1
|
Margot H, Jones N, Matis T, Bonneau D, Busa T, Bonnet F, Conrad S, Crivelli L, Monin P, Fert-Ferrer S, Mortemousque I, Raad S, Lacombe D, Caux F, Sevenet N, Bubien V, Longy M. Classification of PTEN germline non-truncating variants: a new approach to interpretation. J Med Genet 2024; 61:1071-1079. [PMID: 39358013 DOI: 10.1136/jmg-2024-109982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 08/30/2024] [Indexed: 10/04/2024]
Abstract
BACKGROUND PTEN hamartoma tumour syndrome (PHTS) encompasses distinct syndromes, including Cowden syndrome resulting from PTEN pathogenic variants. Missense variants account for 30% of PHTS cases, but their classification remains challenging. To address these difficulties, guidelines were published by the Clinical Genome Resource PTEN Variant Curation Expert Panel. METHODS Between 2010 and 2020, the Bergonie Institute reference laboratory identified 76 different non-truncating PTEN variants in 166 patients, 17 of which have not previously been reported. Variants were initially classified following the current guidelines. Subsequently, a new classification method was developed based on four main criteria: functional exploration, phenotypic features and familial segregation, in silico modelling, and allelic frequency. RESULTS This new method of classification is more discriminative and reclassifies 25 variants, including 8 variants of unknown significance. CONCLUSION This report proposes a revision of the current PTEN variant classification criteria which at present rely on functional tests evaluating only the phosphatase activity of PTEN and apply a particularly stringent clinical PHTS score.The classification of non-truncating variants of PTEN is facilitated by taking into consideration protein stability for variants with intact phosphatase activity, clinical and segregation criteria adapted to the phenotypic variability of PHTS and by specifying the allelic frequency of variants in the general population. This novel method of classification remains to be validated in a prospective cohort.
Collapse
Affiliation(s)
- Henri Margot
- Medical Genetics Departement, CHU de Bordeaux, Bordeaux, Nouvelle-Aquitaine, France
| | - Natalie Jones
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Thibaut Matis
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Dominique Bonneau
- U771-CNRS6214, UMR INSERM, Angers, France
- School of Medicine, University of Angers, Angers, France
| | - Tiffany Busa
- Medical Genetics Departement, Marseille Public University Hospital System, Marseille, France
| | - Françoise Bonnet
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Solene Conrad
- Medical Genetics Departement, University Hospital Centre Nantes, Nantes, Pays de la Loire, France
| | - Louise Crivelli
- Department of Oncogenetics, Centre Eugene Marquis, Rennes, Bretagne, France
| | - Pauline Monin
- Medical Genetics Departement, Centre Hospitalier Universitaire de Lyon, Lyon, Rhône-Alpes, France
| | - Sandra Fert-Ferrer
- Medical Genetics Departement, Centre Hospitalier Métropole Savoie, Chambery, France
| | - Isabelle Mortemousque
- Cancer Genetics Unit, Centre Hospitalier Régional Universitaire de Tours, Tours, Centre-Val de Loire, France
| | - Sabine Raad
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Didier Lacombe
- Department of Medical Genetics, CHU Bordeaux GH Pellegrin, Bordeaux, Aquitaine, France
- MRGM INSERM U1211, Universite de Bordeaux College Sciences de la Sante, Bordeaux, Nouvelle-Aquitaine, France
| | - Frédéric Caux
- Hospital Avicenne Internal Medicine Service, Bobigny, Île-de-France, France
| | - Nicolas Sevenet
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
- UMR1312, INSERM, BoRdeaux Institute of onCology, Bordeaux, France
| | - Virginie Bubien
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
| | - Michel Longy
- Cancer Genetics Unit, Institut Bergonié, Bordeaux, Aquitaine, France
- UMR1312, INSERM, BoRdeaux Institute of onCology, Bordeaux, France
| |
Collapse
|
2
|
Her Y, Pascual DM, Goldstone-Joubert Z, Marcogliese PC. Variant functional assessment in Drosophila by overexpression: what can we learn? Genome 2024; 67:158-167. [PMID: 38412472 DOI: 10.1139/gen-2023-0135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The last decade has been highlighted by the increased use of next-generation DNA sequencing technology to identify novel human disease genes. A critical downstream part of this process is assigning function to a candidate gene variant. Functional studies in Drosophila melanogaster, the common fruit fly, have made a prominent contribution in annotating variant impact in an in vivo system. The use of patient-derived knock-in flies or rescue-based, "humanization", approaches are novel and valuable strategies in variant testing but have been recently widely reviewed. An often-overlooked strategy for determining variant impact has been GAL4/upstream activation sequence-mediated tissue-defined overexpression in Drosophila. This mini-review will summarize the recent contribution of ectopic overexpression of human reference and variant cDNA in Drosophila to assess variant function, interpret the consequence of the variant, and in some cases infer biological mechanisms.
Collapse
Affiliation(s)
- Yina Her
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Danielle M Pascual
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Zoe Goldstone-Joubert
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
| | - Paul C Marcogliese
- Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
- Children's Hospital Research Institute of Manitoba (CHRIM), University of Manitoba, Winnipeg, MB, Canada
- Excellence in Neurodevelopment and Rehabilitation Research in Child Health (ENRRICH) Theme, Winnipeg, MB, Canada
| |
Collapse
|
3
|
Torices L, Mingo J, Rodríguez-Escudero I, Fernández-Acero T, Luna S, Nunes-Xavier CE, López JI, Mercadillo F, Currás M, Urioste M, Molina M, Cid VJ, Pulido R. Functional analysis of PTEN variants of unknown significance from PHTS patients unveils complex patterns of PTEN biological activity in disease. Eur J Hum Genet 2023; 31:568-577. [PMID: 36543932 PMCID: PMC10172195 DOI: 10.1038/s41431-022-01265-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 12/01/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022] Open
Abstract
Heterozygous germline mutations in PTEN gene predispose to hamartomas and tumors in different tissues, as well as to neurodevelopmental disorders, and define at genetic level the PTEN Hamartoma Tumor Syndrome (PHTS). The major physiologic role of PTEN protein is the dephosphorylation of phosphatidylinositol (3,4,5)-trisphosphate (PIP3), counteracting the pro-oncogenic function of phosphatidylinositol 3-kinase (PI3K), and PTEN mutations in PHTS patients frequently abrogate PTEN PIP3 catalytic activity. PTEN also displays non-canonical PIP3-independent functions, but their involvement in PHTS pathogeny is less understood. We have previously identified and described, at clinical and genetic level, novel PTEN variants of unknown functional significance in PHTS patients. Here, we have performed an extensive functional characterization of these PTEN variants (c.77 C > T, p.(Thr26Ile), T26I; c.284 C > G, p.(Pro95Arg), P95R; c.529 T > A, p.(Tyr177Asn), Y177N; c.781 C > G, p.(Gln261Glu), Q261E; c.829 A > G, p.(Thr277Ala), T277A; and c.929 A > G, p.(Asp310Gly), D310G), including cell expression levels and protein stability, PIP3-phosphatase activity, and subcellular localization. In addition, caspase-3 cleavage analysis in cells has been assessed using a C2-domain caspase-3 cleavage-specific anti-PTEN antibody. We have found complex patterns of functional activity on PTEN variants, ranging from loss of PIP3-phosphatase activity, diminished protein expression and stability, and altered nuclear/cytoplasmic localization, to intact functional properties, when compared with PTEN wild type. Furthermore, we have found that PTEN cleavage at the C2-domain by the pro-apoptotic protease caspase-3 is diminished in specific PTEN PHTS variants. Our findings illustrate the multifaceted molecular features of pathogenic PTEN protein variants, which could account for the complexity in the genotype/phenotype manifestations of PHTS patients.
Collapse
Affiliation(s)
- Leire Torices
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Janire Mingo
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Isabel Rodríguez-Escudero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Teresa Fernández-Acero
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Sandra Luna
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Caroline E Nunes-Xavier
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - José I López
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Department of Pathology, Cruces University Hospital, Barakaldo, Spain
| | - Fátima Mercadillo
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María Currás
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Miguel Urioste
- Familial Cancer Clinical Unit, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - María Molina
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Víctor J Cid
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, UCM & Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), Madrid, Spain
| | - Rafael Pulido
- Biocruces Bizkaia Health Research Institute, Barakaldo, Spain.
- Ikerbasque, The Basque Foundation for Science, Bilbao, Spain.
| |
Collapse
|
4
|
Smith IN, Dawson JE, Krieger J, Thacker S, Bahar I, Eng C. Structural and Dynamic Effects of PTEN C-Terminal Tail Phosphorylation. J Chem Inf Model 2022; 62:4175-4190. [PMID: 36001481 PMCID: PMC9472802 DOI: 10.1021/acs.jcim.2c00441] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Indexed: 11/28/2022]
Abstract
The phosphatase and tensin homologue deleted on chromosome 10 (PTEN) tumor suppressor gene encodes a tightly regulated dual-specificity phosphatase that serves as the master regulator of PI3K/AKT/mTOR signaling. The carboxy-terminal tail (CTT) is key to regulation and harbors multiple phosphorylation sites (Ser/Thr residues 380-385). CTT phosphorylation suppresses the phosphatase activity by inducing a stable, closed conformation. However, little is known about the mechanisms of phosphorylation-induced CTT-deactivation dynamics. Using explicit solvent microsecond molecular dynamics simulations, we show that CTT phosphorylation leads to a partially collapsed conformation, which alters the secondary structure of PTEN and induces long-range conformational rearrangements that encompass the active site. The active site rearrangements prevent localization of PTEN to the membrane, precluding lipid phosphatase activity. Notably, we have identified phosphorylation-induced allosteric coupling between the interdomain region and a hydrophobic site neighboring the active site in the phosphatase domain. Collectively, the results provide a mechanistic understanding of CTT phosphorylation dynamics and reveal potential druggable allosteric sites in a previously believed clinically undruggable protein.
Collapse
Affiliation(s)
- Iris N. Smith
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, United States
| | - Jennifer E. Dawson
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, United States
| | - James Krieger
- Department
of Computational and Systems Biology, University
of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Stetson Thacker
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, United States
- Cleveland
Clinic Lerner College of Medicine, Case
Western Reserve University, 9500 Euclid Avenue, Cleveland, Ohio 44195, United
States
| | - Ivet Bahar
- Department
of Computational and Systems Biology, University
of Pittsburgh, 800 Murdoch Building, 3420 Forbes Avenue, Pittsburgh, Pennsylvania 15260, United States
| | - Charis Eng
- Genomic
Medicine Institute, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Avenue, NE-50, Cleveland, Ohio 44195, United States
- Cleveland
Clinic Lerner College of Medicine, Case
Western Reserve University, 9500 Euclid Avenue, Cleveland, Ohio 44195, United
States
- Case
Comprehensive Cancer Center, Case Western
Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
- Taussig
Cancer Institute, Cleveland Clinic, 9500 Euclid Avenue, Cleveland, Ohio 44195, United States
- Department
of Genetics and Genome Sciences, Case Western
Reserve University School of Medicine, 10900 Euclid Avenue, Cleveland, Ohio 44106, United States
| |
Collapse
|
5
|
Ecovoiu AA, Ratiu AC, Micheu MM, Chifiriuc MC. Inter-Species Rescue of Mutant Phenotype-The Standard for Genetic Analysis of Human Genetic Disorders in Drosophila melanogaster Model. Int J Mol Sci 2022; 23:2613. [PMID: 35269756 PMCID: PMC8909942 DOI: 10.3390/ijms23052613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 11/16/2022] Open
Abstract
Drosophila melanogaster (the fruit fly) is arguably a superstar of genetics, an astonishing versatile experimental model which fueled no less than six Nobel prizes in medicine. Nowadays, an evolving research endeavor is to simulate and investigate human genetic diseases in the powerful D. melanogaster platform. Such a translational experimental strategy is expected to allow scientists not only to understand the molecular mechanisms of the respective disorders but also to alleviate or even cure them. In this regard, functional gene orthology should be initially confirmed in vivo by transferring human or vertebrate orthologous transgenes in specific mutant backgrounds of D. melanogaster. If such a transgene rescues, at least partially, the mutant phenotype, then it qualifies as a strong candidate for modeling the respective genetic disorder in the fruit fly. Herein, we review various examples of inter-species rescue of relevant mutant phenotypes of the fruit fly and discuss how these results recommend several human genes as candidates to study and validate genetic variants associated with human diseases. We also consider that a wider implementation of this evolutionist exploratory approach as a standard for the medicine of genetic disorders would allow this particular field of human health to advance at a faster pace.
Collapse
Affiliation(s)
- Alexandru Al. Ecovoiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Attila Cristian Ratiu
- Department of Genetics, Faculty of Biology, University of Bucharest, 060101 Bucharest, Romania;
| | - Miruna Mihaela Micheu
- Department of Cardiology, Clinical Emergency Hospital of Bucharest, 014461 Bucharest, Romania;
| | - Mariana Carmen Chifiriuc
- The Research Institute of the University of Bucharest and Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania;
| |
Collapse
|