1
|
Greydanus DE, Nazeer A, Patel DR. Opioid use and abuse in adolescents and young adults; dealing with science, laws and ethics: Charming the COBRAS. Dis Mon 2025:101853. [PMID: 39809600 DOI: 10.1016/j.disamonth.2025.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The subject of substance use disorders in the pediatric population remains a disturbing conundrum for clinicians, researchers and society in general. Many of our youth are at risk of being damaged and even killed by drug addictions that result from the collision of rapidly developing as well as vulnerable central nervous systems encountering the current global drug addiction crisis. A major motif of this chemical calamity is opioid use disorder in adolescents and young adults that was stimulated by the 19th century identification of such highly addictive drugs as morphine, heroin and a non-opiate, cocaine. This analysis focuses on the pervasive presence of opioid drugs such as heroin and fentanyl that has become a major tragedy in the 21st century arising from an overall substance use and misuse phenomenon rampant in global society. Themes covered in this article include the history of addictive drugs in humans, diagnostic terms in use, the role of neurobiology in drug addiction, and current psychopharmacologic approaches to opioid overdose as well as addiction. Our youth are continuously confronted by dangers of high-risk behaviors including death and injury from opioid use disorders due to their central nervous system neuroplasticity as well as the widespread availability of these harmful chemicals. Healthcare professionals should actively assist our youth who unknowingly and even innocently encounter this deadly menace in the 21st century.
Collapse
Affiliation(s)
- Donald E Greydanus
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States.
| | - Ahsan Nazeer
- Division of Child and Adolescent Psychiatry, Sidra Medicine/Weill Cornell Medicine, Doha, Qatar
| | - Dilip R Patel
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
2
|
Mitten EH, Souders A, Marron Fernandez de Velasco E, Aguado C, Luján R, Wickman K. Chronic ethanol exposure in mice evokes pre- and postsynaptic deficits in GABAergic transmission in ventral tegmental area GABA neurons. Br J Pharmacol 2025; 182:69-86. [PMID: 39358985 PMCID: PMC11831720 DOI: 10.1111/bph.17335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/26/2024] [Accepted: 07/18/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND AND PURPOSE GABAergic neurons in mouse ventral tegmental area (VTA) exhibit elevated activity during withdrawal following chronic ethanol exposure. While increased glutamatergic input and decreased GABAA receptor sensitivity have been implicated, the impact of inhibitory signaling in VTA GABA neurons has not been fully addressed. EXPERIMENTAL APPROACH We used electrophysiological and ultrastructural approaches to assess the impact of chronic intermittent ethanol vapour exposure in mice on GABAergic transmission in VTA GABA neurons during withdrawal. We used CRISPR/Cas9 ablation to mimic a somatodendritic adaptation involving the GABAB receptor (GABABR) in ethanol-naïve mice to investigate its impact on anxiety-related behaviour. KEY RESULTS The frequency of spontaneous inhibitory postsynaptic currents was reduced in VTA GABA neurons following chronic ethanol treatment and this was reversed by GABABR inhibition, suggesting chronic ethanol strengthens the GABABR-dependent suppression of GABAergic input to VTA GABA neurons. Similarly, paired-pulse depression of GABAA receptor-dependent responses evoked by optogenetic stimulation of nucleus accumbens inputs from ethanol-treated mice was reversed by GABABR inhibition. Somatodendritic currents evoked in VTA GABA neurons by GABABR activation were reduced following ethanol exposure, attributable to the suppression of GIRK (Kir3) channel activity. Mimicking this adaptation enhanced anxiety-related behaviour in ethanol-naïve mice. CONCLUSIONS AND IMPLICATIONS Chronic ethanol weakens the GABAergic regulation of VTA GABA neurons in mice via pre- and postsynaptic mechanisms, likely contributing to their elevated activity during withdrawal and expression of anxiety-related behaviour. As anxiety can promote relapse during abstinence, interventions targeting VTA GABA neuron excitability could represent new therapeutic strategies for treatment of alcohol use disorder.
Collapse
Affiliation(s)
- Eric H. Mitten
- Graduate Program in NeuroscienceUniversity of MinnesotaMinneapolisMinnesotaUSA
| | - Anna Souders
- Department of PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| | | | - Carolina Aguado
- Instituto de Biomedicina de la UCLM (IB‐UCLM), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Rafael Luján
- Instituto de Biomedicina de la UCLM (IB‐UCLM), Departamento de Ciencias Médicas, Facultad de MedicinaUniversidad Castilla‐La Mancha, Campus BiosanitarioAlbaceteSpain
| | - Kevin Wickman
- Department of PharmacologyUniversity of MinnesotaMinneapolisMinnesotaUSA
| |
Collapse
|
3
|
Driscoll N, Antonini MJ, Cannon TM, Maretich P, Olaitan G, Van VDP, Nagao K, Sahasrabudhe A, Paniagua EV, Frey EJ, Kim YJ, Hunt S, Hummel M, Mupparaju S, Jasanoff A, Venton BJ, Anikeeva P. Multifunctional Neural Probes Enable Bidirectional Electrical, Optical, and Chemical Recording and Stimulation In Vivo. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408154. [PMID: 39506430 DOI: 10.1002/adma.202408154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/28/2024] [Indexed: 11/08/2024]
Abstract
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and fluorescent indicator imaging. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.
Collapse
Affiliation(s)
| | | | - Taylor M Cannon
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Pema Maretich
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | - Keisuke Nagao
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | | | | | - Ethan J Frey
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Ye Ji Kim
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sydney Hunt
- Stanford University, Stanford, CA, 94305, USA
| | - Melissa Hummel
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Sanju Mupparaju
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Alan Jasanoff
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - B Jill Venton
- The University of Virginia, Charlottesville, VA, 22904, USA
| | - Polina Anikeeva
- Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
4
|
Ebrahimi MN, Banazadeh M, Alitaneh Z, Jaafari Suha A, Esmaeili A, Hasannejad-Asl B, Siahposht-Khachaki A, Hassanshahi A, Bagheri-Mohammadi S. The distribution of neurotransmitters in the brain circuitry: Mesolimbic pathway and addiction. Physiol Behav 2024; 284:114639. [PMID: 39004195 DOI: 10.1016/j.physbeh.2024.114639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
Understanding the central nervous system (CNS) circuitry and its different neurotransmitters that underlie reward is essential to improve treatment for many common health issues, such as addiction. Here, we concentrate on understanding how the mesolimbic circuitry and neurotransmitters are organized and function, and how drug exposure affects synaptic and structural changes in this circuitry. While the role of some reward circuits, like the cerebral dopamine (DA)/glutamate (Glu)/gamma aminobutyric acid (GABA)ergic pathways, in drug reward, is well known, new research using molecular-based methods has shown functional alterations throughout the reward circuitry that contribute to various aspects of addiction, including craving and relapse. A new understanding of the fundamental connections between brain regions as well as the molecular alterations within these particular microcircuits, such as neurotrophic factor and molecular signaling or distinct receptor function, that underlie synaptic and structural plasticity evoked by drugs of abuse has been made possible by the ability to observe and manipulate neuronal activity within specific cell types and circuits. It is exciting that these discoveries from preclinical animal research are now being applied in the clinic, where therapies for human drug dependence, such as deep brain stimulation and transcranial magnetic stimulation, are being tested. Therefore, this chapter seeks to summarize the current understanding of the important brain regions (especially, mesolimbic circuitry) and neurotransmitters implicated in drug-related behaviors and the molecular mechanisms that contribute to altered connectivity between these areas, with the postulation that increased knowledge of the plasticity within the drug reward circuit will lead to new and improved treatments for addiction.
Collapse
Affiliation(s)
- Mohammad Navid Ebrahimi
- Neuroscience Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Banazadeh
- Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Zahra Alitaneh
- Quantitative and System Biology, Department of Natural Sciences, University of California Merced, USA
| | - Ali Jaafari Suha
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Esmaeili
- Student Research Committee, Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Behnam Hasannejad-Asl
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti, University of Medical Sciences, Tehran, Iran
| | - Ali Siahposht-Khachaki
- Immunogenetics Research Center, Department of Physiology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amin Hassanshahi
- Department of Physiology, Bam University of Medical Sciences, Bam, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Paramedicine, Amol School of Paramedical Sciences, Mazandaran University of Medical Sciences, Sari, Iran; Immunogenetics Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
5
|
Su H, Ye T, Cao S, Hu C. Understanding the shift to compulsion in addiction: insights from personality traits, social factors, and neurobiology. Front Psychol 2024; 15:1416222. [PMID: 39315036 PMCID: PMC11416939 DOI: 10.3389/fpsyg.2024.1416222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/26/2024] [Indexed: 09/25/2024] Open
Abstract
Compulsion stands as a central symptom of drug addiction; however, only a small fraction of individuals who use drugs exhibit compulsive characteristics. Differences observed in Sign-trackers (ST) and Goal-trackers (GT) during Pavlovian conditioning may shed light on individual variances in drug addiction. Here, we focus on the behavioral attributes, formation processes, and neural mechanisms underlying ST and how they drive addiction toward compulsivity in humans. We will explore addiction from three interconnected levels: individual personality traits, social factors, and neurobiology. Furthermore, we distinguish between the processes of sensitization and habituation within ST. These nuanced distinctions across various aspects of addiction will contribute to our understanding of the addiction development process and the formulation of targeted preventive strategies.
Collapse
Affiliation(s)
- Haodong Su
- College of Humanities, Anhui Science and Technology University, Chuzhou, China
- Psychological Education Research Department, Anhui Science and Technology University, Chuzhou, China
| | - Tongtong Ye
- College of Humanities, Anhui Science and Technology University, Chuzhou, China
- Psychological Education Research Department, Anhui Science and Technology University, Chuzhou, China
| | - Songyan Cao
- College of Humanities, Anhui Science and Technology University, Chuzhou, China
| | - Chunyan Hu
- College of Humanities, Anhui Science and Technology University, Chuzhou, China
| |
Collapse
|
6
|
Wen X, Yang W, Du Z, Zhao J, Li Y, Yu D, Zhang J, Liu J, Yuan K. Multimodal frontal neuroimaging markers predict longitudinal craving reduction in abstinent individuals with heroin use disorder. J Psychiatr Res 2024; 177:1-10. [PMID: 38964089 DOI: 10.1016/j.jpsychires.2024.06.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/02/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
The variation in improvement among individuals with addiction after abstinence is a critical issue. Here, we aimed to identify robust multimodal markers associated with high response to 8-month abstinence in the individuals with heroin use disorder (HUD) and explore whether the identified markers could be generalized to the individuals with methamphetamine use disorder (MUD). According to the median of craving changes, 53 individuals with HUD with 8-month abstinence were divided into two groups: higher craving reduction and lower craving reduction. At baseline, clinical variables, cortical thickness and subcortical volume, fractional anisotropy (FA) of fibers and resting-state functional connectivity (RSFC) were extracted. Different strategies (single metric, multimodal neuroimaging fusion and multimodal neuroimaging-clinical data fusion) were used to identify reliable features for discriminating the individuals with HUD with higher craving reduction from those with lower reduction. The generalization ability of the identified features was validated in the 21 individuals with MUD. Multimodal neuroimaging-clinical fusion features with best performance was achieved an 87.1 ± 3.89% average accuracy in individuals with HUD, with a moderate accuracy of 66.7% when generalizing to individuals with MUD. The multimodal neuroimaging features, primarily converging in frontal regions (e.g., the left superior frontal (LSF) thickness, FA of the LSF-occipital tract, and RSFC of left middle frontal-right superior temporal lobe), collectively contributed to prediction alongside dosage and attention impulsiveness. In this study, we identified the validated multimodal frontal neuroimaging markers associated with higher response to long-term abstinence and revealed insights for the neural mechanisms of addiction abstinence, contributing to clinical strategies and treatment for addiction.
Collapse
Affiliation(s)
- Xinwen Wen
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Wenhan Yang
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Zhe Du
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Jiahao Zhao
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yangding Li
- Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, Hunan Normal University, Changsha, China
| | - Dahua Yu
- Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China
| | - Jun Zhang
- Hunan Judicial Police Academy, Changsha, China
| | - Jun Liu
- Department of Radiology, The Second Xiangya Hospital of Central South University, Changsha, China.
| | - Kai Yuan
- School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China; Inner Mongolia Key Laboratory of Pattern Recognition and Intelligent Image Processing, School of Information Engineering, Inner Mongolia University of Science and Technology, Baotou, Inner Mongolia, 014010, China; Engineering Research Center of Molecular and Neuro Imaging Ministry of Education, Xi'an, Shaanxi, China; Xi'an Key Laboratory of Intelligent Sensing and Regulation of Trans-Scale Life Information, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710126, China.
| |
Collapse
|
7
|
Sardari M, Mohammadpourmir F, Hosseinzadeh Sahafi O, Rezayof A. Neuronal biomarkers as potential therapeutic targets for drug addiction related to sex differences in the brain: Opportunities for personalized treatment approaches. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111068. [PMID: 38944334 DOI: 10.1016/j.pnpbp.2024.111068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Biological sex disparities manifest at various stages of drug addiction, including craving, substance abuse, abstinence, and relapse. These discrepancies are underpinned by notable distinctions in neurobiological substrates, encompassing brain structures, functions, and neurotransmitter systems implicated in drug addiction. Neuronal biomarkers, such as neurotransmitters, signaling proteins, and genes may be associated with the diagnosis, prognosis, and treatment outcomes in both biological sexes afflicted by drug abuse. Sex differences in the neural reward system, mainly through dopaminergic transmission during drug abuse, can be attributed to modifications in neurotransmitter systems and signaling pathways. This results in distinct patterns of neural activation and responsiveness to addictive substances in males and females. Sex hormones, the estrus/menstrual cycle, and cerebral neurochemistry contribute to the progression of psychological and physiological dependence in both male and female individuals grappling with addiction. Moreover, the alteration of sex hormone balance and neurotransmitter release plays a pivotal role in substance use disorders, subsequently modulating cognitive functions pertinent to reward, including memory formation, decision-making, and locomotor activity. Comparative investigations reveal distinctions in brain region volume, gene expression, neuronal firing, and circuitry in substance use disorders affecting individuals of both biological sexes. This review examines prevalent substance use disorders to elucidate the impact of sex hormones as therapeutic biomarkers on the mesocorticolimbic neurotransmitter systems via diverse mechanisms within the addicted brain. We underscore the imperative necessity of considering these variations to gain a deeper comprehension of addiction mechanisms and potentially discern sex-specific neuronal biomarkers for tailored therapeutic interventions.
Collapse
Affiliation(s)
- Maryam Sardari
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Farina Mohammadpourmir
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Oveis Hosseinzadeh Sahafi
- Department of Neurophysiology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| | - Ameneh Rezayof
- Department of Animal Biology, School of Biology, College of Science, University of Tehran, Tehran, Iran.
| |
Collapse
|
8
|
Brasier N, Sempionatto JR, Bourke S, Havenith G, Schaffarczyk D, Goldhahn J, Lüscher C, Gao W. Towards on-skin analysis of sweat for managing disorders of substance abuse. Nat Biomed Eng 2024; 8:925-929. [PMID: 38499644 DOI: 10.1038/s41551-024-01187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Affiliation(s)
- Noe Brasier
- Institute of Translational Medicine, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland.
- Collegium Helveticum, Zurich, Switzerland.
| | - Juliane R Sempionatto
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| | | | - George Havenith
- Environmental Ergonomics Research Centre, Loughborough Design School, Loughborough University, Loughborough, UK
| | | | - Jörg Goldhahn
- Institute of Translational Medicine, Department of Health Science and Technology, ETH Zurich, Zurich, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, Geneva, Switzerland
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland
| | - Wei Gao
- Andrew and Peggy Cherng Department of Medical Engineering, Division of Engineering and Applied Science, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
9
|
Driscoll N, Antonini MJ, Cannon TM, Maretich P, Olaitan G, Phi Van VD, Nagao K, Sahasrabudhe A, Vargas E, Hunt S, Hummel M, Mupparaju S, Jasanoff A, Venton J, Anikeeva P. Fiber-based Probes for Electrophysiology, Photometry, Optical and Electrical Stimulation, Drug Delivery, and Fast-Scan Cyclic Voltammetry In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.598004. [PMID: 38895451 PMCID: PMC11185794 DOI: 10.1101/2024.06.07.598004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Recording and modulation of neuronal activity enables the study of brain function in health and disease. While translational neuroscience relies on electrical recording and modulation techniques, mechanistic studies in rodent models leverage genetic precision of optical methods, such as optogenetics and imaging of fluorescent indicators. In addition to electrical signal transduction, neurons produce and receive diverse chemical signals which motivate tools to probe and modulate neurochemistry. Although the past decade has delivered a wealth of technologies for electrophysiology, optogenetics, chemical sensing, and optical recording, combining these modalities within a single platform remains challenging. This work leverages materials selection and convergence fiber drawing to permit neural recording, electrical stimulation, optogenetics, fiber photometry, drug and gene delivery, and voltammetric recording of neurotransmitters within individual fibers. Composed of polymers and non-magnetic carbon-based conductors, these fibers are compatible with magnetic resonance imaging, enabling concurrent stimulation and whole-brain monitoring. Their utility is demonstrated in studies of the mesolimbic reward pathway by simultaneously interfacing with the ventral tegmental area and nucleus accumbens in mice and characterizing the neurophysiological effects of a stimulant drug. This study highlights the potential of these fibers to probe electrical, optical, and chemical signaling across multiple brain regions in both mechanistic and translational studies.
Collapse
Affiliation(s)
| | | | | | - Pema Maretich
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | - Keisuke Nagao
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | | | | | - Melissa Hummel
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | | | - Alan Jasanoff
- Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Jill Venton
- The University of Virginia, Charlottesville, VA 22904
| | | |
Collapse
|
10
|
Dagher M, Alayoubi M, Sigal GH, Cahill CM. Unveiling the link between chronic pain and misuse of opioids and cannabis. J Neural Transm (Vienna) 2024; 131:563-580. [PMID: 38570361 DOI: 10.1007/s00702-024-02765-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/10/2024] [Indexed: 04/05/2024]
Abstract
Over 50 million Americans endure chronic pain where many do not receive adequate treatment and self-medicate to manage their pain by taking substances like opioids and cannabis. Research has shown high comorbidity between chronic pain and substance use disorders (SUD) and these disorders share many common neurobiological underpinnings, including hypodopaminergic transmission. Drugs commonly used for self-medication such as opioids and cannabis relieve emotional, bothersome components of pain as well as negative emotional affect that perpetuates misuse and increases the risk of progressing towards drug abuse. However, the causal effect between chronic pain and the development of SUDs has not been clearly established. In this review, we discuss evidence that affirms the proposition that chronic pain is a risk factor for the development of opioid and cannabis use disorders by outlining the clinical evidence and detailing neurobiological mechanisms that link pain and drug misuse. Central to the link between chronic pain and opioid and cannabis misuse is hypodopaminergic transmission and the modulation of dopamine signaling in the mesolimbic pathway by opioids and cannabis. Moreover, we discuss the role of kappa opioid receptor activation and neuroinflammation in the context of dopamine transmission, their contribution to opioid and cannabis withdrawal, along with potential new treatments.
Collapse
Affiliation(s)
- Merel Dagher
- MacDonald Research Laboratory Building, Department of Psychiatry and Biobehavioral Sciences, Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E Young Drive South, Office 2774, Los Angeles, CA, 90095, USA
| | - Myra Alayoubi
- MacDonald Research Laboratory Building, Department of Psychiatry and Biobehavioral Sciences, Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E Young Drive South, Office 2774, Los Angeles, CA, 90095, USA
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Gabriella H Sigal
- Department of Integrative Biology and Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Catherine M Cahill
- MacDonald Research Laboratory Building, Department of Psychiatry and Biobehavioral Sciences, Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute for Neuroscience and Human Behavior, University of California Los Angeles, 675 Charles E Young Drive South, Office 2774, Los Angeles, CA, 90095, USA.
- Neuroscience Interdepartmental Program, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
11
|
Evans VD, Arenas A, Shinozuka K, Tabaac BJ, Beutler BD, Cherian K, Fasano C, Muir OS. Psychedelic Therapy: A Primer for Primary Care Clinicians-Ketamine. Am J Ther 2024; 31:e155-e177. [PMID: 38518272 DOI: 10.1097/mjt.0000000000001721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2024]
Abstract
BACKGROUND Ketamine, an arylcyclohexylamine dissociative anesthetic agent, has evolved into a versatile therapeutic. It has a rapid-onset, well-understood cardiovascular effects and a favorable safety profile in clinical use. Its enantiomeric compound, esketamine, was approved by the Food and Drug Administration in 2019 for both treatment-resistant depression and major depressive disorder with suicidal ideation. AREAS OF UNCERTAINTY Research indicates dose-dependent impacts on cognition, particularly affecting episodic and working memory following both acute administration and chronic use, albeit temporarily for the former and potentially persistent for the latter. Alongside acute risks to cardiovascular stability, ketamine use poses potential liver toxicity concerns, especially with prolonged or repeated exposure within short time frames. The drug's association with "ketamine cystitis," characterized by bladder inflammation, adds to its profile of physiological risks. THERAPEUTIC ADVANCES Data demonstrate a single intravenous infusion of ketamine exhibits antidepressant effects within hours (weighted effect size averages of depression scores (N = 518) following a single 0.5 mg/kg infusion of ketamine is d = 0.96 at 24 hours). Ketamine is also effective at reducing posttraumatic stress disorder (PTSD) symptom severity following repeated infusions (Clinician-Administered PTSD Scale scores: -11.88 points compared with midazolam control). Ketamine also decreased suicidal ideation in emergency settings (Scale for Suicidal Ideation scores: -4.96 compared with midazolam control). Through its opioid-sparing effect, ketamine has revolutionized postoperative pain management by reducing analgesic consumption and enhancing recovery. LIMITATIONS Many studies indicate that ketamine's therapeutic effects may subside within weeks. Repeated administrations, given multiple times per week, are often required to sustain decreases in suicidality and depressive symptoms. CONCLUSIONS Ketamine's comprehensive clinical profile, combined with its robust effects on depression, suicidal ideation, PTSD, chronic pain, and other psychiatric conditions, positions it as a substantial contender for transformative therapeutic application.
Collapse
Affiliation(s)
- Viviana D Evans
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Alejandro Arenas
- Department of Anesthesiology, University of Washington School of Medicine, Seattle, WA
| | - Kenneth Shinozuka
- Centre for Eudaimonia and Human Flourishing, University of Oxford, Oxford, United Kingdom
- Department of Psychiatry, University of Oxford, Oxford, United Kingdom
| | - Burton J Tabaac
- University of Nevada, Reno School of Medicine, Reno, NV
- Department of Neurology, Carson Tahoe Health, Carson City, NV
| | - Bryce D Beutler
- University of Southern California, Keck School of Medicine, Los Angeles, CA
| | - Kirsten Cherian
- Department of Psychiatry and Behavioral Sciences, Stanford University, Palo Alto, CA
| | | | - Owen S Muir
- Fermata Health, Brooklyn, NY; and
- Acacia Clinics, Sunnyvale, CA
| |
Collapse
|
12
|
Deng L, Wu L, Gao R, Xu X, Chen C, Liu J. Non-Opioid Anesthetics Addiction: A Review of Current Situation and Mechanism. Brain Sci 2023; 13:1259. [PMID: 37759860 PMCID: PMC10526861 DOI: 10.3390/brainsci13091259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 08/15/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Drug addiction is one of the major worldwide health problems, which will have serious adverse consequences on human health and significantly burden the social economy and public health. Drug abuse is more common in anesthesiologists than in the general population because of their easier access to controlled substances. Although opioids have been generally considered the most commonly abused drugs among anesthesiologists and nurse anesthetists, the abuse of non-opioid anesthetics has been increasingly severe in recent years. The purpose of this review is to provide an overview of the clinical situation and potential molecular mechanisms of non-opioid anesthetics addiction. This review incorporates the clinical and biomolecular evidence supporting the abuse potential of non-opioid anesthetics and the foreseeable mechanism causing the non-opioid anesthetics addiction phenotypes, promoting a better understanding of its pathogenesis and helping to find effective preventive and curative strategies.
Collapse
Affiliation(s)
- Liyun Deng
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Lining Wu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Gao
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaolin Xu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chan Chen
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Liu
- Department of Anesthesiology, West China Hospital, Sichuan University, Chengdu 610041, China; (L.D.); (L.W.); (R.G.); (X.X.); (J.L.)
- The Research Units of West China (2018RU012)-Chinese Academy of Medical Sciences, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Zainudin NAB, Zulkifli NN, Abdul Hamid K, Hashim H, Mansor S. A Pilot Study of the Striatal Dopamine Transporter Levels in Kratom-Dependent and Normal Subjects Using 99mTc-TRODAT-1 Single Photon Emission Computed Tomography-Computed Tomography (SPECT-CT). Cureus 2023; 15:e43251. [PMID: 37692587 PMCID: PMC10491945 DOI: 10.7759/cureus.43251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/09/2023] [Indexed: 09/12/2023] Open
Abstract
OBJECTIVE The study aims to elucidate the effects of kratom addiction on dopamine transporter (DAT) using [2-[[2-[[[3-(4-chlorophenyl)-8-methyl-8-azabicyclo[3.2.1]oct-2-yl]methyl](2-mercaptoethyl)amino]ethyl]amino]ethanethiolato(3-)-N2,N20,S2,S20]oxo-[1R-(exo-exo)]-[99mTc] technetium (99mTc-TRODAT-1) brain single photon emission computed tomography-computed tomography (SPECT-CT) in kratom-dependent and healthy subjects. MATERIALS AND METHODS We recruited 12 kratom-dependent subjects and 13 healthy men to participate in this study. Addiction, craving, depression, and cognitive scores were assessed. All subjects received a single bolus injection of 99mTc-TRODAT-1 with 914.1 MBq ± 65.5 of activity (mean ± SD). The brain SPECT-CT images were reconstructed using 3D ordered subset expectation maximization (3D-OSEM) along with attenuation correction (AC), scatter correction (SC), and resolution recovery (RR) with an iteration number of four and a subset of 10. The Cohen's Kappa interrater-reliability between two raters, the standardized uptake value of body weight (SUVBW), and the asymmetrical index percentage (AI%) were evaluated. RESULTS Kappa statistics showed a fine agreement of abnormal 99mTc-TRODAT-1 uptake in the striatum region for the kratom-dependent group with the κ value of 0.69 (p = 0.0001), and the percentage of agreement for rater 1 and rater 2 was 56% and 64%, respectively. There was a reduction in average SUV in kratom-dependent subjects compared to healthy control subjects in the left caudate and left striatum (0.938 vs. 1.251, p = 0.014, and 1.055 vs. 1.29, p = 0.036, respectively). There was a significant difference in the AI% of the caudate region between the kratom-dependent group and the normal group (33% vs. 14%, p = 0.019). CONCLUSION Our findings signify that kratom addiction, may cause a change in DAT level and the results can be confirmed using 99mTc-TRODAT-1 SPECT-CT.
Collapse
Affiliation(s)
| | | | - Khadijah Abdul Hamid
- Biomedical Imaging, Universiti Sains Malaysia, Penang, MYS
- Nuclear Medicine Unit, Universiti Sains Malaysia, Penang, MYS
| | - Hazlin Hashim
- Biomedical Imaging, Universiti Sains Malaysia, Penang, MYS
- Nuclear Medicine Unit, Universiti Sains Malaysia, Penang, MYS
| | - Syahir Mansor
- Biomedical Imaging, Universiti Sains Malaysia, Penang, MYS
- Nuclear Medicine Unit, Universiti Sains Malaysia, Penang, MYS
| |
Collapse
|
14
|
Nufer TM, Wu BJ, Boyce Z, Steffensen SC, Edwards JG. Ethanol blocks a novel form of iLTD, but not iLTP of inhibitory inputs to VTA GABA neurons. Neuropsychopharmacology 2023; 48:1396-1408. [PMID: 36899030 PMCID: PMC10354227 DOI: 10.1038/s41386-023-01554-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 03/12/2023]
Abstract
The ventral tegmental area (VTA) is an essential component of the mesocorticolimbic dopamine (DA) circuit that processes reward and motivated behaviors. The VTA contains DA neurons essential in this process, as well as GABAergic inhibitory cells that regulate DA cell activity. In response to drug exposure, synaptic connections of the VTA circuit can be rewired via synaptic plasticity-a phenomenon thought to be responsible for the pathology of drug dependence. While synaptic plasticity to VTA DA neurons as well as prefrontal cortex to nucleus accumbens GABA neurons are well studied, VTA GABA cell plasticity, specifically inhibitory inputs to VTA GABA neurons, is less understood. Therefore, we investigated the plasticity of these inhibitory inputs. Using whole cell electrophysiology in GAD67-GFP mice to identify GABA cells, we observed that these VTA GABA cells experience either inhibitory GABAergic long-term potentiation (iLTP) or inhibitory long-term depression (iLTD) in response to a 5 Hz stimulus. Paired pulse ratios, coefficient of variance, and failure rates suggest a presynaptic mechanism for both plasticity types, where iLTP is NMDA receptor-dependent and iLTD is GABAB receptor-dependent-this being the first report of iLTD onto VTA GABA cells. As illicit drug exposure can alter VTA plasticity, we employed chronic intermittent exposure (CIE) to ethanol (EtOH) vapor in male and female mice to examine its potential impact on VTA GABA input plasticity. Chronic EtOH vapor exposure produced measurable behavioral changes illustrating dependence and concomitantly prevented previously observed iLTD, which continued in air-exposed controls, illustrating the impact of EtOH on VTA neurocircuitry and suggesting physiologic mechanisms at play in alcohol use disorder and withdrawal states. Taken together, these novel findings of unique GABAergic synapses exhibiting either iLTP or iLTD within the mesolimbic circuit, and EtOH blockade specifically of iLTD, characterize inhibitory VTA plasticity as a malleable, experience-dependent system modified by EtOH.
Collapse
Affiliation(s)
- Teresa M Nufer
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA
| | - Bridget J Wu
- Brigham Young University, Department of Cell Biology and Physiology Provo, Provo, UT, 84602, USA
| | - Zachary Boyce
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA
| | | | - Jeffrey G Edwards
- Brigham Young University, Neuroscience Center, Provo, UT, 84602, USA.
- Brigham Young University, Department of Cell Biology and Physiology Provo, Provo, UT, 84602, USA.
| |
Collapse
|
15
|
Cardona-Acosta AM, Sial OK, Parise LF, Gnecco T, Enriquez Marti G, Bolaños-Guzmán CA. Alprazolam exposure during adolescence induces long-lasting dysregulation in reward sensitivity to morphine and second messenger signaling in the VTA-NAc pathway. Sci Rep 2023; 13:10872. [PMID: 37407659 DOI: 10.1038/s41598-023-37696-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023] Open
Abstract
Increased use of benzodiazepines in adolescents have been reported, with alprazolam (ALP) being the most abused. Drug abuse during adolescence can induce changes with lasting consequences. This study investigated the neurobiological consequences of ALP exposure during adolescence in C57BL/6J male mice. Mice received ALP (0, 0.5, 1.0 mg/kg) once/daily (postnatal day 35-49). Changes in responsiveness to morphine (2.5, 5.0 mg/kg), using the conditioned place preference paradigm, were assessed 24-h and 1-month after ALP exposure. In a separate experiment, mice received ALP (0, 0.5 mg/kg) and then sacrificed 24-h or 1-month after treatment to assess levels of extracellular signal regulated kinase 1/2 (ERK1/2) gene expression, protein phosphorylation, and downstream targets (CREB, AKT) within the ventral tegmental area (VTA) and nucleus accumbens (NAc). ALP-pretreated mice developed a strong preference to the compartment(s) paired with a subthreshold dose (2.5 mg/kg) of MOR short-term, and this effect was also present in the 1-month group. Adolescent ALP exposure resulted in dysregulation of ERK-signaling within the VTA-NAc pathway 24-h and 1-month after ALP exposure. Results indicate ALP exposure during adolescence potentiates the rewarding properties of MOR and induces persistent changes in ERK-signaling within the VTA-NAc pathway, a brain circuit highly implicated in the regulation of both drug reward and mood- related behaviors.
Collapse
Affiliation(s)
- Astrid M Cardona-Acosta
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Omar K Sial
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL, USA
| | - Lyonna F Parise
- Fishberg Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tamara Gnecco
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Giselle Enriquez Marti
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA
| | - Carlos A Bolaños-Guzmán
- Department of Psychological and Brain Sciences and Program in Neuroscience, Texas A&M University, College Station, TX, 77843, USA.
| |
Collapse
|
16
|
Gao W, Pan T, Fan G, Cui J, Wang T, Huang N, Jiang C, Ma L, Wang F, Liu X, Le Q. Enhanced heroin analgesic effect in male offspring of sires who self-administered heroin. Front Pharmacol 2023; 14:1211897. [PMID: 37388448 PMCID: PMC10303812 DOI: 10.3389/fphar.2023.1211897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Introduction: A growing body of evidence suggests that parental substance abuse, even prior to conception, may induce phenotypic changes in offspring. Parental opioid exposure has been shown to affect developmental processes, induce memory deficits, and lead to psycho-emotional disorders in offspring. However, how parental, especially paternal, chronic drug exposure affects offspring remains unexplored. Methods: Adult male rats were subjected to 31 days of heroin self-administration followed by mating with naïve females. Litter size and body weight of F1 offspring were recorded. Object-based attention tests, cocaine self-administration tests, and hot plate tests were used to test for potential effects of chronic paternal heroin seeking on cognition, reward, or analgesic sensitivity in the offspring. Results: Body weight and litter size of the heroin F1 generation were not altered compared to the saline F1 generation. Furthermore, paternal chronic heroin self-administration experience had no significant effect on object-based attention tests or cocaine self-administration behavior in either sex. However, in the hot plate test, although no difference in basal latency was found between the two groups in either sex, a significant increase in the analgesic effect of heroin was observed in the male heroin F1 generation. Conclusions: Taken together, these data provide evidence that paternal chronic heroin self-administration experience could sex-dimorphically increase the analgesic effect of heroin in male offspring, but had no significant effect on response to cocaine reinforcement or attentional behavior.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Lan Ma
- *Correspondence: Qiumin Le, ; Lan Ma,
| | | | | | - Qiumin Le
- *Correspondence: Qiumin Le, ; Lan Ma,
| |
Collapse
|
17
|
Liu M, Mu S, Han W, Tan X, Liu E, Hang Z, Zhu S, Yue Q, Sun J. Dopamine D1 receptor in orbitofrontal cortex to dorsal striatum pathway modulates methamphetamine addiction. Biochem Biophys Res Commun 2023; 671:96-104. [PMID: 37300946 DOI: 10.1016/j.bbrc.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
The orbitofrontal cortex (OFC)-dorsal striatum (DS) is an important neural circuit that contributes to addictive behavior, including compulsive reinforcement, yet the specific types of neurons that play a major role still need to be further elucidated. Here, we used a place conditioning paradigm to measure the conditioned responses to methamphetamine (MA). The results demonstrated that MA increases the expression of c-Fos, synaptic plasticity in OFC and DS. Patch-clamp recording showed that MA activated projection neurons from the OFC to the DS, and chemogenetic manipulation of neuronal activity in OFC-DS projection neurons affects conditioned place preference (CPP) scores. And the combined patch-electrochemical technique was used to detect the DA release in OFC, the data indicated that the DA release was increased in MA group. Additionally, SCH23390, a D1R antagonist, was used to verify the function of D1R projection neurons, showing that SCH23390 reversed MA addiction-like behavior. Collectively, these findings provide evidence for the D1R neuron is sufficient to regulate MA addiction in the OFC-DS pathway, and the study provides new insight into the underlying mechanism of pathological changes in MA addiction.
Collapse
Affiliation(s)
- Min Liu
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shouhong Mu
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Weikai Han
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Xu Tan
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - E Liu
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Zhaofang Hang
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Shaowei Zhu
- Department of Neurology, Qilu Hospital, Shandong University, Jinan, China
| | - Qingwei Yue
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China
| | - Jinhao Sun
- Department of Anatomy, School of Basic Medical Sciences, Shandong University, Jinan, China.
| |
Collapse
|
18
|
Wang Y, Yang L, Zhou H, Zhang K, Zhao M. Identification of miRNA-mediated gene regulatory networks in L-methionine exposure counteracts cocaine-conditioned place preference in mice. Front Genet 2023; 13:1076156. [PMID: 36744178 PMCID: PMC9893020 DOI: 10.3389/fgene.2022.1076156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/27/2022] [Indexed: 01/20/2023] Open
Abstract
Background and Aims: Methionine has been proven to inhibit addictive behaviors of cocaine dependence. This study aimed to identify the potential mechanisms of MET relating to its inhibitory effects on cocaine induced cellular and behavioral changes. Methods: MRNA and miRNA high-throughput sequencing of the prefrontal cortex in a mouse model of cocaine conditioned place preference (CPP) combined with L-methionine was performed. Differentially expressed miRNAs (DE-miRNAs) and differentially expressed genes (DEGs) regulated by cocaine and inhibited by L-methionine were identified. DEGs were mapped to STRING database to construct a protein-protein interaction (PPI) network. Then, the identified DEGs were subjected to the DAVID webserver for functional annotation. Finally, miRNA-mRNA regulatory network and miRNA-mRNA-TF regulatory networks were established to screen key DE-miRNAs and coregulation network in Cytoscape. Results: Sequencing data analysis showed that L-methionine reversely regulated genes and miRNAs affected by cocaine. Pathways associated with drug addiction only enriched in CS-down with MC-up genes targeted by DE-miRNAs including GABAergic synapse, Glutamatergic synapse, Circadian entrainment, Axon guidance and Calcium signaling pathway. Drug addiction associated network was formed of 22 DEGs including calcium channel (Cacna1c, Cacna1e, Cacna1g and Cacng8), ephrin receptor genes (Ephb6 and Epha8) and ryanodine receptor genes (Ryr1 and Ryr2). Calcium channel gene network were identified as a core gene network modulated by L-methionine in response to cocaine dependence. Moreover, it was predicted that Grin1 and Fosb presented in TF-miRNA-mRNA coregulation network with a high degree of interaction as hub genes and interacted calcium channels. Conclusion: These identified key genes, miRNA and coregulation network demonstrated the efficacy of L-methionine in counteracting the effects of cocaine CPP. To a certain degree, it may provide some hints to better understand the underlying mechanism on L-methionine in response to cocaine abuse.
Collapse
Affiliation(s)
- Yan Wang
- CAS Key Lab of Mental Health, Institute of Psychology, Beijing, China,Department of psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Lvyu Yang
- CAS Key Lab of Mental Health, Institute of Psychology, Beijing, China,Department of psychology, University of Chinese Academy of Sciences, Beijing, China
| | - Hansheng Zhou
- Department of Pharmacy, Linyi People’s Hospital, Linyi, Shandong Province, China
| | - Kunlin Zhang
- CAS Key Lab of Mental Health, Institute of Psychology, Beijing, China
| | - Mei Zhao
- CAS Key Lab of Mental Health, Institute of Psychology, Beijing, China,Department of psychology, University of Chinese Academy of Sciences, Beijing, China,*Correspondence: Mei Zhao,
| |
Collapse
|
19
|
Zhang X, Kitaichi K, Mouri A, Zhou X, Nabeshima T, Yamada K, Nagai T. An evaluation method for developing abuse-deterrent opioid formulations with agonist and antagonist combinations using conditioned place preference. Biochem Biophys Res Commun 2023; 639:100-105. [PMID: 36476949 DOI: 10.1016/j.bbrc.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022]
Abstract
Although opioids are useful narcotic analgesics in clinical settings, their misuse and addiction in the United States of America and other countries are rapidly increasing. Therefore, the development of abuse-deterrent formulations is an urgent issue. We herein investigated how to select the ratio of an opioid and the opioid receptor antagonist, naloxone in abuse-deterrent formulations for mice. The conditioned place preference (CPP) test was used to evaluate the rewarding effects of abused drugs. The opioids morphine (30 μmol/kg), oxycodone (3 μmol/kg), fentanyl (0.4 μmol/kg), and buprenorphine (0.5 μmol/kg) significantly induced place preference in mice. We also examined the optimal ratio of naloxone and opioids to inhibit the rewarding effects of the latter. Naloxone (3-5 μmol/kg) effectively inhibited place preference induced by the opioids tested. We calculated theoretical drug doses that exerted the same pharmacodynamic effects based on two parameters: μ-opioid receptor binding affinity and blood-brain barrier (BBB) permeability. Theoretical doses were very close to the drug doses at which mice showed place preference. Therefore, the CPP test is useful as a behavioral method for evaluating abuse-deterrent formulations of opioids mixed with an antagonist. The ratio of naloxone with opioids, at which mice did not show place preference, may be an effective index for developing abuse-deterrent formulations. Ratios may be calculated for other opioids based on μ-opioid receptor binding affinity and BBB permeability.
Collapse
Affiliation(s)
- Xinjian Zhang
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, 470-1192, Aichi, Japan
| | - Kiyoyuki Kitaichi
- Laboratory of Pharmaceutics, Department of Biomedical Pharmaceutics, Gifu Pharmaceutical University, Gifu, 501-1196, Gifu, Japan
| | - Akihiro Mouri
- Department of Regulatory Science for Evaluation and Development of Pharmaceuticals and Devices, Graduate School of Health Sciences, Fujita Health University, Toyoake, 470-1192, Aichi, Japan; Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Aichi, Japan
| | - Xinzhu Zhou
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, 470-1192, Aichi, Japan
| | - Toshitaka Nabeshima
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Aichi, Japan; Laboratory of Health and Medical Science Innovation, Graduate School of Health Sciences, Fujita Health University, Toyoake, 470-1192, Aichi, Japan
| | - Kiyofumi Yamada
- Japanese Drug Organization of Appropriate Use and Research, Nagoya, 468-0069, Aichi, Japan; Department of Neuropsychopharmacology and Hospital Pharmacy, Graduate School of Medicine, Nagoya University, Nagoya, 466-8560, Aichi, Japan
| | - Taku Nagai
- Division of Behavioral Neuropharmacology, International Center for Brain Science (ICBS), Fujita Health University, Toyoake, 470-1192, Aichi, Japan.
| |
Collapse
|
20
|
Petrović M, Meštrović A, Andretić Waldowski R, Filošević Vujnović A. A network-based analysis detects cocaine-induced changes in social interactions in Drosophila melanogaster. PLoS One 2023; 18:e0275795. [PMID: 36952449 PMCID: PMC10035901 DOI: 10.1371/journal.pone.0275795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 09/19/2022] [Indexed: 03/25/2023] Open
Abstract
Addiction is a multifactorial biological and behavioral disorder that is studied using animal models, based on simple behavioral responses in isolated individuals. A couple of decades ago it was shown that Drosophila melanogaster can serve as a model organism for behaviors related to alcohol, nicotine and cocaine (COC) addiction. Scoring of COC-induced behaviors in a large group of flies has been technologically challenging, so we have applied a local, middle and global level of network-based analyses to study social interaction networks (SINs) among a group of 30 untreated males compared to those that have been orally administered with 0.50 mg/mL of COC for 24 hours. In this study, we have confirmed the previously described increase in locomotion upon COC feeding. We have isolated new network-based measures associated with COC, and influenced by group on the individual behavior. COC fed flies showed a longer duration of interactions on the local level, and formed larger, more densely populated and compact, communities at the middle level. Untreated flies have a higher number of interactions with other flies in a group at the local level, and at the middle level, these interactions led to the formation of separated communities. Although the network density at the global level is higher in COC fed flies, at the middle level the modularity is higher in untreated flies. One COC specific behavior that we have isolated was an increase in the proportion of individuals that do not interact with the rest of the group, considered as the individual difference in COC induced behavior and/or consequence of group influence on individual behavior. Our approach can be expanded on different classes of drugs with the same acute response as COC to determine drug specific network-based measures and could serve as a tool to determinate genetic and environmental factors that influence both drug addiction and social interaction.
Collapse
Affiliation(s)
- Milan Petrović
- Department of Informatics, University of Rijeka, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, Rijeka, Croatia
| | - Ana Meštrović
- Department of Informatics, University of Rijeka, Rijeka, Croatia
- Center for Artificial Intelligence and Cybersecurity, University of Rijeka, Rijeka, Croatia
| | - Rozi Andretić Waldowski
- Department of Biotechnology, Laboratory for behavioral genetics, University of Rijeka, Rijeka, Croatia
| | - Ana Filošević Vujnović
- Department of Biotechnology, Laboratory for behavioral genetics, University of Rijeka, Rijeka, Croatia
| |
Collapse
|
21
|
Grieco SF, Castrén E, Knudsen GM, Kwan AC, Olson DE, Zuo Y, Holmes TC, Xu X. Psychedelics and Neural Plasticity: Therapeutic Implications. J Neurosci 2022; 42:8439-8449. [PMID: 36351821 PMCID: PMC9665925 DOI: 10.1523/jneurosci.1121-22.2022] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
Psychedelic drugs have reemerged as tools to treat several brain disorders. Cultural attitudes toward them are changing, and scientists are once again investigating the neural mechanisms through which these drugs impact brain function. The significance of this research direction is reflected by recent work, including work presented by these authors at the 2022 meeting of the Society for Neuroscience. As of 2022, there were hundreds of clinical trials recruiting participants for testing the therapeutic effects of psychedelics. Emerging evidence suggests that psychedelic drugs may exert some of their long-lasting therapeutic effects by inducing structural and functional neural plasticity. Herein, basic and clinical research attempting to elucidate the mechanisms of these compounds is showcased. Topics covered include psychedelic receptor binding sites, effects of psychedelics on gene expression, and on dendrites, and psychedelic effects on microcircuitry and brain-wide circuits. We describe unmet clinical needs and the current state of translation to the clinic for psychedelics, as well as other unanswered basic neuroscience questions addressable with future studies.
Collapse
Affiliation(s)
- Steven F Grieco
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California 92697
| | - Eero Castrén
- Neuroscience Center-HiLIFE, University of Helsinki, Helsinki, Finland 00014
| | - Gitte M Knudsen
- Neurobiology Research Unit, Copenhagen University Hospital Rigshospitalet and Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark 2200
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York 14853
| | - David E Olson
- Department of Chemistry, University of California-Davis, Davis, California 95616
- Department of Biochemistry & Molecular Medicine, School of Medicine, University of California, Davis, Sacramento, California 95817
- Center for Neuroscience, University of California-Davis, Davis, California 95618
| | - Yi Zuo
- Department of Molecular, Cell and Developmental Biology, University of California-Santa Cruz, Santa Cruz, California 95064
| | - Todd C Holmes
- Department of Physiology and Biophysics, School of Medicine, University of California, Irvine, California 92697
- Center for Neural Circuit Mapping, University of California-Irvine, Irvine, California 92697
| | - Xiangmin Xu
- Department of Anatomy and Neurobiology, School of Medicine, University of California, Irvine, California 92697
- Center for Neural Circuit Mapping, University of California-Irvine, Irvine, California 92697
| |
Collapse
|
22
|
Qian S, Shi C, Huang S, Yang C, Luo Y. DNA methyltransferase activity in the basolateral amygdala is critical for reconsolidation of a heroin reward memory. Front Mol Neurosci 2022; 15:1002139. [PMID: 36176958 PMCID: PMC9513049 DOI: 10.3389/fnmol.2022.1002139] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
The persistence of drug memory contributes to relapse to drug seeking. The association between repeated drug exposure and drug-related cues leads to cravings triggered by drug-paired cues. The erasure of drug memories has been considered a promising way to inhibit cravings and prevent relapse. The re-exposure to drug-related cues destabilizes well-consolidated drug memories, during which a de novo protein synthesis-dependent process termed “reconsolidation” occurs to restabilize the reactivated drug memory. Disrupting reconsolidation of drug memories leads to the attenuation of drug-seeking behavior in both animal models and people with addictions. Additionally, epigenetic mechanisms regulated by DNA methyltransferase (DNMT) are involved in the reconsolidation of fear and cocaine reward memory. In the present study, we investigated the role of DNMT in the reconsolidation of heroin reward memory. In the heroin self-administration model in rats, we tested the effects of DNMT inhibition during the reconsolidation process on cue-induced reinstatement, heroin-priming-induced reinstatement, and spontaneous recovery of heroin-seeking behavior. We found that the bilateral infusion of 5-azacytidine (5-AZA) inhibiting DNMT into the basolateral amygdala (BLA) immediately after heroin reward memory retrieval, but not delayed 6 h after retrieval or without retrieval, decreased subsequent cue-induced and heroin-priming-induced reinstatement of heroin-seeking behavior. These findings demonstrate that inhibiting the activity of DNMT in BLA during the reconsolidation of heroin reward memory attenuates heroin-seeking behavior, which may provide a potential strategy for the therapeutic of heroin addiction.
Collapse
Affiliation(s)
- Shuyi Qian
- Department of Nephrology and Laboratory of Kidney Disease, Hunan Provincial People’s Hospital, Hunan Normal University, Changsha, China
| | - Cuijie Shi
- Hunan Province People’s Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Shihao Huang
- National Institute on Drug Dependence, Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Chang Yang
- Hunan Province People’s Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yixiao Luo
- Hunan Province People’s Hospital, The First-Affiliated Hospital of Hunan Normal University, Changsha, China
- *Correspondence: Yixiao Luo,
| |
Collapse
|
23
|
Simmler LD, Li Y, Hadjas LC, Hiver A, van Zessen R, Lüscher C. Dual action of ketamine confines addiction liability. Nature 2022; 608:368-373. [PMID: 35896744 DOI: 10.1038/s41586-022-04993-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/17/2022] [Indexed: 12/19/2022]
Abstract
Ketamine is used clinically as an anaesthetic and a fast-acting antidepressant, and recreationally for its dissociative properties, raising concerns of addiction as a possible side effect. Addictive drugs such as cocaine increase the levels of dopamine in the nucleus accumbens. This facilitates synaptic plasticity in the mesolimbic system, which causes behavioural adaptations and eventually drives the transition to compulsion1-4. The addiction liability of ketamine is a matter of much debate, in part because of its complex pharmacology that among several targets includes N-methyl-D-aspartic acid (NMDA) receptor (NMDAR) antagonism5,6. Here we show that ketamine does not induce the synaptic plasticity that is typically observed with addictive drugs in mice, despite eliciting robust dopamine transients in the nucleus accumbens. Ketamine nevertheless supported reinforcement through the disinhibition of dopamine neurons in the ventral tegmental area (VTA). This effect was mediated by NMDAR antagonism in GABA (γ-aminobutyric acid) neurons of the VTA, but was quickly terminated by type-2 dopamine receptors on dopamine neurons. The rapid off-kinetics of the dopamine transients along with the NMDAR antagonism precluded the induction of synaptic plasticity in the VTA and the nucleus accumbens, and did not elicit locomotor sensitization or uncontrolled self-administration. In summary, the dual action of ketamine leads to a unique constellation of dopamine-driven positive reinforcement, but low addiction liability.
Collapse
Affiliation(s)
- Linda D Simmler
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Yue Li
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Lotfi C Hadjas
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Agnès Hiver
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Ruud van Zessen
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland. .,Service de Neurologie, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
24
|
AddictedChem: A Data-Driven Integrated Platform for New Psychoactive Substance Identification. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27123931. [PMID: 35745053 PMCID: PMC9227411 DOI: 10.3390/molecules27123931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 05/28/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
The mechanisms underlying drug addiction remain nebulous. Furthermore, new psychoactive substances (NPS) are being developed to circumvent legal control; hence, rapid NPS identification is urgently needed. Here, we present the construction of the comprehensive database of controlled substances, AddictedChem. This database integrates the following information on controlled substances from the US Drug Enforcement Administration: physical and chemical characteristics; classified literature by Medical Subject Headings terms and target binding data; absorption, distribution, metabolism, excretion, and toxicity; and related genes, pathways, and bioassays. We created 29 predictive models for NPS identification using five machine learning algorithms and seven molecular descriptors. The best performing models achieved a balanced accuracy (BA) of 0.940 with an area under the curve (AUC) of 0.986 for the test set and a BA of 0.919 and an AUC of 0.968 for the external validation set, which were subsequently used to identify potential NPS with a consensus strategy. Concurrently, a chemical space that included the properties of vectorised addictive compounds was constructed and integrated with AddictedChem, illustrating the principle of diversely existing NPS from a macro perspective. Based on these potential applications, AddictedChem could be considered a highly promising tool for NPS identification and evaluation.
Collapse
|
25
|
Zegers-Delgado J, Blanlot C, Calderon F, Yarur HE, Novoa J, Vega-Quiroga I, Bastias CP, Gysling K. Reactive oxygen species modulate locomotor activity and dopamine extracellular levels induced by amphetamine in rats. Behav Brain Res 2022; 427:113857. [PMID: 35331742 DOI: 10.1016/j.bbr.2022.113857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 03/07/2022] [Accepted: 03/18/2022] [Indexed: 11/25/2022]
Abstract
The increase of dopamine (DA) in the reward system is related to the reinforcing effects of drugs of abuse and hyper locomotion induced by psychostimulants. The increase of DA induced by drugs of abuse ge nerates high amounts of ROS by monoamines metabolization. It has been showed that ROS could modulate psychomotor response and reinforcing effects induced by drugs of abuse as cocaine and methamphetamine (METH). The aim of this study is to evaluate the relation of ROS and amphetamine (AMPH). Here, we show that pretreatment of the ROS scavenger 4-hydroxy-2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPOL) attenuates the induction of locomotion and oxidative stress generated in nucleus accumbens (Nac) by acute AMPH administration. Interestingly, TEMPOL also attenuates the increase of DA induced by AMPH in Nac. Finally, TEMPOL reduces DAT phosphorylation when AMPH is co-infused in Nac synaptosomes. Taking together, our results suggest that ROS modulate AMPH effects in rats.
Collapse
Affiliation(s)
- Juan Zegers-Delgado
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile.
| | - Camila Blanlot
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile
| | - Florencia Calderon
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile
| | - Hector E Yarur
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile
| | - Javier Novoa
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile
| | - Ignacio Vega-Quiroga
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile
| | - Cristian P Bastias
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile
| | - Katia Gysling
- Department of Cellular and Molecular Biology, Millenium Science Nucleus in Stress and Addiction, Faculty of Biological Sciences, Pontificia Universidad Católica de Chile, Alameda 340, Santiago, 8331150, Chile.
| |
Collapse
|
26
|
Sim HI, Kim DH, Kim M. Cellular messenger molecules mediating addictive drug-induced cognitive impairment: cannabinoids, ketamine, methamphetamine, and cocaine. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2022. [DOI: 10.1186/s43094-022-00408-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Cognitive impairment is a commonly reported symptom with increasing life spans. Numerous studies have focused on identifying precise targets to relieve or reduce cognitive impairment; however, its underlying mechanism remains elusive. Most patients or animals exposed to addictive drugs exhibit cognitive impairment. Accordingly, the present review discusses the molecular changes induced by addictive drugs to clarify potential mechanisms that mediate cognitive impairments.
Main body
We investigated changes in cognitive function using four drugs: cannabinoids, ketamine, methamphetamine, and cocaine. Chronic administration of most addictive drugs reduces overall cognitive functions, such as working, spatial, and long-term recognition memories. Levels of several transcription factors involved in neuronal differentiation, as well as functional components of neurotransmitter receptors in neuronal cells, are reportedly altered. In addition, inflammatory factors showed a generally increasing trend. These impairments could be mediated by neuroinflammation, synaptic activity, and neuronal plasticity.
Conclusion
This review outlines the effects of acute or chronic drug use and potential molecular alterations in the central nervous system. In the central nervous system, addictive drug-induced changes in molecular pathways associated with cognitive function might play a pivotal role in elucidating the pathogenesis of cognitive impairment.
Collapse
|
27
|
Silva M, Kwok RKH. Use of Computational Toxicology Tools to Predict In Vivo Endpoints Associated with Mode of Action and the Endocannabinoid System: A Case Study with Chlorpyrifos, Chlorpyrifos-oxon and Δ9Tetrahydrocannabinol. Curr Res Toxicol 2022; 3:100064. [PMID: 35243363 PMCID: PMC8860916 DOI: 10.1016/j.crtox.2022.100064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 01/16/2022] [Accepted: 02/03/2022] [Indexed: 01/04/2023] Open
|
28
|
Harada M, Pascoli V, Hiver A, Flakowski J, Lüscher C. Corticostriatal Activity Driving Compulsive Reward Seeking. Biol Psychiatry 2021; 90:808-818. [PMID: 34688471 DOI: 10.1016/j.biopsych.2021.08.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/29/2021] [Accepted: 08/27/2021] [Indexed: 01/13/2023]
Abstract
BACKGROUND Activation of the mesolimbic dopamine system is positively reinforcing. After repeated activation, some individuals develop compulsive reward-seeking behavior, which is a core symptom of addiction. However, the underlying neural mechanism remains elusive. METHODS We trained mice in a seek-take chain, rewarded by optogenetic dopamine neuron self-stimulation. After compulsivity was evaluated, AMPA/NMDA ratio was measured at three distinct corticostriatal pathways confirmed by retrograde labeling and anterograde synaptic connectivity. Fiber photometry method and chemogenetics were used to parse the contribution of orbitofrontal cortex afferents onto the dorsal striatum (DS) during the behavioral task. We established a causal link between DS activity and compulsivity using optogenetic inhibition. RESULTS Mice that persevered when seeking was punished exhibited an increased AMPA/NMDA ratio selectively at orbitofrontal cortex to DS synapses. In addition, an activity peak of spiny projection neurons in the DS at the moment of signaled reward availability was detected. Chemogenetic inhibition of orbitofrontal cortex neurons curbed the activity peak and reduced punished reward seeking, as did optogenetic hyperpolarization of spiny projection neurons time-locked to the cue predicting reward availability. CONCLUSIONS Our results suggest that compulsive individuals display stronger neuronal activity in the DS during the cue predicting reward availability even when at the risk of punishment, nurturing further compulsive reward seeking.
Collapse
Affiliation(s)
- Masaya Harada
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Vincent Pascoli
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Agnès Hiver
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Jérôme Flakowski
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|
29
|
Winick-Ng W, Kukalev A, Harabula I, Zea-Redondo L, Szabó D, Meijer M, Serebreni L, Zhang Y, Bianco S, Chiariello AM, Irastorza-Azcarate I, Thieme CJ, Sparks TM, Carvalho S, Fiorillo L, Musella F, Irani E, Torlai Triglia E, Kolodziejczyk AA, Abentung A, Apostolova G, Paul EJ, Franke V, Kempfer R, Akalin A, Teichmann SA, Dechant G, Ungless MA, Nicodemi M, Welch L, Castelo-Branco G, Pombo A. Cell-type specialization is encoded by specific chromatin topologies. Nature 2021; 599:684-691. [PMID: 34789882 PMCID: PMC8612935 DOI: 10.1038/s41586-021-04081-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/30/2021] [Indexed: 11/09/2022]
Abstract
The three-dimensional (3D) structure of chromatin is intrinsically associated with gene regulation and cell function1-3. Methods based on chromatin conformation capture have mapped chromatin structures in neuronal systems such as in vitro differentiated neurons, neurons isolated through fluorescence-activated cell sorting from cortical tissues pooled from different animals and from dissociated whole hippocampi4-6. However, changes in chromatin organization captured by imaging, such as the relocation of Bdnf away from the nuclear periphery after activation7, are invisible with such approaches8. Here we developed immunoGAM, an extension of genome architecture mapping (GAM)2,9, to map 3D chromatin topology genome-wide in specific brain cell types, without tissue disruption, from single animals. GAM is a ligation-free technology that maps genome topology by sequencing the DNA content from thin (about 220 nm) nuclear cryosections. Chromatin interactions are identified from the increased probability of co-segregation of contacting loci across a collection of nuclear slices. ImmunoGAM expands the scope of GAM to enable the selection of specific cell types using low cell numbers (approximately 1,000 cells) within a complex tissue and avoids tissue dissociation2,10. We report cell-type specialized 3D chromatin structures at multiple genomic scales that relate to patterns of gene expression. We discover extensive 'melting' of long genes when they are highly expressed and/or have high chromatin accessibility. The contacts most specific of neuron subtypes contain genes associated with specialized processes, such as addiction and synaptic plasticity, which harbour putative binding sites for neuronal transcription factors within accessible chromatin regions. Moreover, sensory receptor genes are preferentially found in heterochromatic compartments in brain cells, which establish strong contacts across tens of megabases. Our results demonstrate that highly specific chromatin conformations in brain cells are tightly related to gene regulation mechanisms and specialized functions.
Collapse
Affiliation(s)
- Warren Winick-Ng
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany.
| | - Alexander Kukalev
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Izabela Harabula
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Luna Zea-Redondo
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Dominik Szabó
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Mandy Meijer
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Leonid Serebreni
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Yingnan Zhang
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Simona Bianco
- Dipartimentio di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Andrea M Chiariello
- Dipartimentio di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Ibai Irastorza-Azcarate
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Christoph J Thieme
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Thomas M Sparks
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
| | - Sílvia Carvalho
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- UCIBIO, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- Graduate Program in Areas of Basic and Applied Biology, Universidade do Porto, Porto, Portugal
| | - Luca Fiorillo
- Dipartimentio di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Francesco Musella
- Dipartimentio di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Ehsan Irani
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Berlin Institute of Health, Berlin, Germany
| | - Elena Torlai Triglia
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Aleksandra A Kolodziejczyk
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Andreas Abentung
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Galina Apostolova
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Eleanor J Paul
- Institute of Clinical Sciences, Imperial College London, London, UK
- Center for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
- MRC Center for Neurodevelopmental Disorders, King's College London, London, UK
| | - Vedran Franke
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Bioinformatics and Omics Data Science Platform, Berlin, Germany
| | - Rieke Kempfer
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Altuna Akalin
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Bioinformatics and Omics Data Science Platform, Berlin, Germany
| | - Sarah A Teichmann
- Cavendish Laboratory, University of Cambridge, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Georg Dechant
- Institute for Neuroscience, Medical University of Innsbruck, Innsbruck, Austria
| | - Mark A Ungless
- Institute of Clinical Sciences, Imperial College London, London, UK
| | - Mario Nicodemi
- Dipartimentio di Fisica, Università di Napoli Federico II, and INFN Napoli, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
- Berlin Institute of Health, Berlin, Germany
| | - Lonnie Welch
- School of Electrical Engineering and Computer Science, Ohio University, Athens, OH, USA
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Ming Wai Lau Centre for Reparative Medicine, Stockholm node, Karolinska Institutet, Stockholm, Sweden
| | - Ana Pombo
- Max-Delbrück Centre for Molecular Medicine, Berlin Institute for Medical Systems Biology, Epigenetic Regulation and Chromatin Architecture Group, Berlin, Germany.
- Institute of Biology, Humboldt-Universität zu Berlin, Berlin, Germany.
- Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
30
|
Alfaro-Ruiz R, Martín-Belmonte A, Aguado C, Hernández F, Moreno-Martínez AE, Ávila J, Luján R. The Expression and Localisation of G-Protein-Coupled Inwardly Rectifying Potassium (GIRK) Channels Is Differentially Altered in the Hippocampus of Two Mouse Models of Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms222011106. [PMID: 34681766 PMCID: PMC8541655 DOI: 10.3390/ijms222011106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
G protein-gated inwardly rectifying K+ (GIRK) channels are the main targets controlling excitability and synaptic plasticity on hippocampal neurons. Consequently, dysfunction of GIRK-mediated signalling has been implicated in the pathophysiology of Alzheimer´s disease (AD). Here, we provide a quantitative description on the expression and localisation patterns of GIRK2 in two transgenic mice models of AD (P301S and APP/PS1 mice), combining histoblots and immunoelectron microscopic approaches. The histoblot technique revealed differences in the expression of GIRK2 in the two transgenic mice models. The expression of GIRK2 was significantly reduced in the hippocampus of P301S mice in a laminar-specific manner at 10 months of age but was unaltered in APP/PS1 mice at 12 months compared to age-matched wild type mice. Ultrastructural approaches using the pre-embedding immunogold technique, demonstrated that the subcellular localisation of GIRK2 was significantly reduced along the neuronal surface of CA1 pyramidal cells, but increased in its frequency at cytoplasmic sites, in both P301S and APP/PS1 mice. We also found a decrease in plasma membrane GIRK2 channels in axon terminals contacting dendritic spines of CA1 pyramidal cells in P301S and APP/PS1 mice. These data demonstrate for the first time a redistribution of GIRK channels from the plasma membrane to intracellular sites in different compartments of CA1 pyramidal cells. Altogether, the pre- and post-synaptic reduction of GIRK2 channels suggest that GIRK-mediated alteration of the excitability in pyramidal cells could contribute to the cognitive dysfunctions as described in the two AD animal models.
Collapse
Affiliation(s)
- Rocío Alfaro-Ruiz
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
| | - Alejandro Martín-Belmonte
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
| | - Carolina Aguado
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
| | - Félix Hernández
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain; (F.H.); (J.Á.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Ana Esther Moreno-Martínez
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
| | - Jesús Ávila
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas, ISCIII, 28049 Madrid, Spain; (F.H.); (J.Á.)
- Centro de Biología Molecular Severo Ochoa, CSIC-UAM, 28049 Madrid, Spain
| | - Rafael Luján
- Synaptic Structure Laboratory, Instituto de Investigación en Discapacidades Neurológicas (IDINE), Departamento de Ciencias Médicas, Facultad de Medicina, Universidad Castilla-La Mancha, Campus Biosanitario, C/Almansa 14, 02008 Albacete, Spain; (R.A.-R.); (A.M.-B.); (C.A.); (A.E.M.-M.)
- Correspondence: ; Tel.: +34-967-599200 (ext. 2196)
| |
Collapse
|
31
|
Li Y, Simmler LD, Van Zessen R, Flakowski J, Wan JX, Deng F, Li YL, Nautiyal KM, Pascoli V, Lüscher C. Synaptic mechanism underlying serotonin modulation of transition to cocaine addiction. Science 2021; 373:1252-1256. [PMID: 34516792 PMCID: PMC8817894 DOI: 10.1126/science.abi9086] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Compulsive drug use despite adverse consequences defines addiction. While mesolimbic dopamine signaling is sufficient to drive compulsion, psychostimulants such as cocaine also boost extracellular serotonin (5-HT) by inhibiting reuptake. We used SERT Met172 knockin (SertKI) mice carrying a transporter that no longer binds cocaine to abolish 5-HT transients during drug self-administration. SertKI mice showed an enhanced transition to compulsion. Conversely, pharmacologically elevating 5-HT reversed the inherently high rate of compulsion transition with optogenetic dopamine self-stimulation. The bidirectional effect on behavior is explained by presynaptic depression of orbitofrontal cortex–to–dorsal striatum synapses induced by 5-HT via 5-HT1B receptors. Consequently, in projection-specific 5-HT1B receptor knockout mice, the fraction of individuals compulsively self-administering cocaine was elevated.
Collapse
Affiliation(s)
- Yue Li
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Linda D. Simmler
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Ruud Van Zessen
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jérôme Flakowski
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Jin-Xia Wan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Fei Deng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yu-Long Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China
- PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Katherine M. Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Vincent Pascoli
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
| | - Christian Lüscher
- Department of Basic Neurosciences, Medical Faculty, University of Geneva, CH-1211 Geneva, Switzerland
- Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, CH-1211 Geneva, Switzerland
| |
Collapse
|
32
|
Sadamura Y, Thapa S, Mizunuma R, Kambe Y, Hirasawa A, Nakamoto K, Tokuyama S, Yoshimoto K, Arita K, Miyata A, Oyoshi T, Kurihara T. FFAR1/GPR40 Contributes to the Regulation of Striatal Monoamine Releases and Facilitation of Cocaine-Induced Locomotor Activity in Mice. Front Pharmacol 2021; 12:699026. [PMID: 34489696 PMCID: PMC8417570 DOI: 10.3389/fphar.2021.699026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
The free fatty acid receptor 1 (FFAR1) is suggested to function as a G protein-coupled receptor (GPR40) for medium-to-long-chain free fatty acids. Previous studies on the expression of FFAR1 revealed that the nigrostriatal region is one of the areas which express abundant FFAR1 mRNA/protein in the central nervous system (CNS). However, the role of FFAR1 in the CNS has been still largely unclarified. Here, we examined a possible functional role of FFAR1 in the control of extracellular concentrations of striatal monoamines and cocaine-induced locomotor activity. Microdialysis analysis revealed that the basal level of extracellular dopamine (DA) was significantly elevated, while the basal serotonin (5-HT) level tended to be reduced in the striatum of FFAR1 knockout (-/-) mice. Interestingly, local application of a FFAR1 agonist, GW9508, markedly augmented the striatal 5-HT release in FFAR1 wild-type (+/+) mice, whereas topical application of a FFAR1 antagonist, GW1100, significantly reduced the 5-HT release. However, the enhanced 5-HT release was completely lost in -/- mice. Although acute administration of cocaine enhanced the locomotor activity in both +/+ and -/- mice, the magnitude of the enhancement was significantly reduced in -/- mice. In addition, intraperitoneal injection of GW1100 significantly decreased the cocaine-induced locomotor enhancement. These results suggest that FFAR1 has a facilitatory role in striatal 5-HT release, and the evoked 5-HT release might contribute to enhance cocaine-induced locomotor activity.
Collapse
Affiliation(s)
- Yuko Sadamura
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Shanta Thapa
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan.,Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Ryota Mizunuma
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Yuki Kambe
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Akira Hirasawa
- Department of Genomic Drug Discovery Science, Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Japan
| | - Kazuo Nakamoto
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Hyogo, Japan
| | - Shogo Tokuyama
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Kobe Gakuin University, Hyogo, Japan
| | - Koji Yoshimoto
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Kazunori Arita
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Atsuro Miyata
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Tatsuki Oyoshi
- Department of Neurosurgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Takashi Kurihara
- Department of Pharmacology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| |
Collapse
|
33
|
Dias FP, Carvalho Crespo LGS, Leite Junior JB, Samuels RI, Coimbra NC, Carey RJ, Carrera MP. Morphine reward effects and morphine behavioral sensitization: The adventitious association of morphine activation of brain reward effects with ongoing spontaneous activity. Pharmacol Biochem Behav 2021; 209:173244. [PMID: 34363828 DOI: 10.1016/j.pbb.2021.173244] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/22/2021] [Accepted: 07/30/2021] [Indexed: 12/01/2022]
Abstract
The development of sensitization is one of the hallmarks of addictive drugs such as morphine. We administered morphine (10 mg/kg; MOR) to induce locomotor sensitization and ERK activation in the VTA and NAc. In the first experiment, four groups of rats received five daily 30 min sessions in an open-field, and locomotion was measured. For the first four sessions, one group received MOR pre-test (MOR-P); a second group received vehicle pre-test (MOR-UP) and MOR 30 min post-test; the remaining 2 groups received vehicle (VEH) pre-test. On the fifth session, the MOR-P, MOR-UP, and one VEH group received MOR pre-test and the remaining VEH group received VEH. Sensitization emerged in the first 5 min and progressed over to the second and third 5 min blocks only in the MOR-P group. For the second experiment, 4 groups received MOR and 4 groups VEH, and were then returned to their home cage and after 5, 15, 30 or 60 min post-injection, were euthanized for ERK measurements in VTA and NAc. ERK activation increased and peaked at 5 min post injection in the MOR group and then declined to VEH levels by 30 min. Another two groups received either MOR or VEH immediately before a 5 min arena test and ERK was measured immediately post-test. MOR had no effect on locomotion but increased ERK in the VTA and NAc. The peak ERK activation in VTA reflected activation of reward systems by morphine that reinforced locomotor behavior and with repeated treatments, induced a sensitization effect.
Collapse
Affiliation(s)
- Fabiolla Patusco Dias
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Luiz Gustavo Soares Carvalho Crespo
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Joaquim Barbosa Leite Junior
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil
| | - Richard Ian Samuels
- Department of Entomology and Plant Pathology, State University of North Fluminense Darcy Ribeiro, Campos dos Goytacazes, RJ, Brazil
| | - Norberto Cysne Coimbra
- Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo, SP, Brazil
| | - Robert J Carey
- Department of Psychiatry SUNY Upstate Medical University, 800 Irving Avenue, Syracuse, NY 13210, USA
| | - Marinete Pinheiro Carrera
- Behavioral Pharmacology Group, Laboratory of Animal Morphology and Pathology, State University of North Fluminense Darcy Ribeiro, Avenida Alberto Lamego, 2000, Campos dos Goytacazes 28013-602, RJ, Brazil.
| |
Collapse
|
34
|
Vanderschuren LJMJ, Ahmed SH. Animal Models of the Behavioral Symptoms of Substance Use Disorders. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a040287. [PMID: 32513674 PMCID: PMC8327824 DOI: 10.1101/cshperspect.a040287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
To more effectively manage substance use disorders, it is imperative to understand the neural, genetic, and psychological underpinnings of addictive behavior. To contribute to this understanding, considerable efforts have been made to develop translational animal models that capture key behavioral characteristics of addiction on the basis of DSM5 criteria of substance use disorders. In this review, we summarize empirical evidence for the occurrence of addiction-like behavior in animals. These symptoms include escalation of drug use, neurocognitive deficits, resistance to extinction, exaggerated motivation for drugs, increased reinstatement of drug seeking after extinction, preference for drugs over nondrug rewards, and resistance to punishment. The occurrence of addiction-like behavior in laboratory animals has opened the opportunity to investigate the neural, genetic, and psychological background of key aspects of addiction, which may ultimately contribute to the prevention and treatment of substance use disorders.
Collapse
Affiliation(s)
- Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, the Netherlands
| | - Serge H Ahmed
- Université de Bordeaux, Bordeaux Neurocampus, Institut des Maladies Neurodégénératives, CNRS UMR 5293, F-33000 Bordeaux, France
| |
Collapse
|
35
|
Mallah N, Figueiras A, Heidarian Miri H, Takkouche B. Association of knowledge and attitudes with practices of misuse of tranquilizers: A cohort study in Spain. Drug Alcohol Depend 2021; 225:108793. [PMID: 34087748 DOI: 10.1016/j.drugalcdep.2021.108793] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/02/2021] [Accepted: 04/03/2021] [Indexed: 11/26/2022]
Abstract
BACKGROUND Tranquilizer misuse represents a growing international public health problem with heavy social and economic consequences. We aimed to identify the psychosocial determinants of this misuse practice, focusing on modifiable factors including knowledge and attitudes towards these medications. METHODS A prospective cohort study involving 847 adults accompanying children in primary care clinics was carried out in Spain. A validated Knowledge, Attitudes and Practices (KAP) questionnaire on tranquilizer use was self-administered at baseline, and then participants were followed-up bimonthly. A misuse event was defined as unprescribed intake of tranquilizers, storing/sharing leftovers of tranquilizers, and/or not adhering to the prescribed treatment period, timing or dosage. Poisson regression models were applied to estimate adjusted Incidence Rate Ratios (IRRs) of misuse and their 95 % Confidence Intervals (CIs). FINDINGS Individuals' personal attitudes towards tranquilizers and treating physicians are strongly associated with the misuse of these drugs. These attitudes include: individuals' acceptance of taking tranquilizers to improve sleeping [IRR: 5.10 (95 %CI: 2.74-9.48)], to work better [IRR: 2.04 (95 %CI: 1.05-3.99)], or for recreational purposes [IRR: 1.85 (95 %CI: 1.04-3.32)]; willingness to prolong the course of tranquilizer treatment without medical consultation [IRR: 2.45 (95 %CI: 1.46-4.13)]; agreeing on storing tranquilizers for possible future need [IRR: 5.07 (95 %CI: 2.73-9.40)]; and untrusting the physician's decision about tranquilizer prescription [IRR: 1.92 (95 %CI: 1.12-3.30)]. The level of knowledge is marginally associated with tranquilizer misuse. CONCLUSIONS There is a strong association between individuals' attitudes towards tranquilizers and the misuse practices of these drugs. Educational interventional studies could help reduce the incidence of tranquilizer misuse.
Collapse
Affiliation(s)
- Narmeen Mallah
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain
| | - Adolfo Figueiras
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain; Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Hamid Heidarian Miri
- Social Determinants of Health Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Bahi Takkouche
- Department of Preventive Medicine, University of Santiago de Compostela, Santiago de Compostela, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBER-ESP), Madrid, Spain; Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain.
| |
Collapse
|
36
|
Cao KX, Ma ML, Wang CZ, Iqbal J, Si JJ, Xue YX, Yang JL. TMS-EEG: An emerging tool to study the neurophysiologic biomarkers of psychiatric disorders. Neuropharmacology 2021; 197:108574. [PMID: 33894219 DOI: 10.1016/j.neuropharm.2021.108574] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 03/08/2021] [Accepted: 04/15/2021] [Indexed: 01/02/2023]
Abstract
The etiology of psychiatric disorders remains largely unknown. The exploration of the neurobiological mechanisms of mental illness helps improve diagnostic efficacy and develop new therapies. This review focuses on the application of concurrent transcranial magnetic stimulation and electroencephalography (TMS-EEG) in various mental diseases, including major depressive disorder, bipolar disorder, schizophrenia, autism spectrum disorder, attention-deficit/hyperactivity disorder, substance use disorder, and insomnia. First, we summarize the commonly used protocols and output measures of TMS-EEG; then, we review the literature exploring the alterations in neural patterns, particularly cortical excitability, plasticity, and connectivity alterations, and studies that predict treatment responses and clinical states in mental disorders using TMS-EEG. Finally, we discuss the potential mechanisms underlying TMS-EEG in establishing biomarkers for psychiatric disorders and future research directions.
Collapse
Affiliation(s)
- Ke-Xin Cao
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Mao-Liang Ma
- Department of Clinical Psychology, Tianjin Medical University General Hospital Airport Site, Tianjin, China
| | - Cheng-Zhan Wang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Javed Iqbal
- School of Psychology, Shaanxi Normal University and Key Laboratory for Behavior and Cognitive Neuroscience of Shaanxi Province, Xi'an, China
| | - Ji-Jian Si
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yan-Xue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China; Key Laboratory for Neuroscience of Ministry of Education and Neuroscience, National Health and Family Planning Commission, Peking University, Beijing, China.
| | - Jian-Li Yang
- Department of Clinical Psychology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
37
|
Drug-Evoked Synaptic Plasticity of Excitatory Transmission in the Ventral Tegmental Area. Cold Spring Harb Perspect Med 2021; 11:cshperspect.a039701. [PMID: 32341062 DOI: 10.1101/cshperspect.a039701] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cocaine leads to a strong euphoria, which is at the origin of its recreational use. Past the acute effects, the drug leaves traces in the brain that persist long after it has been cleared from the body. These traces eventually shape behavior such that drug use may become compulsive, and addiction develops. Here, we discuss cocaine-evoked synaptic plasticity of glutamatergic transmission onto dopamine (DA) neurons of the ventral tegmental area (VTA) as one of the earliest traces after a first injection of cocaine. We review the literature that has examined the induction requirements, as well as the expression mechanism of this form of plasticity, and ask the question about its functional significance.
Collapse
|
38
|
Differential Impact of Inhibitory G-Protein Signaling Pathways in Ventral Tegmental Area Dopamine Neurons on Behavioral Sensitivity to Cocaine and Morphine. eNeuro 2021; 8:ENEURO.0081-21.2021. [PMID: 33707203 PMCID: PMC8114902 DOI: 10.1523/eneuro.0081-21.2021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 12/21/2022] Open
Abstract
Drugs of abuse engage overlapping but distinct molecular and cellular mechanisms to enhance dopamine (DA) signaling in the mesocorticolimbic circuitry. DA neurons of the ventral tegmental area (VTA) are key substrates of drugs of abuse and have been implicated in addiction-related behaviors. Enhanced VTA DA neurotransmission evoked by drugs of abuse can engage inhibitory G-protein-dependent feedback pathways, mediated by GABAB receptors (GABABRs) and D2 DA receptors (D2Rs). Chemogenetic inhibition of VTA DA neurons potently suppressed baseline motor activity, as well as the motor-stimulatory effect of cocaine and morphine, confirming the critical influence of VTA DA neurons and inhibitory G-protein signaling in these neurons on this addiction-related behavior. To resolve the relative influence of GABABR-dependent and D2R-dependent signaling pathways in VTA DA neurons on behavioral sensitivity to drugs of abuse, we developed a neuron-specific viral CRISPR/Cas9 approach to ablate D2R and GABABR in VTA DA neurons. Ablation of GABABR or D2R did not impact baseline physiological properties or excitability of VTA DA neurons, but it did preclude the direct somatodendritic inhibitory influence of GABABR or D2R activation. D2R ablation potentiated the motor-stimulatory effect of cocaine in male and female mice, whereas GABABR ablation selectively potentiated cocaine-induced activity in male subjects only. Neither D2R nor GABABR ablation impacted morphine-induced motor activity. Collectively, our data show that cocaine and morphine differ in the extent to which they engage inhibitory G-protein-dependent feedback pathways in VTA DA neurons and highlight key sex differences that may impact susceptibility to various facets of addiction.
Collapse
|
39
|
Abstract
Addiction is a disease characterized by compulsive drug seeking and consumption observed in 20-30% of users. An addicted individual will favor drug reward over natural rewards, despite major negative consequences. Mechanistic research on rodents modeling core components of the disease has identified altered synaptic transmission as the functional substrate of pathological behavior. While the initial version of a circuit model for addiction focused on early drug adaptive behaviors observed in all individuals, it fell short of accounting for the stochastic nature of the transition to compulsion. The model builds on the initial pharmacological effect common to all addictive drugs-an increase in dopamine levels in the mesolimbic system. Here, we consolidate this early model by integrating circuits underlying compulsion and negative reinforcement. We discuss the genetic and epigenetic correlates of individual vulnerability. Many recent data converge on a gain-of-function explanation for circuit remodeling, revealing blueprints for novel addiction therapies.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; .,Clinic of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, CH-1211 Geneva, Switzerland
| | - Patricia H Janak
- Department of Psychological and Brain Sciences, Krieger School of Arts and Sciences, Johns Hopkins University, Baltimore, Maryland 21218, USA.,The Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
40
|
Distinct Temporal Structure of Nicotinic ACh Receptor Activation Determines Responses of VTA Neurons to Endogenous ACh and Nicotine. eNeuro 2020; 7:ENEURO.0418-19.2020. [PMID: 32737187 PMCID: PMC7470928 DOI: 10.1523/eneuro.0418-19.2020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/10/2020] [Accepted: 04/18/2020] [Indexed: 11/29/2022] Open
Abstract
The addictive component of tobacco, nicotine, acts via nicotinic acetylcholine receptors (nAChRs). The β2 subunit-containing nAChRs (β2-nAChRs) play a crucial role in the rewarding properties of nicotine and are particularly densely expressed in the mesolimbic dopamine (DA) system. Specifically, nAChRs directly and indirectly affect DA neurons in the ventral tegmental area (VTA). The understanding of ACh and nicotinic regulation of DA neuron activity is incomplete. By computational modeling, we provide mechanisms for several apparently contradictory experimental results. First, systemic knockout of β2-containing nAChRs drastically reduces DA neurons bursting, although the major glutamatergic (Glu) afferents that have been shown to evoke this bursting stay intact. Second, the most intuitive way to rescue this bursting—by re-expressing the nAChRs on VTA DA neurons—fails. Third, nAChR re-expression on VTA GABA neurons rescues bursting in DA neurons and increases their firing rate under the influence of ACh input, whereas nicotinic application results in the opposite changes in firing. Our model shows that, first, without ACh receptors, Glu excitation of VTA DA and GABA neurons remains balanced and GABA inhibition cancels the direct excitation. Second, re-expression of ACh receptors on DA neurons provides an input that impedes membrane repolarization and is ineffective in restoring firing of DA neurons. Third, the distinct responses to ACh and nicotine occur because of distinct temporal patterns of these inputs: pulsatile versus continuous. Altogether, this study highlights how β2-nAChRs influence coactivation of the VTA DA and GABA neurons required for motivation and saliency signals carried by DA neuron activity.
Collapse
|
41
|
Hamed A, Kursa MB. Social deprivation substantially changes multi-structural neurotransmitter signature of social interaction: Glutamate concentration in amygdala and VTA as a key factor in social encounter-induced 50-kHz ultrasonic vocalization. Eur Neuropsychopharmacol 2020; 37:82-99. [PMID: 32651127 DOI: 10.1016/j.euroneuro.2020.06.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 06/22/2020] [Accepted: 06/24/2020] [Indexed: 01/03/2023]
Abstract
Ultrasonic vocalizations are important for coordinating social behavior in rats. Examination of the neurochemical mechanisms that govern social behavior and ultrasonic vocalization emission is crucial for understanding the social impairments that occur in many neuropsychiatric disorders. To elucidate neurochemical changes in the brain structures related to social behavior and their mutual relationships, we conducted three-phase experiment. Neurochemicals were measured in the following behavioral situations: without social encounter, with short social encounter, with long social encounter in isolated and non-isolated rats. The aims of this study were to: (1) extract the most important neurotransmitters and their metabolites that are involved in social encounter-induced emission of 50 kHz calls; (2) to elucidate mutual relationships among the neurochemical changes in the selected, six brain structures, and analyze compound relationships by step analysis; (3) create a model of all-to-all neurotransmitter correlations; (4) find the neurochemical basis of 50-kHz USVs emission during social encounter. Our behavioral and neurochemical analysis indicated that social encounter was a triggering factor of the glutamatergic neurotransmission in the ventral tegmental area (VTA), hippocampus, and amygdala; serotonergic neurotransmission in the NAcc, CPu, and amygdala; the dopaminergic neurotransmission in the caudate putamen (CPu) and hippocampus; GABAergic neurotransmission in the hippocampus and VTA. Social encounter-induced 50-kHz USVs were bound up with changes in glutamate in amygdala and VTA, glycine in the amygdala, VTA, hippocampus, nucleus accumbens and CPu, and dopamine metabolites in VTA and CPu.
Collapse
Affiliation(s)
- Adam Hamed
- Laboratory of Spatial Memory, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteur Street, Warsaw 02-093, Poland.
| | - Miron Bartosz Kursa
- Interdisciplinary Centre for Mathematical and Computational Modelling, University of Warsaw, Pawinskiego 5A, 02-106 Warsaw, Poland
| |
Collapse
|
42
|
Abstract
After participating in this activity, learners should be better able to:• Assess the misuse potential of clonazepam• Characterize the nonmedical use of clonazepam• Identify the health problems associated with long-term use of clonazepam ABSTRACT: Clonazepam, a benzodiazepine, is commonly used in treating various conditions, including anxiety disorders and epileptic seizures. Due to its low price and easy availability, however, it has become a commonly misused medication, both in medical and recreational contexts. In this review, we aim to highlight the behavioral and pharmacological aspects of clonazepam and its history following its approval for human use. We examine the circumstances commonly associated with the nonmedical use of clonazepam and raise points of particular concern. Clonazepam, alone or in combination with other psychoactive substances, can lead to unwanted effects on health, such as motor and cognitive impairment, sleep disorders, and aggravation of mood and anxiety disorders. Prolonged use of clonazepam may lead to physical dependence and tolerance. There is therefore a need to find safer therapeutic alternatives for treating seizures and anxiety disorders. Greater awareness of its frequent nonmedical use is also needed to achieve safer overall use of this medication.
Collapse
|
43
|
Lüscher C, Robbins TW, Everitt BJ. The transition to compulsion in addiction. Nat Rev Neurosci 2020; 21:247-263. [PMID: 32231315 PMCID: PMC7610550 DOI: 10.1038/s41583-020-0289-z] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2020] [Indexed: 01/09/2023]
Abstract
Compulsion is a cardinal symptom of drug addiction (severe substance use disorder). However, compulsion is observed in only a small proportion of individuals who repeatedly seek and use addictive substances. Here, we integrate accounts of the neuropharmacological mechanisms that underlie the transition to compulsion with overarching learning theories, to outline how compulsion develops in addiction. Importantly, we emphasize the conceptual distinctions between compulsive drug-seeking behaviour and compulsive drug-taking behaviour (that is, use). In the latter, an individual cannot stop using a drug despite major negative consequences, possibly reflecting an imbalance in frontostriatal circuits that encode reward and aversion. By contrast, an individual may compulsively seek drugs (that is, persist in seeking drugs despite the negative consequences of doing so) when the neural systems that underlie habitual behaviour dominate goal-directed behavioural systems, and when executive control over this maladaptive behaviour is diminished. This distinction between different aspects of addiction may help to identify its neural substrates and new treatment strategies.
Collapse
Affiliation(s)
- Christian Lüscher
- Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland.
- Division of Neurology, Department of Clinical Neurosciences, Geneva University Hospital, Geneva, Switzerland.
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK.
| | - Barry J Everitt
- Behavioural and Clinical Neuroscience Institute, Department of Psychology, University of Cambridge, Cambridge, UK.
| |
Collapse
|
44
|
Tiwari RK, Sharma V, Pandey RK, Shukla SS. Nicotine Addiction: Neurobiology and Mechanism. J Pharmacopuncture 2020; 23:1-7. [PMID: 32322429 PMCID: PMC7163392 DOI: 10.3831/kpi.2020.23.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 05/29/2019] [Accepted: 12/16/2019] [Indexed: 01/03/2023] Open
Abstract
Nicotine, primary component of tobaco produces craving and withdrawal effect both in humans and animals. Nicotine shows a close resemblance to other addictive drugs in molecular, neuroanatomical and pharmacological, particularly the drugs which enhances the cognitive functions. Nicotine mainly shows its action through specific nicotinic acetylcholine receptors located in brain. It stimulates presynaptic acetylcholine receptors thereby enhancing Ach release and metabolism. Dopaminergic system is also stimulated by it, thus increasing the concentration of dopamine in nuclear accumbens. This property of nicotine according to various researchers is responsible for reinforcing behavioral change and dependence of nicotine. Various researchers have also depicted that some non dopaminergic systems are also involved for rewarding effect of nicotinic withdrawal. Neurological systems such as GABAergic, serotonergic, noradrenergic, and brain stem cholinergic may also be involved to mediate the actions of nicotine. Further, the neurobiological pathway to nicotine dependence might perhaps be appropriate to the attachment of nicotine to nicotinic acetylcholine receptors, peruse by stimulation of dopaminergic system and activation of general pharmacological changes that might be responsible for nicotine addiction. It is also suggested that MAO A and B both are restrained by nicotine. This enzyme helps in degradation dopamine, which is mainly responsible for nicotinic actions and dependence. Various questions remain uninsurable to nicotine mechanism and require more research. Also, various genetic methods united with modern instrumental analysis might result for more authentic information for nicotine addiction.
Collapse
Affiliation(s)
| | - Vikas Sharma
- Columbia Institute of Pharmacy, Raipur, C.G., India
| | | | | |
Collapse
|
45
|
Datta U, Schoenrock SE, Bubier JA, Bogue MA, Jentsch JD, Logan RW, Tarantino LM, Chesler EJ. Prospects for finding the mechanisms of sex differences in addiction with human and model organism genetic analysis. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12645. [PMID: 32012419 PMCID: PMC7060801 DOI: 10.1111/gbb.12645] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/26/2020] [Accepted: 01/27/2020] [Indexed: 02/06/2023]
Abstract
Despite substantial evidence for sex differences in addiction epidemiology, addiction-relevant behaviors and associated neurobiological phenomena, the mechanisms and implications of these differences remain unknown. Genetic analysis in model organism is a potentially powerful and effective means of discovering the mechanisms that underlie sex differences in addiction. Human genetic studies are beginning to show precise risk variants that influence the mechanisms of addiction but typically lack sufficient power or neurobiological mechanistic access, particularly for the discovery of the mechanisms that underlie sex differences. Our thesis in this review is that genetic variation in model organisms are a promising approach that can complement these investigations to show the biological mechanisms that underlie sex differences in addiction.
Collapse
Affiliation(s)
- Udita Datta
- Center for Systems Neurogenetics of Addiction, The Jackson LaboratoryBar HarborMaine
| | - Sarah E. Schoenrock
- Center for Systems Neurogenetics of Addiction, Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Jason A. Bubier
- Center for Systems Neurogenetics of Addiction, The Jackson LaboratoryBar HarborMaine
| | - Molly A. Bogue
- Center for Systems Neurogenetics of Addiction, The Jackson LaboratoryBar HarborMaine
| | - James D. Jentsch
- Center for Systems Neurogenetics of Addiction, PsychologyState University of New York at BinghamtonBinghamtonNew York
| | - Ryan W. Logan
- Center for Systems Neurogenetics of Addiction, PsychiatryUniversity of Pittsburgh School of MedicinePittsburghPennsylvania
| | - Lisa M. Tarantino
- Center for Systems Neurogenetics of Addiction, Department of GeneticsUniversity of North Carolina at Chapel HillChapel HillNorth Carolina
| | - Elissa J. Chesler
- Center for Systems Neurogenetics of Addiction, The Jackson LaboratoryBar HarborMaine
| |
Collapse
|
46
|
Kohlmeier KA, Polli FS. Plasticity in the Brainstem: Prenatal and Postnatal Experience Can Alter Laterodorsal Tegmental (LDT) Structure and Function. Front Synaptic Neurosci 2020; 12:3. [PMID: 32116639 PMCID: PMC7019863 DOI: 10.3389/fnsyn.2020.00003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/14/2020] [Indexed: 12/16/2022] Open
Abstract
The brainstem has traditionally been considered an area of the brain with autonomous control of mostly homeostatic functions such as heart rate, respiration, and the sleep and wakefulness state, which would preclude the necessity to exhibit the high degree of synaptic or cellular mechanisms of plasticity typical of regions of the brain responsible for flexible, executive control, such as the medial prefrontal cortex or the hippocampus. The perception that the brainstem does not share the same degree of flexibility to alter synaptic strength and/or wiring within local circuits makes intuitive sense, as it is not easy to understand how "soft wiring" would be an advantage when considering the importance of faithful and consistent performance of the homeostatic, autonomic functions that are controlled by the brainstem. However, many of the molecular and cellular requirements which underlie strengthening of synapses seen in brain regions involved in higher-level processing are present in brainstem nuclei, and recent research suggest that the view of the brainstem as "hard wired," with rigid and static connectivity and with unchanging synaptic strength, is outdated. In fact, information from studies within the last decades, including work conducted in our group, leads us to propose that the brainstem can dynamically alter synaptic proteins, and change synaptic connections in response to prenatal or postnatal stimuli, and this would likely alter functionality and output. This article reviews recent research that has provided information resulting in our revision of the view of the brainstem as static and non-changing by using as example recent information gleaned from a brainstem pontine nucleus, the laterodorsal tegmentum (LDT). The LDT has demonstrated mechanisms underlying synaptic plasticity, and plasticity has been exhibited in the postnatal LDT following exposure to drugs of abuse. Further, exposure of the brain during gestation to drugs of abuse results in alterations in development of signaling pathways in the LDT. As the LDT provides a high degree of innervation of mesoaccumbal and mesocortical circuits involved in salience, as well as thalamocortical circuits involved in control of arousal and orientation, changes in synaptic strength would be expected to alter output, which would significantly impact behavioral state, motivated behavior and directed attention. Further, alterations in developmental trajectory within the LDT following prenatal exposure to drugs of abuse would be expected to impact on later life expression of motivation and arousal.
Collapse
Affiliation(s)
- Kristi A. Kohlmeier
- Department of Drug Design and Pharmacology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
47
|
Neuropsychiatric implications of transient receptor potential vanilloid (TRPV) channels in the reward system. Neurochem Int 2019; 131:104545. [PMID: 31494132 DOI: 10.1016/j.neuint.2019.104545] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 09/03/2019] [Accepted: 09/05/2019] [Indexed: 11/22/2022]
Abstract
Neuropsychiatric disorders (NPDs) exert a devastating impact on an individual's personal and social well-being, encompassing various conditions and brain anomalies that influence affect, cognition, and behavior. Because the pathophysiology of NPDs is multifactorial, the precise mechanisms underlying the development of such disorders remain unclear, representing a unique challenge in current neuropsychopharmacotherapy. Transient receptor potential vanilloid (TRPV) type channels are a family of ligand-gated ion channels that mainly include sensory receptors that respond to thermal, mechanical and chemical stimuli. TRPV channels are abundantly present in dopaminergic neurons, thus playing a pivotal role in the modulation of the reward system and in pathophysiology of diseases such as stress, anxiety, depression, schizophrenia, neurodegenerative disorders and substance abuse/addiction. Recent evidence has highlighted TRPV channels as potential targets for understanding modulation of the reward system and various forms of addiction (opioids, cocaine, amphetamines, alcohol, nicotine, cannabis). In this review, we discuss the distribution, physiological roles, ligands and therapeutic importance of TRPV channels with regard to NPDs and addiction biology.
Collapse
|
48
|
Simmler LD, Blakely RD. The SERT Met172 Mouse: An Engineered Model To Elucidate the Contributions of Serotonin Signaling to Cocaine Action. ACS Chem Neurosci 2019; 10:3053-3060. [PMID: 30817127 DOI: 10.1021/acschemneuro.9b00005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Cocaine abuse and addiction remain highly prevalent and, unfortunately, poorly treated. It is well-known that essential aspects of cocaine's addictive actions involve the drug's ability to block the presynaptic dopamine (DA) transporter (DAT), thereby elevating extracellular levels of DA in brain circuits that subserve reward, reinforcement, and habit. Less well appreciated are the multiple DA-independent actions of cocaine, activities that we and others believe contribute key pieces to the puzzle of cocaine addiction, treatment, and relapse. In particular, a significant body of work points to altered serotonin (5-HT) signaling as one such component, not surprising given that, relative to DAT, cocaine acts as potently to block the 5-HT transporter (SERT) as to block DAT, and thereby elevates extracellular 5-HT levels throughout the brain when reward-eliciting DA elevations occur. To elucidate the contribution of SERT antagonism to the actions of cocaine, we engineered a mouse model that significantly reduces cocaine potency at SERT without disrupting the expression or function of SERT in vivo. In this short Perspective, we review the rationale for development of the SERT Met172 model, the studies that document the pharmacological impact of the Ile172Met substitution in vitro and in vivo, and our findings with the model that demonstrate serotonergic contributions to the genetic, physiological, and behavioral actions of cocaine.
Collapse
Affiliation(s)
- Linda D. Simmler
- Department of Basic Neurosciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Randy D. Blakely
- Department of Biomedical Science, Charles E. Schmidt College of Medicine and Brain Institute, Florida Atlantic University, Jupiter, Florida 33458, United States
| |
Collapse
|
49
|
Antkowiak B, Rammes G. GABA(A) receptor-targeted drug development -New perspectives in perioperative anesthesia. Expert Opin Drug Discov 2019; 14:683-699. [DOI: 10.1080/17460441.2019.1599356] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Bernd Antkowiak
- Department of Anesthesiology and Intensive Care, Experimental Anesthesiology Section, Eberhard-Karls-University,
Tübingen, Germany
- Department of Anaesthesiology and Intensive Care, Experimental Anaesthesiology Section, Werner Reichardt Center for Integrative Neuroscience, Tübingen,
Germany
| | - Gerhard Rammes
- University Hospital rechts der Isar, Department of Anesthesiology, München,
Germany
| |
Collapse
|
50
|
Nestler EJ, Lüscher C. The Molecular Basis of Drug Addiction: Linking Epigenetic to Synaptic and Circuit Mechanisms. Neuron 2019; 102:48-59. [PMID: 30946825 PMCID: PMC6587180 DOI: 10.1016/j.neuron.2019.01.016] [Citation(s) in RCA: 183] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Revised: 01/01/2019] [Accepted: 01/10/2019] [Indexed: 12/22/2022]
Abstract
Addiction is a disease in which, after a period of recreational use, a subset of individuals develops compulsive use that does not stop even in light of major negative consequences. Here, we review the evidence for underlying epigenetic remodeling in brain in two settings. First, excessive dopamine signaling during drug use may modulate gene expression, altering synaptic function and circuit activity and leading over time to maladaptive behaviors in vulnerable individuals. Second, on a longer timescale, life experience can shape the epigenetic landscape in brain and thereby may contribute to an individual's vulnerability by amplifying drug-induced changes in gene expression that drive the transition to addiction. We conclude by exploring how epigenetic mechanisms might serve as therapeutic targets for addiction treatments.
Collapse
Affiliation(s)
- Eric J Nestler
- Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Christian Lüscher
- Department of Basic Neurosciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland; Clinic of Neurology, Departement of Clinical Neurosiences, Geneva University Hospital, Geneva, Switzerland.
| |
Collapse
|