1
|
Chebib J, Jonas A, López-Cortegano E, Künzel S, Tautz D, Keightley PD. An estimate of fitness reduction from mutation accumulation in a mammal allows assessment of the consequences of relaxed selection. PLoS Biol 2024; 22:e3002795. [PMID: 39325822 PMCID: PMC11426515 DOI: 10.1371/journal.pbio.3002795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/09/2024] [Indexed: 09/28/2024] Open
Abstract
Each generation, spontaneous mutations introduce heritable changes that tend to reduce fitness in populations of highly adapted living organisms. This erosion of fitness is countered by natural selection, which keeps deleterious mutations at low frequencies and ultimately removes most of them from the population. The classical way of studying the impact of spontaneous mutations is via mutation accumulation (MA) experiments, where lines of small effective population size are bred for many generations in conditions where natural selection is largely removed. Such experiments in microbes, invertebrates, and plants have generally demonstrated that fitness decays as a result of MA. However, the phenotypic consequences of MA in vertebrates are largely unknown, because no replicated MA experiment has previously been carried out. This gap in our knowledge is relevant for human populations, where societal changes have reduced the strength of natural selection, potentially allowing deleterious mutations to accumulate. Here, we study the impact of spontaneous MA on the mean and genetic variation for quantitative and fitness-related traits in the house mouse using the MA experimental design, with a cryopreserved control to account for environmental influences. We show that variation for morphological and life history traits accumulates at a sufficiently high rate to maintain genetic variation and selection response. Weight and tail length measures decrease significantly between 0.04% and 0.3% per generation with narrow confidence intervals. Fitness proxy measures (litter size and surviving offspring) decrease on average by about 0.2% per generation, but with confidence intervals overlapping zero. When extrapolated to humans, our results imply that the rate of fitness loss should not be of concern in the foreseeable future.
Collapse
Affiliation(s)
- Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Anika Jonas
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | | | - Sven Künzel
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Department for Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Peter D. Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
2
|
Meng Y, Zhang X, Zhai Y, Li Y, Shao Z, Liu S, Zhang C, Xing XH, Zheng H. Identification of the mutual gliding locus as a factor for gut colonization in non-native bee hosts using the ARTP mutagenesis. MICROBIOME 2024; 12:93. [PMID: 38778376 PMCID: PMC11112851 DOI: 10.1186/s40168-024-01813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The gut microbiota and their hosts profoundly affect each other's physiology and evolution. Identifying host-selected traits is crucial to understanding the processes that govern the evolving interactions between animals and symbiotic microbes. Current experimental approaches mainly focus on the model bacteria, like hypermutating Escherichia coli or the evolutionary changes of wild stains by host transmissions. A method called atmospheric and room temperature plasma (ARTP) may overcome the bottleneck of low spontaneous mutation rates while maintaining mild conditions for the gut bacteria. RESULTS We established an experimental symbiotic system with gnotobiotic bee models to unravel the molecular mechanisms promoting host colonization. By in vivo serial passage, we tracked the genetic changes of ARTP-treated Snodgrassella strains from Bombus terrestris in the non-native honeybee host. We observed that passaged isolates showing genetic changes in the mutual gliding locus have a competitive advantage in the non-native host. Specifically, alleles in the orphan mglB, the GTPase activating protein, promoted colonization potentially by altering the type IV pili-dependent motility of the cells. Finally, competition assays confirmed that the mutations out-competed the ancestral strain in the non-native honeybee gut but not in the native host. CONCLUSIONS Using the ARTP mutagenesis to generate a mutation library of gut symbionts, we explored the potential genetic mechanisms for improved gut colonization in non-native hosts. Our findings demonstrate the implication of the cell mutual-gliding motility in host association and provide an experimental system for future study on host-microbe interactions. Video Abstract.
Collapse
Affiliation(s)
- Yujie Meng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- MGI Tech, Qingdao, 266426, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yuan Li
- MGI Tech, Qingdao, 266426, China
| | | | | | - Chong Zhang
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xin-Hui Xing
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hao Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
3
|
Balogun EJ, Ness RW. The Effects of De Novo Mutation on Gene Expression and the Consequences for Fitness in Chlamydomonas reinhardtii. Mol Biol Evol 2024; 41:msae035. [PMID: 38366781 PMCID: PMC10910851 DOI: 10.1093/molbev/msae035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
Mutation is the ultimate source of genetic variation, the bedrock of evolution. Yet, predicting the consequences of new mutations remains a challenge in biology. Gene expression provides a potential link between a genotype and its phenotype. But the variation in gene expression created by de novo mutation and the fitness consequences of mutational changes to expression remain relatively unexplored. Here, we investigate the effects of >2,600 de novo mutations on gene expression across the transcriptome of 28 mutation accumulation lines derived from 2 independent wild-type genotypes of the green algae Chlamydomonas reinhardtii. We observed that the amount of genetic variance in gene expression created by mutation (Vm) was similar to the variance that mutation generates in typical polygenic phenotypic traits and approximately 15-fold the variance seen in the limited species where Vm in gene expression has been estimated. Despite the clear effect of mutation on expression, we did not observe a simple additive effect of mutation on expression change, with no linear correlation between the total expression change and mutation count of individual MA lines. We therefore inferred the distribution of expression effects of new mutations to connect the number of mutations to the number of differentially expressed genes (DEGs). Our inferred DEE is highly L-shaped with 95% of mutations causing 0-1 DEG while the remaining 5% are spread over a long tail of large effect mutations that cause multiple genes to change expression. The distribution is consistent with many cis-acting mutation targets that affect the expression of only 1 gene and a large target of trans-acting targets that have the potential to affect tens or hundreds of genes. Further evidence for cis-acting mutations can be seen in the overabundance of mutations in or near differentially expressed genes. Supporting evidence for trans-acting mutations comes from a 15:1 ratio of DEGs to mutations and the clusters of DEGs in the co-expression network, indicative of shared regulatory architecture. Lastly, we show that there is a negative correlation with the extent of expression divergence from the ancestor and fitness, providing direct evidence of the deleterious effects of perturbing gene expression.
Collapse
Affiliation(s)
- Eniolaye J Balogun
- Department of Biology, William G. Davis Building, University of Toronto, Mississauga L5L-1C6, Canada
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto M5S-3B2, Canada
| | - Rob W Ness
- Department of Biology, William G. Davis Building, University of Toronto, Mississauga L5L-1C6, Canada
| |
Collapse
|
4
|
Fu YB, Peterson GW, Horbach C. Deleterious and Adaptive Mutations in Plant Germplasm Conserved Ex Situ. Mol Biol Evol 2023; 40:msad238. [PMID: 37931158 PMCID: PMC10724023 DOI: 10.1093/molbev/msad238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/20/2023] [Accepted: 10/26/2023] [Indexed: 11/08/2023] Open
Abstract
Conserving more than 7 million plant germplasm accessions in 1,750 genebanks worldwide raises the hope of securing the food supply for humanity for future generations. However, there is a genetic cost for such long-term germplasm conservation, which has been largely unaccounted for before. We investigated the extent and variation of deleterious and adaptive mutations in 490 individual plants representing barley, wheat, oat, soybean, maize, rapa, and sunflower collections in a seed genebank using RNA-Seq technology. These collections were found to have a range of deleterious mutations detected from 125 (maize) to 83,695 (oat) with a mean of 13,537 and of the averaged sample-wise mutation burden per deleterious locus from 0.069 to 0.357 with a mean of 0.200. Soybean and sunflower collections showed that accessions acquired earlier had increased mutation burdens. The germplasm with more years of storage in several collections carried more deleterious and fewer adaptive mutations. The samples with more cycles of germplasm regeneration revealed fewer deleterious and more adaptive mutations. These findings are significant for understanding mutational dynamics and genetic cost in conserved germplasm and have implications for long-term germplasm management and conservation.
Collapse
Affiliation(s)
- Yong-Bi Fu
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Gregory W Peterson
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| | - Carolee Horbach
- Plant Gene Resources of Canada, Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK S7N 0X2, Canada
| |
Collapse
|
5
|
Chen V, Johnson MS, Hérissant L, Humphrey PT, Yuan DC, Li Y, Agarwala A, Hoelscher SB, Petrov DA, Desai MM, Sherlock G. Evolution of haploid and diploid populations reveals common, strong, and variable pleiotropic effects in non-home environments. eLife 2023; 12:e92899. [PMID: 37861305 PMCID: PMC10629826 DOI: 10.7554/elife.92899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 09/27/2023] [Indexed: 10/21/2023] Open
Abstract
Adaptation is driven by the selection for beneficial mutations that provide a fitness advantage in the specific environment in which a population is evolving. However, environments are rarely constant or predictable. When an organism well adapted to one environment finds itself in another, pleiotropic effects of mutations that made it well adapted to its former environment will affect its success. To better understand such pleiotropic effects, we evolved both haploid and diploid barcoded budding yeast populations in multiple environments, isolated adaptive clones, and then determined the fitness effects of adaptive mutations in 'non-home' environments in which they were not selected. We find that pleiotropy is common, with most adaptive evolved lineages showing fitness effects in non-home environments. Consistent with other studies, we find that these pleiotropic effects are unpredictable: they are beneficial in some environments and deleterious in others. However, we do find that lineages with adaptive mutations in the same genes tend to show similar pleiotropic effects. We also find that ploidy influences the observed adaptive mutational spectra in a condition-specific fashion. In some conditions, haploids and diploids are selected with adaptive mutations in identical genes, while in others they accumulate mutations in almost completely disjoint sets of genes.
Collapse
Affiliation(s)
- Vivian Chen
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Milo S Johnson
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityBostonUnited States
| | - Lucas Hérissant
- Department of Genetics, Stanford UniversityStanfordUnited States
| | - Parris T Humphrey
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
| | - David C Yuan
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Yuping Li
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Atish Agarwala
- Department of Physics, Stanford UniversityStanfordUnited States
| | | | - Dmitri A Petrov
- Department of Biology, Stanford UniversityStanfordUnited States
| | - Michael M Desai
- Department of Organismic and Evolutionary Biology, Harvard UniversityCambridgeUnited States
- Quantitative Biology Initiative, Harvard UniversityCambridgeUnited States
- NSF-Simons Center for Mathematical and Statistical Analysis of Biology, Harvard UniversityBostonUnited States
- Department of Physics, Harvard UniversityCambridgeUnited States
| | - Gavin Sherlock
- Department of Genetics, Stanford UniversityStanfordUnited States
| |
Collapse
|
6
|
Abstract
AbstractEvolutionary biologists have thought about the role of genetic variation during adaptation for a very long time-before we understood the organization of the genetic code, the provenance of genetic variation, and how such variation influenced the phenotypes on which natural selection acts. Half a century after the discovery of the structure of DNA and the unraveling of the genetic code, we have a rich understanding of these problems and the means to both delve deeper and widen our perspective across organisms and natural populations. The 2022 Vice Presidential Symposium of the American Society of Naturalists highlighted examples of recent insights into the role of genetic variation in adaptive processes, which are compiled in this special section. The work was conducted in different parts of the world, included theoretical and empirical studies with diverse organisms, and addressed distinct aspects of how genetic variation influences adaptation. In our introductory article to the special section, we discuss some important recent insights about the generation and maintenance of genetic variation, its impacts on phenotype and fitness, its fate in natural populations, and its role in driving adaptation. By placing the special section articles in the broader context of recent developments, we hope that this overview will also serve as a useful introduction to the field.
Collapse
|
7
|
López-Cortegano E, Craig RJ, Chebib J, Balogun EJ, Keightley PD. Rates and spectra of de novo structural mutations in Chlamydomonas reinhardtii. Genome Res 2023; 33:45-60. [PMID: 36617667 PMCID: PMC9977147 DOI: 10.1101/gr.276957.122] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Genetic variation originates from several types of spontaneous mutation, including single-nucleotide substitutions, short insertions and deletions (indels), and larger structural changes. Structural mutations (SMs) drive genome evolution and are thought to play major roles in evolutionary adaptation, speciation, and genetic disease, including cancers. Sequencing of mutation accumulation (MA) lines has provided estimates of rates and spectra of single-nucleotide and indel mutations in many species, yet the rate of new SMs is largely unknown. Here, we use long-read sequencing to determine the full mutation spectrum in MA lines derived from two strains (CC-1952 and CC-2931) of the green alga Chlamydomonas reinhardtii The SM rate is highly variable between strains and between MA lines, and SMs represent a substantial proportion of all mutations in both strains (CC-1952 6%; CC-2931 12%). The SM spectra differ considerably between the two strains, with almost all inversions and translocations occurring in CC-2931 MA lines. This variation is associated with heterogeneity in the number and type of active transposable elements (TEs), which comprise major proportions of SMs in both strains (CC-1952 22%; CC-2931 38%). In CC-2931, a Crypton and a previously undescribed type of DNA element have caused 71% of chromosomal rearrangements, whereas in CC-1952, a Dualen LINE is associated with 87% of duplications. Other SMs, notably large duplications in CC-2931, are likely products of various double-strand break repair pathways. Our results show that diverse types of SMs occur at substantial rates, and support prominent roles for SMs and TEs in evolution.
Collapse
Affiliation(s)
- Eugenio López-Cortegano
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Rory J Craig
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- California Institute for Quantitative Biosciences, UC Berkeley, Berkeley, California 94720, USA
| | - Jobran Chebib
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Eniolaye J Balogun
- Department of Ecology and Evolutionary Biology, University of Toronto, Ontario ON M5S 3B2, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga ON L5L 1C6, Canada
| | - Peter D Keightley
- Institute of Ecology and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| |
Collapse
|