1
|
Zhu J, Chen J, Liu Y, Xu X, Champer J. Population suppression with dominant female-lethal alleles is boosted by homing gene drive. BMC Biol 2024; 22:201. [PMID: 39256812 PMCID: PMC11389273 DOI: 10.1186/s12915-024-02004-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Methods to suppress pest insect populations using genetic constructs and repeated releases of male homozygotes have recently been shown to be an attractive alternative to older sterile insect techniques based on radiation. Female-specific lethal alleles have substantially increased power, but still require large, sustained transgenic insect releases. Gene drive alleles bias their own inheritance to spread throughout populations, potentially allowing population suppression with a single, small-size release. However, suppression drives often suffer from efficiency issues, and the most well-studied type, homing drives, tend to spread without limit. RESULTS In this study, we show that coupling female-specific lethal alleles with homing gene drive allowed substantial improvement in efficiency while still retaining the self-limiting nature (and thus confinement) of a lethal allele strategy. Using a mosquito model, we show the required release sizes for population elimination in a variety of scenarios, including different density growth curves, with comparisons to other systems. Resistance alleles reduced the power of this method, but these could be overcome by targeting an essential gene with the drive while also providing rescue. A proof-of-principle demonstration of this system in Drosophila melanogaster was effective in both biasing its inheritance and achieving high lethality among females that inherit the construct in the absence of antibiotic. CONCLUSIONS Overall, our study shows that substantial improvements can be achieved in female-specific lethal systems for population suppression by combining them with various types of gene drive.
Collapse
Affiliation(s)
- Jinyu Zhu
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jingheng Chen
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Yiran Liu
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Xuejiao Xu
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China
| | - Jackson Champer
- Center for Bioinformatics, Center for Life Sciences, School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Du J, Chen W, Jia X, Xu X, Yang E, Zhou R, Zhang Y, Metzloff M, Messer PW, Champer J. Germline Cas9 promoters with improved performance for homing gene drive. Nat Commun 2024; 15:4560. [PMID: 38811556 PMCID: PMC11137117 DOI: 10.1038/s41467-024-48874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 05/16/2024] [Indexed: 05/31/2024] Open
Abstract
Gene drive systems could be a viable strategy to prevent pathogen transmission or suppress vector populations by propagating drive alleles with super-Mendelian inheritance. CRISPR-based homing gene drives convert wild type alleles into drive alleles in heterozygotes with Cas9 and gRNA. It is thus desirable to identify Cas9 promoters that yield high drive conversion rates, minimize the formation rate of resistance alleles in both the germline and the early embryo, and limit somatic Cas9 expression. In Drosophila, the nanos promoter avoids leaky somatic expression, but at the cost of high embryo resistance from maternally deposited Cas9. To improve drive efficiency, we test eleven Drosophila melanogaster germline promoters. Some achieve higher drive conversion efficiency with minimal embryo resistance, but none completely avoid somatic expression. However, such somatic expression often does not carry detectable fitness costs for a rescue homing drive targeting a haplolethal gene, suggesting somatic drive conversion. Supporting a 4-gRNA suppression drive, one promoter leads to a low drive equilibrium frequency due to fitness costs from somatic expression, but the other outperforms nanos, resulting in successful suppression of the cage population. Overall, these Cas9 promoters hold advantages for homing drives in Drosophila species and may possess valuable homologs in other organisms.
Collapse
Affiliation(s)
- Jie Du
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China.
| | - Weizhe Chen
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xihua Jia
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Xuejiao Xu
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Emily Yang
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Ruizhi Zhou
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Yuqi Zhang
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China
| | - Matt Metzloff
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Philipp W Messer
- Department of Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Jackson Champer
- Center for Bioinformatics, School of Life Sciences, Center for Life Sciences, Peking University, 100871, Beijing, China.
| |
Collapse
|
3
|
de Haas FJH, Kläy L, Débarre F, Otto SP. Modelling daisy quorum drive: A short-term bridge across engineered fitness valleys. PLoS Genet 2024; 20:e1011262. [PMID: 38753875 PMCID: PMC11135765 DOI: 10.1371/journal.pgen.1011262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/29/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024] Open
Abstract
Engineered gene-drive techniques for population modification and/or suppression have the potential for tackling complex challenges, including reducing the spread of diseases and invasive species. Gene-drive systems with low threshold frequencies for invasion, such as homing-based gene drive, require initially few transgenic individuals to spread and are therefore easy to introduce. The self-propelled behavior of such drives presents a double-edged sword, however, as the low threshold can allow transgenic elements to expand beyond a target population. By contrast, systems where a high threshold frequency must be reached before alleles can spread-above a fitness valley-are less susceptible to spillover but require introduction at a high frequency. We model a proposed drive system, called "daisy quorum drive," that transitions over time from a low-threshold daisy-chain system (involving homing-based gene drive such as CRISPR-Cas9) to a high-threshold fitness-valley system (requiring a high frequency-a "quorum"-to spread). The daisy-chain construct temporarily lowers the high thresholds required for spread of the fitness-valley construct, facilitating use in a wide variety of species that are challenging to breed and release in large numbers. Because elements in the daisy chain only drive subsequent elements in the chain and not themselves and also carry deleterious alleles ("drive load"), the daisy chain is expected to exhaust itself, removing all CRISPR elements and leaving only the high-threshold fitness-valley construct, whose spread is more spatially restricted. Developing and analyzing both discrete patch and continuous space models, we explore how various attributes of daisy quorum drive affect the chance of modifying local population characteristics and the risk that transgenic elements expand beyond a target area. We also briefly explore daisy quorum drive when population suppression is the goal. We find that daisy quorum drive can provide a promising bridge between gene-drive and fitness-valley constructs, allowing spread from a low frequency in the short term and better containment in the long term, without requiring repeated introductions or persistence of CRISPR elements.
Collapse
Affiliation(s)
- Frederik J. H. de Haas
- Biodiversity Research Center, Department of Zoology, University of British Columbia, Vancouver BC, Canada
| | - Léna Kläy
- Institute of Ecology and Environmental Sciences Paris (IEES Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Creteil, Université de Paris, Paris Cedex 5, France
| | - Florence Débarre
- Institute of Ecology and Environmental Sciences Paris (IEES Paris), Sorbonne Université, CNRS, IRD, INRAE, Université Paris Est Creteil, Université de Paris, Paris Cedex 5, France
| | - Sarah P. Otto
- Biodiversity Research Center, Department of Zoology, University of British Columbia, Vancouver BC, Canada
| |
Collapse
|
4
|
Raban R, Marshall JM, Hay BA, Akbari OS. Manipulating the Destiny of Wild Populations Using CRISPR. Annu Rev Genet 2023; 57:361-390. [PMID: 37722684 PMCID: PMC11064769 DOI: 10.1146/annurev-genet-031623-105059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
Genetic biocontrol aims to suppress or modify populations of species to protect public health, agriculture, and biodiversity. Advancements in genome engineering technologies have fueled a surge in research in this field, with one gene editing technology, CRISPR, leading the charge. This review focuses on the current state of CRISPR technologies for genetic biocontrol of pests and highlights the progress and ongoing challenges of using these approaches.
Collapse
Affiliation(s)
- Robyn Raban
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| | - John M Marshall
- Divisions of Epidemiology and Biostatistics, School of Public Health, University of California, Berkeley, California, USA
| | - Bruce A Hay
- Division of Biology and Biological Engineering (BBE), California Institute of Technology, Pasadena, California, USA
| | - Omar S Akbari
- Department of Cell and Developmental Biology, School of Biological Sciences, University of California, San Diego, La Jolla, California, USA;
| |
Collapse
|
5
|
Seth RK, Yadav P, Reynolds SE. Dichotomous sperm in Lepidopteran insects: a biorational target for pest management. FRONTIERS IN INSECT SCIENCE 2023; 3:1198252. [PMID: 38469506 PMCID: PMC10926456 DOI: 10.3389/finsc.2023.1198252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 07/31/2023] [Indexed: 03/13/2024]
Abstract
Lepidoptera are unusual in possessing two distinct kinds of sperm, regular nucleated (eupyrene) sperm and anucleate (apyrene) sperm ('parasperm'). Sperm of both types are transferred to the female and are required for male fertility. Apyrene sperm play 'helper' roles, assisting eupyrene sperm to gain access to unfertilized eggs and influencing the reproductive behavior of mated female moths. Sperm development and behavior are promising targets for environmentally safer, target-specific biorational control strategies in lepidopteran pest insects. Sperm dimorphism provides a wide window in which to manipulate sperm functionality and dynamics, thereby impairing the reproductive fitness of pest species. Opportunities to interfere with spermatozoa are available not only while sperm are still in the male (before copulation), but also in the female (after copulation, when sperm are still in the male-provided spermatophore, or during storage in the female's spermatheca). Biomolecular technologies like RNAi, miRNAs and CRISPR-Cas9 are promising strategies to achieve lepidopteran pest control by targeting genes directly or indirectly involved in dichotomous sperm production, function, or persistence.
Collapse
Affiliation(s)
- Rakesh K. Seth
- Department of Zoology, University of Delhi, Delhi, India
| | - Priya Yadav
- Department of Zoology, University of Delhi, Delhi, India
| | - Stuart E. Reynolds
- Department of Life Sciences, University of Bath, Bath, United Kingdom
- Milner Centre for Evolution, University of Bath, Bath, United Kingdom
| |
Collapse
|