1
|
Jahangiri Esfahani S, Ao X, Oveisi A, Diatchenko L. Rare variant association studies: Significance, methods, and applications in chronic pain studies. Osteoarthritis Cartilage 2025; 33:313-321. [PMID: 39725155 DOI: 10.1016/j.joca.2024.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 11/27/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Rare genetic variants, characterized by their low frequency in a population, have emerged as essential components in the study of complex disease genetics. The biology of rare variants underscores their significance, as they can exert profound effects on phenotypic variation and disease susceptibility. Recent advancements in sequencing technologies have yielded the availability of large-scale sequencing data such as the UK Biobank whole-exome sequencing (WES) cohort empowered researchers to conduct rare variant association studies (RVASs). This review paper discusses the significance of rare variants, available methodologies, and applications. We provide an overview of RVASs, emphasizing their relevance in unraveling the genetic architecture of complex diseases with special focus on chronic pain and Arthritis. Additionally, we discuss the strengths and limitations of various rare variant association testing methods, outlining a typical pipeline for conducting rare variant association. This pipeline encompasses crucial steps such as quality control of WES data, rare variant annotation, and association testing. It serves as a comprehensive guide for researchers in the field of chronic pain diseases interested in rare variant association studies in large-scale sequencing datasets like the UK Biobank WES cohort. Lastly, we discuss how the identified variants can be further investigated through detailed experimental studies in animal models to elucidate their functional impact and underlying mechanisms.
Collapse
Affiliation(s)
- Sahel Jahangiri Esfahani
- Faculty of Medicine and Health Sciences, Department of Human Genetics, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Xiang Ao
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Anahita Oveisi
- Department of Neuroscience, Faculty of Science, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada
| | - Luda Diatchenko
- Faculty of Dental Medicine and Oral Health Sciences, Department of Anesthesia, Faculty of Medicine, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Canada.
| |
Collapse
|
2
|
Chen J, Jia Y, Zhong J, Zhang K, Dai H, He G, Li F, Zeng L, Fan C, Xu H. Novel mutation leading to splice donor loss in a conserved site of DMD gene causes Duchenne muscular dystrophy with cryptorchidism. J Med Genet 2024; 61:741-749. [PMID: 38621993 PMCID: PMC11287555 DOI: 10.1136/jmg-2024-109896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND As one of the most common congenital abnormalities in male births, cryptorchidism has been found to have a polygenic aetiology according to previous studies of common variants. However, little is known about genetic predisposition of rare variants for cryptorchidism, since rare variants have larger effective size on diseases than common variants. METHODS In this study, a cohort of 115 Chinese probands with cryptorchidism was analysed using whole-genome sequencing, alongside 19 parental controls and 2136 unaffected men. Additionally, CRISPR-Cas9 editing of a conserved variant was performed in a mouse model, with MRI screening used to observe the phenotype. RESULTS In 30 of 115 patients (26.1%), we identified four novel genes (ARSH, DMD, MAGEA4 and SHROOM2) affecting at least five unrelated patients and four known genes (USP9Y, UBA1, BCORL1 and KDM6A) with the candidate rare pathogenic variants affecting at least two cases. Burden tests of rare variants revealed the genome-wide significances for newly identified genes (p<2.5×10-6) under the Bonferroni correction. Surprisingly, novel and known genes were mainly found on X chromosome (seven on X and one on Y) and all rare X-chromosomal segregating variants exhibited a maternal inheritance rather than de novo origin. CRISPR-Cas9 mouse modelling of a splice donor loss variant in DMD (NC_000023.11:g.32454661C>G), which resides in a conserved site across vertebrates, replicated bilateral cryptorchidism phenotypes, confirmed by MRI at 4 and 10 weeks. The movement tests further revealed symptoms of Duchenne muscular dystrophy (DMD) in transgenic mice. CONCLUSION Our results revealed the role of the DMD gene mutation in causing cryptorchidism. The results also suggest that maternal-X inheritance of pathogenic defects could have a predominant role in the development of cryptorchidism.
Collapse
Affiliation(s)
- Jianhai Chen
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Ecology and Evolution, The University of Chicago, Chicago, Illinois, USA
| | - Yangying Jia
- Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
- Department of Chemistry, The University of Chicago, Chicago, Illinois, USA
| | - Jie Zhong
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Kun Zhang
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongzheng Dai
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, Texas, USA
| | - Guanglin He
- Institute of Rare Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan, People's Republic of China
| | - Fuping Li
- Laboratory of Molecular Translational Medicine, Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Clinical Research Center for Birth Defects of Sichuan Province, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Zeng
- Department of Pediatric Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, USA
| | - Huayan Xu
- Department of Radiology, Key Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Huang X, Huang J, Li X, Fan J, Zhou D, Qu HQ, Glessner JT, Ji D, Jia Q, Ding Z, Wang N, Wei W, Lyu X, Li MJ, Liu Z, Liu W, Wei Y, Hakonarson H, Xia Q, Li J. Target genes regulated by CLEC16A intronic region associated with common variable immunodeficiency. J Allergy Clin Immunol 2024; 153:1668-1680. [PMID: 38191060 DOI: 10.1016/j.jaci.2023.12.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 12/25/2023] [Accepted: 12/29/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND CLEC16A intron 19 has been identified as a candidate locus for common variable immunodeficiency (CVID). OBJECTIVES This study sought to elucidate the molecular mechanism by which variants at the CLEC16A intronic locus may contribute to the pathogenesis of CVID. METHODS The investigators performed fine-mapping of the CLEC16A locus in a CVID cohort, then deleted the candidate functional SNP in T-cell lines by the CRISPR-Cas9 technique and conducted RNA-sequencing to identify target gene(s). The interactions between the CLEC16A locus and its target genes were identified using circular chromosome conformation capture. The transcription factor complexes mediating the chromatin interactions were determined by proteomic approach. The molecular pathways regulated by the CLEC16A locus were examined by RNA-sequencing and reverse phase protein array. RESULTS This study showed that the CLEC16A locus is an enhancer regulating expression of multiple target genes including a distant gene ATF7IP2 through chromatin interactions. Distinct transcription factor complexes mediate the chromatin interactions in an allele-specific manner. Disruption of the CLEC16A locus affects the AKT signaling pathway, as well as the molecular response of CD4+ T cells to immune stimulation. CONCLUSIONS Through multiomics and targeted experimental approaches, this study elucidated the underlying target genes and signaling pathways involved in the genetic association of CLEC16A with CVID, and highlighted plausible molecular targets for developing novel therapeutics.
Collapse
Affiliation(s)
- Xubo Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jinxia Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xiumei Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Jingxian Fan
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Desheng Zhou
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Hui-Qi Qu
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pa
| | - Joseph T Glessner
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Dandan Ji
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Qi Jia
- International School of Information Science Engineering, Dalian University of Technology, Dalian, China
| | - Zhiyong Ding
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd, Jinan, China
| | - Nan Wang
- Mills Institute for Personalized Cancer Care, Fynn Biotechnologies Ltd, Jinan, China
| | - Wei Wei
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Lyu
- Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mulin Jun Li
- Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhe Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Wei Liu
- Tianjin Children's Hospital (Tianjin University Children's Hospital), Tianjin, China; Tianjin Key Laboratory of Birth Defects for Prevention and Treatment, Tianjin, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Hakon Hakonarson
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Division of Human Genetics, The Children's Hospital of Philadelphia, Philadelphia, Pa; Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pa
| | - Qianghua Xia
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Bioinformatics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China.
| | - Jin Li
- Department of Cell Biology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Key Laboratory of Medical Epigenetics, Tianjin Institute of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China; Department of Rheumatology and Immunology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
4
|
Nazeen S, Wang X, Zielinski D, Lam I, Hallacli E, Xu P, Ethier E, Strom R, Zanella CA, Nithianandam V, Ritter D, Henderson A, Saurat N, Afroz J, Nutter-Upham A, Benyamini H, Copty J, Ravishankar S, Morrow A, Mitchel J, Neavin D, Gupta R, Farbehi N, Grundman J, Myers RH, Scherzer CR, Trojanowski JQ, Van Deerlin VM, Cooper AA, Lee EB, Erlich Y, Lindquist S, Peng J, Geschwind DH, Powell J, Studer L, Feany MB, Sunyaev SR, Khurana V. Deep sequencing of proteotoxicity modifier genes uncovers a Presenilin-2/beta-amyloid-actin genetic risk module shared among alpha-synucleinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.03.583145. [PMID: 38496508 PMCID: PMC10942362 DOI: 10.1101/2024.03.03.583145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Whether neurodegenerative diseases linked to misfolding of the same protein share genetic risk drivers or whether different protein-aggregation pathologies in neurodegeneration are mechanistically related remains uncertain. Conventional genetic analyses are underpowered to address these questions. Through careful selection of patients based on protein aggregation phenotype (rather than clinical diagnosis) we can increase statistical power to detect associated variants in a targeted set of genes that modify proteotoxicities. Genetic modifiers of alpha-synuclein (ɑS) and beta-amyloid (Aβ) cytotoxicity in yeast are enriched in risk factors for Parkinson's disease (PD) and Alzheimer's disease (AD), respectively. Here, along with known AD/PD risk genes, we deeply sequenced exomes of 430 ɑS/Aβ modifier genes in patients across alpha-synucleinopathies (PD, Lewy body dementia and multiple system atrophy). Beyond known PD genes GBA1 and LRRK2, rare variants AD genes (CD33, CR1 and PSEN2) and Aβ toxicity modifiers involved in RhoA/actin cytoskeleton regulation (ARGHEF1, ARHGEF28, MICAL3, PASK, PKN2, PSEN2) were shared risk factors across synucleinopathies. Actin pathology occurred in iPSC synucleinopathy models and RhoA downregulation exacerbated ɑS pathology. Even in sporadic PD, the expression of these genes was altered across CNS cell types. Genome-wide CRISPR screens revealed the essentiality of PSEN2 in both human cortical and dopaminergic neurons, and PSEN2 mutation carriers exhibited diffuse brainstem and cortical synucleinopathy independent of AD pathology. PSEN2 contributes to a common-risk signal in PD GWAS and regulates ɑS expression in neurons. Our results identify convergent mechanisms across synucleinopathies, some shared with AD.
Collapse
Affiliation(s)
- Sumaiya Nazeen
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Xinyuan Wang
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dina Zielinski
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Isabel Lam
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Erinc Hallacli
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ping Xu
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Elizabeth Ethier
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Ronya Strom
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Camila A Zanella
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Vanitha Nithianandam
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Dylan Ritter
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Alexander Henderson
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Nathalie Saurat
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | - Jalwa Afroz
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
| | | | - Hadar Benyamini
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Joseph Copty
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | | | - Autumn Morrow
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Jonathan Mitchel
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Health Sciences & Technology, Harvard Medical School & Massachusetts Institute of Technology, Boston, MA
| | - Drew Neavin
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Renuka Gupta
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Nona Farbehi
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jennifer Grundman
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard H Myers
- Department of Neurology, Boston University School of Medicine, Boston, MA, USA
| | - Clemens R Scherzer
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivianna M Van Deerlin
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Antony A Cooper
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Yaniv Erlich
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Susan Lindquist
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Jian Peng
- Department of Computer Science, University of Illinois Urbana-Champaign, Champaign, IL, USA
| | - Daniel H Geschwind
- Center for Autism Research and Treatment, Semel Institute, Program in Neurogenetics, Department of Neurology and Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph Powell
- Garvan Institute of Medical Research, Sydney, NSW, Australia
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Lorenz Studer
- The Center for Stem Cell Biology, Sloan-Kettering Institute for Cancer Research, New York, NY, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Mel B Feany
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Shamil R Sunyaev
- Division of Genetics, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Vikram Khurana
- Division of Movement Disorders, Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| |
Collapse
|
5
|
Cuomo ASE, Nathan A, Raychaudhuri S, MacArthur DG, Powell JE. Single-cell genomics meets human genetics. Nat Rev Genet 2023; 24:535-549. [PMID: 37085594 PMCID: PMC10784789 DOI: 10.1038/s41576-023-00599-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2023] [Indexed: 04/23/2023]
Abstract
Single-cell genomic technologies are revealing the cellular composition, identities and states in tissues at unprecedented resolution. They have now scaled to the point that it is possible to query samples at the population level, across thousands of individuals. Combining single-cell information with genotype data at this scale provides opportunities to link genetic variation to the cellular processes underpinning key aspects of human biology and disease. This strategy has potential implications for disease diagnosis, risk prediction and development of therapeutic solutions. But, effectively integrating large-scale single-cell genomic data, genetic variation and additional phenotypic data will require advances in data generation and analysis methods. As single-cell genetics begins to emerge as a field in its own right, we review its current state and the challenges and opportunities ahead.
Collapse
Affiliation(s)
- Anna S E Cuomo
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia.
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| | - Aparna Nathan
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Divisions of Rheumatology and Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Divisions of Rheumatology and Genetics, Department of Medicine, Brigham and Women's Hospital, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daniel G MacArthur
- Centre for Population Genomics, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Joseph E Powell
- Garvan Institute of Medical Research, Darlinghurst, Sydney, New South Wales, Australia.
- UNSW Cellular Genomics Futures Institute, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
6
|
Postel MD, Culver JO, Ricker C, Craig DW. Transcriptome analysis provides critical answers to the "variants of uncertain significance" conundrum. Hum Mutat 2022; 43:1590-1608. [PMID: 35510381 PMCID: PMC9560997 DOI: 10.1002/humu.24394] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/16/2022] [Accepted: 04/26/2022] [Indexed: 12/30/2022]
Abstract
While whole-genome and exome sequencing have transformed our collective understanding of genetics' role in disease pathogenesis, there are certain conditions and populations for whom DNA-level data fails to identify the underlying genetic etiology. Specifically, patients of non-White race and non-European ancestry are disproportionately affected by "variants of unknown/uncertain significance" (VUS), limiting the scope of precision medicine for minority patients and perpetuating health disparities. VUS often include deep intronic and splicing variants which are difficult to interpret from DNA data alone. RNA analysis can illuminate the consequences of VUS, thereby allowing for their reclassification as pathogenic versus benign. Here we review the critical role transcriptome analysis plays in clarifying VUS in both neoplastic and non-neoplastic diseases.
Collapse
Affiliation(s)
- Mackenzie D. Postel
- Department of Translational GenomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Julie O. Culver
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - Charité Ricker
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| | - David W. Craig
- Department of Translational GenomicsUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
- Keck School of Medicine of USCUniversity of Southern CaliforniaLos AngelesCaliforniaUSA
| |
Collapse
|
7
|
Lye Z, Choi JY, Purugganan MD. Deleterious mutations and the rare allele burden on rice gene expression. Mol Biol Evol 2022; 39:6693943. [PMID: 36073358 PMCID: PMC9512150 DOI: 10.1093/molbev/msac193] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Deleterious genetic variation is maintained in populations at low frequencies. Under a model of stabilizing selection, rare (and presumably deleterious) genetic variants are associated with increase or decrease in gene expression from some intermediate optimum. We investigate this phenomenon in a population of largely Oryza sativa ssp. indica rice landraces under normal unstressed wet and stressful drought field conditions. We include single nucleotide polymorphisms, insertion/deletion mutations, and structural variants in our analysis and find a stronger association between rare variants and gene expression outliers under the stress condition. We also show an association of the strength of this rare variant effect with linkage, gene expression levels, network connectivity, local recombination rate, and fitness consequence scores, consistent with the stabilizing selection model of gene expression.
Collapse
Affiliation(s)
- Zoe Lye
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Jae Young Choi
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
| | - Michael D Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003.,Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates
| |
Collapse
|