1
|
Xie Z, Sun S, Ji H, Miao M, He W, Song X, Cao W, Wu Q, Liang H, Yuan W. Prenatal exposure to per- and polyfluoroalkyl substances and DNA methylation in the placenta: A prospective cohort study. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132845. [PMID: 37898083 DOI: 10.1016/j.jhazmat.2023.132845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/12/2023] [Accepted: 10/21/2023] [Indexed: 10/30/2023]
Abstract
Epidemiological studies regarding the relationship between per- and polyfluoroalkyl substances (PFAS) and DNA methylation were limited. We investigated the associations of maternal PFAS concentrations with placental DNA methylation and examined the mediating role of methylation changes between PFAS and infant development. We measured the concentrations of 11 PFAS in maternal plasma during early pregnancy and infant development at six months of age. We analyzed genome-wide DNA methylation in 16 placental samples using reduced representation bisulfite sequencing. Additionally, we measured DNA methylation levels using bisulfite amplicon sequencing in 345 mother-infant pairs for five candidate genes, including carbohydrate sulfotransferase 7 (CHST7), fibroblast growth factor 13 (FGF13), insulin receptor substrate 4 (IRS4), paired like homeobox 2Ap (PHOX2A), and plexin domain containing 1 (PLXDC1). We found that placental DNA methylation profiles related to PFOA mainly enriched in angiogenesis and neuronal signaling pathways. PFOA was associated with hypomethylation of IRS4 and PLXDC1, and PFNA was associated with PLXDC1 hypomethylation. There were positive associations of CHST7 methylation with PFTrDA and IRS4 methylation with PFDoA and PFTrDA. PLXDC1 hypomethylation mediated the association between PFOA and suspected developmental delay in infants. Future studies with larger sample sizes are warranted to confirm these findings.
Collapse
Affiliation(s)
- Zhenzhen Xie
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of public health, Fudan University, Shanghai 200237, China
| | - Songlin Sun
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, School of public health, Fudan University, Shanghai 200237, China
| | - Honglei Ji
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Maohua Miao
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wanhong He
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Xiuxia Song
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| | - Wencheng Cao
- Hubei Provincial Key Laboratory of Applied Toxicology, National Reference Laboratory of Dioxin, Hubei Provincial Center for Disease Control and Prevention, Wuhan, Hubei 430079, China
| | - Qihan Wu
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Hong Liang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China.
| | - Wei Yuan
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, NHC Key Lab of Reproduction Regulation, Shanghai Institute for Biomedical and Pharmaceutical Technologies, Shanghai 200237, China
| |
Collapse
|
2
|
Correction: Chondroitin/dermatan sulfate glycosyltransferase genes are essential for craniofacial development. PLoS Genet 2022; 18:e1010242. [PMID: 35609044 PMCID: PMC9129007 DOI: 10.1371/journal.pgen.1010242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|