Ogawa Y, Ueda TP, Obara K, Nishimura K, Kamura T. A Single-step Generation of AlissAID-based Conditional Knockdown Strains Using Nanobody that Targets GFP or mCherry in Budding Yeast.
Bio Protoc 2024;
14:e5019. [PMID:
38948262 PMCID:
PMC11211076 DOI:
10.21769/bioprotoc.5019]
[Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/27/2024] [Accepted: 05/28/2024] [Indexed: 07/02/2024] Open
Abstract
The Auxin-inducible degron (AID) system is a genetic tool that induces rapid target protein depletion in an auxin-dependent manner. Recently, two advanced AID systems-the super-sensitive AID and AID 2-were developed using an improved pair of synthetic auxins and mutated TIR1 proteins. In these AID systems, a nanomolar concentration of synthetic auxins is sufficient as a degradation inducer for target proteins. However, despite these advancements, AID systems still require the fusion of an AID tag to the target protein for degradation, potentially affecting its function and stability. To address this limitation, we developed an affinity linker-based super-sensitive AID (AlissAID) system using a single peptide antibody known as a nanobody. In this system, the degradation of GFP- or mCherry-tagged target proteins is induced in a synthetic auxin (5-Ad-IAA)-dependent manner. Here, we introduce a simple method for generating AlissAID strains targeting GFP or mCherry fusion proteins in budding yeasts. Key features • AlissAID system enables efficient degradation of the GFP or mCherry fusion proteins in a 5-Ad-IAA-depending manner. • Transforming the pAlissAID plasmids into strains with GFP- or mCherry- tagged proteins.
Collapse