shun Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Huijuan Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Dihua Liu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Qin Xing
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Xin Chen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Hongyun Zhang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Juan Wen
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Huimin Zhu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Desheng Liang
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, 410078, China
| | - Zhuo Li
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
| | - Lingqian Wu
- Center for Medical Genetics, Hunan Key Laboratory of Medical Genetics & Hunan Key Laboratory of Animal Models for Human Diseases, School of Life Sciences, Central South University, Changsha, 410078, China
- Laboratory of Molecular Genetics, Hunan Jiahui Genetics Hospital, Changsha, 410078, China
| |
Collapse
|
6
|
Grinat J, Kosel F, Goveas N, Kranz A, Alexopoulou D, Rajewsky K, Sigal M, Stewart AF, Heuberger J. Epigenetic modifier balances Mapk and Wnt signalling in differentiation of goblet and Paneth cells. Life Sci Alliance 2022; 5:5/4/e202101187. [PMID: 35064075 PMCID: PMC8807877 DOI: 10.26508/lsa.202101187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/24/2022] Open
Abstract
The histone methyltransferase Mll1 controls intestinal secretory cell fate by promoting Wnt-driven Paneth and restricting Mapk-dependent goblet cell differentiation through regulation of Gata4/6 transcription factors Differentiation and lineage specification are controlled by cooperation of growth factor signalling. The involvement of epigenetic regulators in lineage specification remains largely elusive. Here, we show that the histone methyltransferase Mll1 prevents intestinal progenitor cells from differentiation, whereas it is also involved in secretory lineage specification of Paneth and goblet cells. Using conditional mutagenesis in mice and intestinal organoids, we demonstrate that loss of Mll1 renders intestinal progenitor cells permissive for Wnt-driven secretory differentiation. However, Mll1-deficient crypt cells fail to segregate Paneth and goblet cell fates. Mll1 deficiency causes Paneth cell-determined crypt progenitors to exhibit goblet cell features by unleashing Mapk signalling, resulting in increased numbers of mixed Paneth/goblet cells. We show that loss of Mll1 abolishes the pro-proliferative effect of Mapk signalling in intestinal progenitor cells and promotes Mapk-induced goblet cell differentiation. Our data uncover Mll1 and its downstream targets Gata4/6 as a regulatory hub of Wnt and Mapk signalling in the control of lineage specification of intestinal secretory Paneth and goblet cells.
Collapse
Affiliation(s)
- Johanna Grinat
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Frauke Kosel
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Neha Goveas
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Andrea Kranz
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Dimitra Alexopoulou
- DRESDEN-concept Genome Center, Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Klaus Rajewsky
- Cancer Research Program, Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Society, Berlin, Germany
| | - Michael Sigal
- Medical Department, Division of Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany.,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| | - A Francis Stewart
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany.,Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Julian Heuberger
- Medical Department, Division of Gastroenterology and Hepatology, Charité University Medicine, Berlin, Germany .,Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|