1
|
Aragaw WW, Gebresilase TT, Negatu DA, Dartois V, Dick T. Multidrug tolerance conferred by loss-of-function mutations in anti-sigma factor RshA of Mycobacterium abscessus. Antimicrob Agents Chemother 2024:e0105124. [PMID: 39470195 DOI: 10.1128/aac.01051-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Accepted: 09/29/2024] [Indexed: 10/30/2024] Open
Abstract
Low-level drug resistance in noncanonical pathways can constitute steppingstones toward acquisition of high-level on-target resistance mutations in the clinic. To capture these intermediate steps in Mycobacterium abscessus (Mab), we performed classic mutant selection experiments with moxifloxacin at twofold its minimum inhibitory concentration (MIC) on solid medium. We found that low-level resistance emerged reproducibly as loss-of-function mutations in RshA (MAB_3542c), an anti-sigma factor that negatively regulates activity of SigH, which orchestrates a response to oxidative stress in mycobacteria. Since oxidative stress is generated in response to many antibiotics, we went on to show that deletion of rshA confers low to moderate resistance-by measure of MIC-to a dozen agents recommended or evaluated for the treatment of Mab pulmonary infections. Interestingly, this moderate resistance was associated with a wide range of drug tolerance, up to 1,000-fold increased survival of a ΔrshA Mab mutant upon exposure to several β-lactams and DNA gyrase inhibitors. Consistent with the putative involvement of the SigH regulon, we showed that addition of the transcription inhibitor rifabutin (RBT) abrogated the high-tolerance phenotype of ΔrshA to representatives of the β-lactam and DNA gyrase inhibitor classes. In a survey of 10,000 whole Mab genome sequences, we identified several loss-of-function mutations in rshA as well as non-synonymous polymorphisms in two cysteine residues critical for interactions with SigH. Thus, the multidrug multiform resistance phenotype we have uncovered may not only constitute a step toward canonical resistance acquisition during treatment but also contribute directly to treatment failure.
Collapse
Affiliation(s)
- Wassihun Wedajo Aragaw
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
| | - Tewodros T Gebresilase
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
- Institute of Biotechnology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dereje A Negatu
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, Addis Ababa, Ethiopia
| | - Véronique Dartois
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
| | - Thomas Dick
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, USA
- Department of Medical Sciences, Hackensack Meridian School of Medicine, Nutley, New Jersey, USA
- Department of Microbiology and Immunology, Georgetown University, Washington, DC, USA
| |
Collapse
|
2
|
Guiza Beltran D, Wan T, Zhang L. WhiB-like proteins: Diversity of structure, function and mechanism. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119787. [PMID: 38879133 PMCID: PMC11365794 DOI: 10.1016/j.bbamcr.2024.119787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/20/2024] [Accepted: 06/11/2024] [Indexed: 06/22/2024]
Abstract
The WhiB-Like (Wbl) proteins are a large family of iron-sulfur (Fe-S) cluster-containing transcription factors exclusively found in the phylum Actinobacteria, including the notable genera like Mycobacteria, Streptomycetes and Corynebacteria. These proteins play pivotal roles in diverse biological processes, such as cell development, redox stress response and antibiotic resistance. Members of the Wbl family exhibit remarkable diversity in their sequences, structures and functions, attracting great attention since their first discovery. This review highlights the most recent breakthroughs in understanding the structural and mechanistic aspects of Wbl-dependent transcriptional regulation.
Collapse
Affiliation(s)
- Daisy Guiza Beltran
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | - Tao Wan
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA
| | - LiMei Zhang
- Department of Biochemistry, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA; Redox Biology Center, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA; Nebraska Center for Integrated Biomolecular Communication, University of Nebraska-Lincoln, N138 Beadle Center, 1901 Vine Street, Lincoln, NE 68588, USA.
| |
Collapse
|
3
|
Nguyen TQ, Heo BE, Jeon S, Ash A, Lee H, Moon C, Jang J. Exploring antibiotic resistance mechanisms in Mycobacterium abscessus for enhanced therapeutic approaches. Front Microbiol 2024; 15:1331508. [PMID: 38380095 PMCID: PMC10877060 DOI: 10.3389/fmicb.2024.1331508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024] Open
Abstract
Mycobacterium abscessus, a leading cause of severe lung infections in immunocompromised individuals, poses significant challenges for current therapeutic strategies due to resistance mechanisms. Therefore, understanding the intrinsic and acquired antibiotic resistance of M. abscessus is crucial for effective treatment. This review highlights the mechanisms employed by M. abscessus to sustain antibiotic resistance, encompassing not only conventional drugs but also newly discovered drug candidates. This comprehensive analysis aims to identify novel entities capable of overcoming the notorious resistance exhibited by M. abscessus, providing insights for the development of more effective therapeutic interventions.
Collapse
Affiliation(s)
- Thanh Quang Nguyen
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Bo Eun Heo
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seunghyeon Jeon
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Anwesha Ash
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Heehyun Lee
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Cheol Moon
- Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Jichan Jang
- Division of Life Science, Department of Bio & Medical Big Data (BK21 Four Program), Research Institute of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|