1
|
Gomberg AF, Grossman AD. It's complicated: relationships between integrative and conjugative elements and their bacterial hosts. Curr Opin Microbiol 2024; 82:102556. [PMID: 39423563 DOI: 10.1016/j.mib.2024.102556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/21/2024]
Abstract
Integrative and conjugative elements (ICEs) are typically found integrated in a bacterial host chromosome. They can excise, replicate, and transfer from cell to cell. Many contain genes that confer phenotypes to host cells, including antibiotic resistances, specialized metabolisms, phage defense, and symbiosis or pathogenesis determinants. Recent studies revealed that at least three ICEs (ICEclc, Tn916, and TnSmu1) cause growth arrest or death of host cells upon element activation. This review highlights the complex interactions between ICEs and their hosts, including the recent examples of the significant costs to host cells. We contrast two examples of killing, ICEclc and Tn916, in which killing, respectively, benefits or impairs conjugation and emphasize the importance of understanding the impacts of ICE-host relationships on conjugation. ICEs are typically only active in a small fraction of cells in a population, and we discuss how phenotypes normally occurring in a small subset of host cells can be uncovered.
Collapse
Affiliation(s)
- Alexa Fs Gomberg
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139.
| |
Collapse
|
2
|
Nhu NTK, Forde BM, Ben Zakour NL, Phan MD, Roberts LW, Beatson SA, Schembri MA. Evolution of the pheV-tRNA integrated genomic island in Escherichia coli. PLoS Genet 2024; 20:e1011459. [PMID: 39446883 PMCID: PMC11537424 DOI: 10.1371/journal.pgen.1011459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 11/05/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Escherichia coli exhibit extensive genetic diversity at the genome level, particularly within their accessory genome. The tRNA integrated genomic islands (GIs), a part of the E. coli accessory genome, play an important role in pathogenicity. However, studies examining the evolution of GIs have been challenging due to their large size, considerable gene content variation and fragmented assembly in draft genomes. Here we examined the evolution of the GI integrated at pheV-tRNA (GI-pheV), with a primary focus on uropathogenic E. coli (UPEC) and the globally disseminated multidrug resistant ST131 clone. We show the gene content of GI-pheV is highly diverse and arranged in a modular configuration, with the P4 integrase encoding gene intP4 the only conserved gene. Despite this diversity, the GI-pheV gene content displayed conserved features among strains from the same pathotype. In ST131, GI-pheV corresponding to the reference strain EC958 (EC958_GI-pheV) was found in ~90% of strains. Phylogenetic analyses suggested that GI-pheV in ST131 has evolved together with the core genome, with the loss/gain of specific modules (or the entire GI) linked to strain specific events. Overall, we show GI-pheV exhibits a dynamic evolutionary pathway, in which modules and genes have evolved through multiple events including insertions, deletions and recombination.
Collapse
Affiliation(s)
- Nguyen Thi Khanh Nhu
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Brian M. Forde
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Nouri L. Ben Zakour
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Minh-Duy Phan
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
| | - Leah W. Roberts
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Scott A. Beatson
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Mark A. Schembri
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, Queensland, Australia
- Australian Infectious Diseases Research Centre, The University of Queensland, Brisbane, Queensland, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
3
|
Gelsinger DR, Vo PLH, Klompe SE, Ronda C, Wang HH, Sternberg SH. Bacterial genome engineering using CRISPR-associated transposases. Nat Protoc 2024; 19:752-790. [PMID: 38216671 DOI: 10.1038/s41596-023-00927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 10/02/2023] [Indexed: 01/14/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated transposases have the potential to transform the technology landscape for kilobase-scale genome engineering, by virtue of their ability to integrate large genetic payloads with high accuracy, easy programmability and no requirement for homologous recombination machinery. These transposons encode efficient, CRISPR RNA-guided transposases that execute genomic insertions in Escherichia coli at efficiencies approaching ~100%. Moreover, they generate multiplexed edits when programmed with multiple guides, and function robustly in diverse Gram-negative bacterial species. Here we present a detailed protocol for engineering bacterial genomes using CRISPR-associated transposase (CAST) systems, including guidelines on the available vectors, customization of guide RNAs and DNA payloads, selection of common delivery methods, and genotypic analysis of integration events. We further describe a computational CRISPR RNA design algorithm to avoid potential off-targets, and a CRISPR array cloning pipeline for performing multiplexed DNA insertions. The method presented here allows the isolation of clonal strains containing a novel genomic integration event of interest within 1-2 weeks using available plasmid constructs and standard molecular biology techniques.
Collapse
Affiliation(s)
- Diego Rivera Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Phuc Leo H Vo
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
- Vertex Pharmaceuticals, Inc, Boston, MA, USA
| | - Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Department of Genomes and Genetics, Institut Pasteur, Paris, France
| | - Carlotta Ronda
- Department of Systems Biology, Columbia University, New York, NY, USA
- Innovative Genomics Institute, University of California Berkeley, Berkeley, CA, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University, New York, NY, USA
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
4
|
Rodrigues SH, Nunes GD, Soares GG, Ferreira RL, Damas MSF, Laprega PM, Shilling RE, Campos LC, da Costa AS, Malavazi I, da Cunha AF, Pranchevicius MCDS. First report of coexistence of blaKPC-2 and blaNDM-1 in carbapenem-resistant clinical isolates of Klebsiella aerogenes in Brazil. Front Microbiol 2024; 15:1352851. [PMID: 38426065 PMCID: PMC10903355 DOI: 10.3389/fmicb.2024.1352851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Abstract
Klebsiella aerogenes is an important opportunistic pathogen with the potential to develop resistance against last-line antibiotics, such as carbapenems, limiting the treatment options. Here, we investigated the antibiotic resistance profiles of 10 K. aerogenes strains isolated from patient samples in the intensive-care unit of a Brazilian tertiary hospital using conventional PCR and a comprehensive genomic characterization of a specific K. aerogenes strain (CRK317) carrying both the blaKPC-2 and blaNDM-1 genes simultaneously. All isolates were completely resistant to β-lactam antibiotics, including ertapenem, imipenem, and meropenem with differencing levels of resistance to aminoglycosides, quinolones, and tigecycline also observed. Half of the strains studied were classified as multidrug-resistant. The carbapenemase-producing isolates carried many genes of interest including: β-lactams (blaNDM-1, blaKPC-2, blaTEM-1, blaCTX-M-1 group, blaOXA-1 group and blaSHVvariants in 20-80% of the strains), aminoglycoside resistance genes [aac(6')-Ib and aph(3')-VI, 70 and 80%], a fluoroquinolone resistance gene (qnrS, 80%), a sulfonamide resistance gene (sul-2, 80%) and a multidrug efflux system transporter (mdtK, 70%) while all strains carried the efflux pumps Acr (subunit A) and tolC. Moreover, we performed a comprehensive genomic characterization of a specific K. aerogenes strain (CRK317) carrying both the blaKPC-2 and blaNDM-1 genes simultaneously. The draft genome assembly of the CRK317 had a total length of 5,462,831 bp and a GC content of 54.8%. The chromosome was found to contain many essential genes. In silico analysis identified many genes associated with resistance phenotypes, including β-lactamases (blaOXA-9, blaTEM-1, blaNDM-1, blaCTX-M-15, blaAmpC-1, blaAmpC-2), the bleomycin resistance gene (bleMBL), an erythromycin resistance methylase (ermC), aminoglycoside-modifying enzymes [aac(6')-Ib, aadA/ant(3")-Ia, aph(3')-VI], a sulfonamide resistance enzyme (sul-2), a chloramphenicol acetyltransferase (catA-like), a plasmid-mediated quinolone resistance protein (qnrS1), a glutathione transferase (fosA), PEtN transferases (eptA, eptB) and a glycosyltransferase (arnT). We also detected 22 genomic islands, eight families of insertion sequences, two putative integrative and conjugative elements with a type IV secretion system, and eight prophage regions. This suggests the significant involvement of these genetic structures in the dissemination of antibiotic resistance. The results of our study show that the emergence of carbapenemase-producing K. aerogenes, co-harboring blaKPC-2 and blaNDM-1, is a worrying phenomenon which highlights the importance of developing strategies to detect, prevent, and control the spread of these microorganisms.
Collapse
Affiliation(s)
- Saulo Henrique Rodrigues
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gustavo Dantas Nunes
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Gabriela Guerrera Soares
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Roumayne Lopes Ferreira
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | - Pedro Mendes Laprega
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | | - Andrea Soares da Costa
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | - Iran Malavazi
- Departamento de Genética e Evolução, Universidade Federal de São Carlos, São Carlos, São Paulo, Brazil
| | | | | |
Collapse
|
5
|
Tripathi S, Voogdt CGP, Bassler SO, Anderson M, Huang PH, Sakenova N, Capraz T, Jain S, Koumoutsi A, Bravo AM, Trotter V, Zimmerman M, Sonnenburg JL, Buie C, Typas A, Deutschbauer AM, Shiver AL, Huang KC. Randomly barcoded transposon mutant libraries for gut commensals I: Strategies for efficient library construction. Cell Rep 2024; 43:113517. [PMID: 38142397 DOI: 10.1016/j.celrep.2023.113517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Randomly barcoded transposon mutant libraries are powerful tools for studying gene function and organization, assessing gene essentiality and pathways, discovering potential therapeutic targets, and understanding the physiology of gut bacteria and their interactions with the host. However, construction of high-quality libraries with uniform representation can be challenging. In this review, we survey various strategies for barcoded library construction, including transposition systems, methods of transposon delivery, optimal library size, and transconjugant selection schemes. We discuss the advantages and limitations of each approach, as well as factors to consider when selecting a strategy. In addition, we highlight experimental and computational advances in arraying condensed libraries from mutant pools. We focus on examples of successful library construction in gut bacteria and their application to gene function studies and drug discovery. Given the need for understanding gene function and organization in gut bacteria, we provide a comprehensive guide for researchers to construct randomly barcoded transposon mutant libraries.
Collapse
Affiliation(s)
- Surya Tripathi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carlos Geert Pieter Voogdt
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Stefan Oliver Bassler
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Grabengasse 1, 69117 Heidelberg, Germany
| | - Mary Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nazgul Sakenova
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Tümay Capraz
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sunit Jain
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Alexandra Koumoutsi
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Afonso Martins Bravo
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valentine Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael Zimmerman
- Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Justin L Sonnenburg
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cullen Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Athanasios Typas
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Kerwyn Casey Huang
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Marsh JW, Kirk C, Ley RE. Toward Microbiome Engineering: Expanding the Repertoire of Genetically Tractable Members of the Human Gut Microbiome. Annu Rev Microbiol 2023; 77:427-449. [PMID: 37339736 DOI: 10.1146/annurev-micro-032421-112304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
Genetic manipulation is necessary to interrogate the functions of microbes in their environments, such as the human gut microbiome. Yet, the vast majority of human gut microbiome species are not genetically tractable. Here, we review the hurdles to seizing genetic control of more species. We address the barriers preventing the application of genetic techniques to gut microbes and report on genetic systems currently under development. While methods aimed at genetically transforming many species simultaneously in situ show promise, they are unable to overcome many of the same challenges that exist for individual microbes. Unless a major conceptual breakthrough emerges, the genetic tractability of the microbiome will remain an arduous task. Increasing the list of genetically tractable organisms from the human gut remains one of the highest priorities for microbiome research and will provide the foundation for microbiome engineering.
Collapse
Affiliation(s)
- James W Marsh
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Christian Kirk
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| | - Ruth E Ley
- Department of Microbiome Science, Max Planck Institute for Biology, Tübingen, Germany;
| |
Collapse
|
7
|
Weisberg AJ, Chang JH. Mobile Genetic Element Flexibility as an Underlying Principle to Bacterial Evolution. Annu Rev Microbiol 2023; 77:603-624. [PMID: 37437216 DOI: 10.1146/annurev-micro-032521-022006] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/14/2023]
Abstract
Mobile genetic elements are key to the evolution of bacteria and traits that affect host and ecosystem health. Here, we use a framework of a hierarchical and modular system that scales from genes to populations to synthesize recent findings on mobile genetic elements (MGEs) of bacteria. Doing so highlights the role that emergent properties of flexibility, robustness, and genetic capacitance of MGEs have on the evolution of bacteria. Some of their traits can be stored, shared, and diversified across different MGEs, taxa of bacteria, and time. Collectively, these properties contribute to maintaining functionality against perturbations while allowing changes to accumulate in order to diversify and give rise to new traits. These properties of MGEs have long challenged our abilities to study them. Implementation of new technologies and strategies allows for MGEs to be analyzed in new and powerful ways.
Collapse
Affiliation(s)
- Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| | - Jeff H Chang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|
8
|
Gelsinger DR, Vo PLH, Klompe SE, Ronda C, Wang H, Sternberg SH. Bacterial genome engineering using CRISPR RNA-guided transposases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.533263. [PMID: 36993567 PMCID: PMC10055292 DOI: 10.1101/2023.03.18.533263] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
CRISPR-associated transposons (CASTs) have the potential to transform the technology landscape for kilobase-scale genome engineering, by virtue of their ability to integrate large genetic payloads with high accuracy, easy programmability, and no requirement for homologous recombination machinery. These transposons encode efficient, CRISPR RNA-guided transposases that execute genomic insertions in E. coli at efficiencies approaching ~100%, generate multiplexed edits when programmed with multiple guides, and function robustly in diverse Gram-negative bacterial species. Here we present a detailed protocol for engineering bacterial genomes using CAST systems, including guidelines on the available homologs and vectors, customization of guide RNAs and DNA payloads, selection of common delivery methods, and genotypic analysis of integration events. We further describe a computational crRNA design algorithm to avoid potential off-targets and CRISPR array cloning pipeline for DNA insertion multiplexing. Starting from available plasmid constructs, the isolation of clonal strains containing a novel genomic integration event-of-interest can be achieved in 1 week using standard molecular biology techniques.
Collapse
Affiliation(s)
- Diego R Gelsinger
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Phuc Leo H Vo
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY, USA
| | - Sanne E Klompe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Carlotta Ronda
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Harris Wang
- Department of Systems Biology, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
9
|
McKeithen-Mead SA, Grossman AD. Timing of integration into the chromosome is critical for the fitness of an integrative and conjugative element and its bacterial host. PLoS Genet 2023; 19:e1010524. [PMID: 36780569 PMCID: PMC9956884 DOI: 10.1371/journal.pgen.1010524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/24/2023] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
Integrative and conjugative elements (ICEs) are major contributors to genome plasticity in bacteria. ICEs reside integrated in the chromosome of a host bacterium and are passively propagated during chromosome replication and cell division. When activated, ICEs excise from the chromosome and may be transferred through the ICE-encoded conjugation machinery into a recipient cell. Integration into the chromosome of the new host generates a stable transconjugant. Although integration into the chromosome of a new host is critical for the stable acquisition of ICEs, few studies have directly investigated the molecular events that occur in recipient cells during generation of a stable transconjugant. We found that integration of ICEBs1, an ICE of Bacillus subtilis, occurred several generations after initial transfer to a new host. Premature integration in new hosts led to cell death and hence decreased fitness of the ICE and transconjugants. Host lethality due to premature integration was caused by rolling circle replication that initiated in the integrated ICEBs1 and extended into the host chromosome, resulting in catastrophic genome instability. Our results demonstrate that the timing of integration of an ICE is linked to cessation of autonomous replication of the ICE, and that perturbing this linkage leads to a decrease in ICE and host fitness due to a loss of viability of transconjugants. Linking integration to cessation of autonomous replication appears to be a conserved regulatory scheme for mobile genetic elements that both replicate and integrate into the chromosome of their host.
Collapse
Affiliation(s)
- Saria A. McKeithen-Mead
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| |
Collapse
|
10
|
McLellan LK, Anderson ME, Grossman AD. TnSmu1 is a functional integrative and conjugative element in Streptococcus mutans that when expressed causes growth arrest of host bacteria. Mol Microbiol 2022; 118:652-669. [PMID: 36268794 PMCID: PMC10098952 DOI: 10.1111/mmi.14992] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 01/18/2023]
Abstract
Integrative and conjugative elements (ICEs) are major drivers of horizontal gene transfer in bacteria. They mediate their own transfer from host cells (donors) to recipients and allow bacteria to acquire new phenotypes, including pathogenic and metabolic capabilities and drug resistances. Streptococcus mutans, a major causative agent of dental caries, contains a putative ICE, TnSmu1, integrated at the 3' end of a leucyl tRNA gene. We found that TnSmu1 is a functional ICE, containing all the genes necessary for ICE function. It excised from the chromosome and excision was stimulated by DNA damage. We identified the DNA junctions generated by excision of TnSmu1, defined the ends of the element, and detected the extrachromosomal circle. We found that TnSmu1 can transfer from S. mutans donors to recipients when co-cultured on solid medium. The presence of TnSmu1 in recipients inhibited successful acquisition of another copy and this inhibition was mediated, at least in part, by the likely transcriptional repressor encoded by the element. Using microscopy to track individual cells, we found that activation of TnSmu1 caused an arrest of cell growth. Our results demonstrate that TnSmu1 is a functional ICE that affects the biology of its host cells.
Collapse
Affiliation(s)
- Lisa K McLellan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Mary E Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Alan D Grossman
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
11
|
Bean EL, McLellan LK, Grossman AD. Activation of the integrative and conjugative element Tn916 causes growth arrest and death of host bacteria. PLoS Genet 2022; 18:e1010467. [PMID: 36279314 PMCID: PMC9632896 DOI: 10.1371/journal.pgen.1010467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/03/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
Integrative and conjugative elements (ICEs) serve as major drivers of bacterial evolution. These elements often confer some benefit to host cells, including antibiotic resistance, metabolic capabilities, or pathogenic determinants. ICEs can also have negative effects on host cells. Here, we investigated the effects of the ICE (conjugative transposon) Tn916 on host cells. Because Tn916 is active in a relatively small subpopulation of host cells, we developed a fluorescent reporter system for monitoring activation of Tn916 in single cells. Using this reporter, we found that cell division was arrested in cells of Bacillus subtilis and Enterococcus faecalis (a natural host for Tn916) that contained an activated (excised) Tn916. Furthermore, most of the cells with the activated Tn916 subsequently died. We also observed these phenotypes on the population level in B. subtilis utilizing a modified version of Tn916 that can be activated in the majority of cells. We identified two genes (orf17 and orf16) in Tn916 that were sufficient to cause growth defects in B. subtilis and identified a single gene, yqaR, that is in a defective phage (skin) in the B. subtilis chromosome that was required for this phenotype. These three genes were only partially responsible for the growth defect caused by Tn916, indicating that Tn916 possesses multiple mechanisms to affect growth and viability of host cells. These results highlight the complex relationships that conjugative elements have with their host cells and the interplay between mobile genetic elements.
Collapse
Affiliation(s)
- Emily L. Bean
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
| | - Lisa K. McLellan
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
| | - Alan D. Grossman
- Department of Biology Massachusetts, Institute of Technology Cambridge, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|