1
|
Choudhury A, Ojha PK, Ray S. Hazards of antiviral contamination in water: Dissemination, fate, risk and their impact on fish. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135087. [PMID: 38964042 DOI: 10.1016/j.jhazmat.2024.135087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Antiviral drugs are a cornerstone in the first line of antiviral therapy and their demand rises consistently with increments in viral infections and successive outbreaks. The drugs enter the waters due to improper disposal methods or via human excreta following their consumption; consequently, many of them are now classified as emerging pollutants. Hereby, we review the global dissemination of these medications throughout different water bodies and thoroughly investigate the associated risk they pose to the aquatic fauna, particularly our vertebrate relative fish, which has great economic and dietary importance and subsequently serves as a major doorway to the human exposome. Our risk assessment identifies eleven such drugs that presently pose high to moderate levels of risk to the fish. The antiviral drugs are likely to induce oxidative stress, alter the behaviour, affect different physiological processes and provoke various toxicological mechanisms. Many of the compounds exhibit elevated bioaccumulation potential, while, some have an increased tendency to leach through soil and contaminate the groundwater. Eight antiviral medications show a highly recalcitrant nature and would impact the aquatic life consistently in the long run and continue to influence the human exposome. Thereby, we call for urgent ecopharmacovigilance measures and modification of current water treatment methods.
Collapse
Affiliation(s)
- Abhigyan Choudhury
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India
| | - Probir Kumar Ojha
- Drug Discovery and Development (DDD) Laboratory, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India.
| | - Sajal Ray
- Aquatic Toxicology Laboratory, Department of Zoology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata 700019, West Bengal, India.
| |
Collapse
|
2
|
Alencar CS, Sabino EC, Diaz RS, Mendrone-Junior A, Nishiya AS. Genetic diversity in the partial sequence of the HIV-1 gag gene among people living with multidrug-resistant HIV-1 infection. Rev Inst Med Trop Sao Paulo 2024; 66:e35. [PMID: 38865573 PMCID: PMC11164046 DOI: 10.1590/s1678-9946202466035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/02/2024] [Indexed: 06/14/2024] Open
Abstract
The group-specific antigen (gag) plays a crucial role in the assembly, release, and maturation of HIV. This study aimed to analyze the partial sequence of the HIV gag gene to classify HIV subtypes, identify recombination sites, and detect protease inhibitor (PI) resistance-associated mutations (RAMs). The cohort included 100 people living with HIV (PLH) who had experienced antiretroviral treatment failure with reverse transcriptase/protease inhibitors. Proviral HIV-DNA was successfully sequenced in 96 out of 100 samples for gag regions, specifically matrix (p17) and capsid (p24). Moreover, from these 96 sequences, 82 (85.42%) were classified as subtype B, six (6.25%) as subtype F1, one (1.04%) as subtype C, and seven (7.29%) exhibited a mosaic pattern between subtypes B and F1 (B/F1), with breakpoints at p24 protein. Insertions and deletions of amino acid at p17 were observed in 51 samples (53.13%). The prevalence of PI RAM in the partial gag gene was observed in 78 out of 96 PLH (81.25%). Among these cases, the most common mutations were R76K (53.13%), Y79F (31.25%), and H219Q (14.58%) at non-cleavage sites, as well as V128I (10.42%) and Y132F (11.46%) at cleavage sites. While B/F1 recombination was identified in the p24, the p17 coding region showed higher diversity, where insertions, deletions, and PI RAM, were observed at high prevalence. In PLH with virological failure, the analysis of the partial gag gene could contribute to more accurate predictions in genotypic resistance to PIs. This can aid guide more effective HIV treatment strategies.
Collapse
Affiliation(s)
- Cecília Salete Alencar
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Laboratório de Medicina Laboratorial (LIM-03), São Paulo, São Paulo, Brazil
| | - Ester Cerdeira Sabino
- Universidade de São Paulo, Faculdade de Medicina, Instituto de Medicina Tropical de São Paulo, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina, São Paulo, São Paulo, Brazil
| | - Ricardo Sobhie Diaz
- Universidade Federal de São Paulo, Laboratório de Retrovirologia, São Paulo, São Paulo, Brazil
| | - Alfredo Mendrone-Junior
- Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Hematologia, Laboratório de Investigação Médica em Patogênese e Terapia Dirigida em Onco-Imuno-Hematologia (LIM-31), São Paulo, São Paulo, Brazil
| | - Anna Shoko Nishiya
- Fundação Pró-Sangue Hemocentro de São Paulo, São Paulo, São Paulo, Brazil
- Universidade de São Paulo, Faculdade de Medicina, Hospital das Clínicas, Departamento de Hematologia, Laboratório de Investigação Médica em Patogênese e Terapia Dirigida em Onco-Imuno-Hematologia (LIM-31), São Paulo, São Paulo, Brazil
| |
Collapse
|
3
|
Abdullahi A, Diaz AG, Fopoussi OM, Beloukas A, Fokom Defo V, Kouanfack C, Torimiro J, Geretti AM. A detailed characterization of drug resistance during darunavir/ritonavir monotherapy highlights a high barrier to the emergence of resistance mutations in protease but identifies alternative pathways of resistance. J Antimicrob Chemother 2024; 79:339-348. [PMID: 38153241 PMCID: PMC10832591 DOI: 10.1093/jac/dkad386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 11/26/2023] [Indexed: 12/29/2023] Open
Abstract
BACKGROUND Maintenance monotherapy with ritonavir-boosted darunavir has yielded variable outcomes and is not recommended. Trial samples offer valuable opportunities for detailed studies. We analysed samples from a 48 week trial in Cameroon to obtain a detailed characterization of drug resistance. METHODS Following failure of NNRTI-based therapy and virological suppression on PI-based therapy, participants were randomized to ritonavir-boosted darunavir (n = 81) or tenofovir disoproxil fumarate/lamivudine +ritonavir-boosted lopinavir (n = 39). At study entry, PBMC-derived HIV-1 DNA underwent bulk Protease and Reverse Transcriptase (RT) sequencing. At virological rebound (confirmed or last available HIV-1 RNA ≥ 60 copies/mL), plasma HIV-1 RNA underwent ultradeep Protease and RT sequencing and bulk Gag-Protease sequencing. The site-directed mutant T375A (p2/p7) was characterized phenotypically using a single-cycle assay. RESULTS NRTI and NNRTI resistance-associated mutations (RAMs) were detected in 52/90 (57.8%) and 53/90 (58.9%) HIV-1 DNA samples, respectively. Prevalence in rebound HIV-1 RNA (ritonavir-boosted darunavir, n = 21; ritonavir-boosted lopinavir, n = 2) was 9/23 (39.1%) and 10/23 (43.5%), respectively, with most RAMs detected at frequencies ≥15%. The resistance patterns of paired HIV-1 DNA and RNA sequences were partially consistent. No darunavir RAMs were found. Among eight participants experiencing virological rebound on ritonavir-boosted darunavir (n = 12 samples), all had Gag mutations associated with PI exposure, including T375N, T375A (p2/p7), K436R (p7/p1) and substitutions in p17, p24, p2 and p6. T375A conferred 10-fold darunavir resistance and increased replication capacity. CONCLUSIONS The study highlights the high resistance barrier of ritonavir-boosted darunavir while identifying alternative pathways of resistance through Gag substitutions. During virological suppression, resistance patterns in HIV-1 DNA reflect treatment history, but due to technical and biological considerations, cautious interpretation is warranted.
Collapse
Affiliation(s)
- Adam Abdullahi
- Takemi Program in International Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Cambridge Institute of Therapeutic Immunology & Infectious Disease, Cambridge, UK
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Ana Garcia Diaz
- Department of Virology, Royal Free London NHS Foundation Trust, London, UK
| | - Olga Mafotsing Fopoussi
- Biomedical Sciences Department, University of West Attica, Athens, Greece
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention & Management (CIRCB), Yaoundé, Cameroon
| | - Apostolos Beloukas
- Biomedical Sciences Department, University of West Attica, Athens, Greece
- National AIDS Reference Centre of Southern Greece, School of Public Health, University of West Attica, Athens, Greece
| | - Victoire Fokom Defo
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention & Management (CIRCB), Yaoundé, Cameroon
- Department of HIV Medicine, Hôpital Central de Yaoundé, Ministry of Public Health, Yaoundé, Cameroon
| | - Charles Kouanfack
- Department of HIV Medicine, Hôpital Central de Yaoundé, Ministry of Public Health, Yaoundé, Cameroon
| | - Judith Torimiro
- Chantal Biya International Reference Centre for Research on HIV/AIDS Prevention & Management (CIRCB), Yaoundé, Cameroon
| | - Anna Maria Geretti
- Department of Infectious Diseases, Fondazione PTV, University of Rome Tor Vergata, Rome, Italy
- Department of Infection, North Middlesex University Hospital, London, UK
- School of Immunity and Microbial Sciences, King’s College London, London, UK
| |
Collapse
|
4
|
Jacobsen L, Hungerland J, Bačić V, Gerhards L, Schuhmann F, Solov’yov IA. Introducing the Automated Ligand Searcher. J Chem Inf Model 2023; 63:7518-7528. [PMID: 37983165 PMCID: PMC10716895 DOI: 10.1021/acs.jcim.3c01317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/22/2023]
Abstract
The Automated Ligand Searcher (ALISE) is designed as an automated computational drug discovery tool. To approximate the binding free energy of ligands to a receptor, ALISE includes a three-stage workflow, with each stage involving an increasingly sophisticated computational method: molecular docking, molecular dynamics, and free energy perturbation, respectively. To narrow the number of potential ligands, poorly performing ligands are gradually segregated out. The performance and usability of ALISE are benchmarked for a case study containing known active ligands and decoys for the HIV protease. The example illustrates that ALISE filters the decoys successfully and demonstrates that the automation, comprehensiveness, and user-friendliness of the software make it a valuable tool for improved and faster drug development workflows.
Collapse
Affiliation(s)
- Luise Jacobsen
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, Campusvej 55, 5230 Odense M, Denmark
| | - Jonathan Hungerland
- Institute
of Physics, Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Vladimir Bačić
- Institute
of Physics, Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Luca Gerhards
- Institute
of Physics, Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
| | - Fabian Schuhmann
- Institute
of Physics, Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Niels
Bohr International Academy, Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, 2100 Copenhagen, Denmark
| | - Ilia A. Solov’yov
- Institute
of Physics, Carl von Ossietzky Universität, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Research
Centre for Neurosensory Science, Carl von
Ossietzky Universität Oldenburg, Carl-von-Ossietzky-Str. 9-11, 26129 Oldenburg, Germany
- Center
for Nanoscale Dynamics (CENAD), Carl von
Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg, Germany
| |
Collapse
|
5
|
Dakshinamoorthy A, Asmita A, Senapati S. Comprehending the Structure, Dynamics, and Mechanism of Action of Drug-Resistant HIV Protease. ACS OMEGA 2023; 8:9748-9763. [PMID: 36969469 PMCID: PMC10034783 DOI: 10.1021/acsomega.2c08279] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Since the emergence of the Human Immunodeficiency Virus (HIV) in the 1980s, strategies to combat HIV-AIDS are continuously evolving. Among the many tested targets to tackle this virus, its protease enzyme (PR) was proven to be an attractive option that brought about numerous research publications and ten FDA-approved drugs to inhibit the PR activity. However, the drug-induced mutations in the enzyme made these small molecule inhibitors ineffective with prolonged usage. The research on HIV PR, therefore, remains a thrust area even today. Through this review, we reiterate the importance of understanding the various structural and functional components of HIV PR in redesigning the structure-based small molecule inhibitors. We also discuss at length the currently available FDA-approved drugs and how these drug molecules induced mutations in the enzyme structure. We then recapitulate the reported mechanisms on how these drug-resistant variants remain sufficiently active to cleave the natural substrates. We end with the future scope covering the recently proposed strategies that show promise to deal with the mutations.
Collapse
|
6
|
Cellular Targets of HIV-1 Protease: Just the Tip of the Iceberg? Viruses 2023; 15:v15030712. [PMID: 36992421 PMCID: PMC10053624 DOI: 10.3390/v15030712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/05/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Human immunodeficiency virus 1 (HIV-1) viral protease (PR) is one of the most studied viral enzymes and a crucial antiviral target. Despite its well-characterized role in virion maturation, an increasing body of research is starting to focus on its ability to cleave host cell proteins. Such findings are apparently in contrast with the dogma of HIV-1 PR activity being restricted to the interior of nascent virions and suggest catalytic activity within the host cell environment. Given the limited amount of PR present in the virion at the time of infection, such events mainly occur during late viral gene expression, mediated by newly synthesized Gag-Pol polyprotein precursors, rather than before proviral integration. HIV-1 PR mainly targets proteins involved in three different processes: those involved in translation, those controlling cell survival, and restriction factors responsible for innate/intrinsic antiviral responses. Indeed, by cleaving host cell translation initiation factors, HIV-1 PR can impair cap-dependent translation, thus promoting IRES-mediated translation of late viral transcripts and viral production. By targeting several apoptotic factors, it modulates cell survival, thus promoting immune evasion and viral dissemination. Additionally, HIV-1 PR counteracts restriction factors incorporated in the virion that would otherwise interfere with nascent virus vitality. Thus, HIV-1 PR appears to modulate host cell function at different times and locations during its life cycle, thereby ensuring efficient viral persistency and propagation. However, we are far from having a complete picture of PR-mediated host cell modulation, which is emerging as a field that needs further investigation.
Collapse
|
7
|
Marie V, Gordon M. Understanding the co-evolutionary molecular mechanisms of resistance in the HIV-1 Gag and protease. J Biomol Struct Dyn 2022; 40:10852-10861. [PMID: 34253143 DOI: 10.1080/07391102.2021.1950569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Due to high human immunodeficiency virus type 1 (HIV-1) subtype C infections coupled with increasing antiretroviral treatment failure, the elucidation of complex drug resistance mutational patterns arising through protein co-evolution is required. Despite the inclusion of potent protease inhibitors Lopinavir (LPV) and Darunavir (DRV) in second- and third-line therapies, many patients still fail treatment due to the accumulation of mutations in protease (PR) and recently, Gag. To understand the co-evolutionary molecular mechanisms of resistance in the HIV-1 PR and Gag, we performed 100 ns molecular dynamic simulations on multidrug resistant PR's when bound to LPV, DRV or a mutated A431V NC|p1 Gag cleavage site (CS). Here we showed that distinct changes in PR's active site, flap and elbow regions due to several PR resistance mutations (L10F, M46I, I54V, L76V, V82A) were found to alter LPV and DRV drug binding. However, binding was significantly exacerbated when the mutant PRs were bound to the NC|p1 Gag CS. Although A431V was shown to coordinate several residues in PR, the L76V PR mutation was found to have a significant role in substrate recognition. Consequently, a greater binding affinity was observed when the mutated substrate was bound to an L76V-inclusive PR mutant (Gbind: -62.46 ± 5.75 kcal/mol) than without (Gbind: -50.34 ± 6.28 kcal/mol). These data showed that the co-selection of resistance mutations in the enzyme and substrate can simultaneously constrict regions in PR's active site whilst flexing the flaps to allow flexible movement of the substrate and multiple, complex mechanisms of resistance to occur. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Veronna Marie
- KwaZulu-Natal Research Innovation & Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, DurbanSouth Africa
| | - Michelle Gordon
- KwaZulu-Natal Research Innovation & Sequencing Platform (KRISP), Nelson R Mandela School of Medicine, University of KwaZulu-Natal, DurbanSouth Africa
| |
Collapse
|
8
|
Viral proteases as therapeutic targets. Mol Aspects Med 2022; 88:101159. [PMID: 36459838 PMCID: PMC9706241 DOI: 10.1016/j.mam.2022.101159] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022]
Abstract
Some medically important viruses-including retroviruses, flaviviruses, coronaviruses, and herpesviruses-code for a protease, which is indispensable for viral maturation and pathogenesis. Viral protease inhibitors have become an important class of antiviral drugs. Development of the first-in-class viral protease inhibitor saquinavir, which targets HIV protease, started a new era in the treatment of chronic viral diseases. Combining several drugs that target different steps of the viral life cycle enables use of lower doses of individual drugs (and thereby reduction of potential side effects, which frequently occur during long term therapy) and reduces drug-resistance development. Currently, several HIV and HCV protease inhibitors are routinely used in clinical practice. In addition, a drug including an inhibitor of SARS-CoV-2 main protease, nirmatrelvir (co-administered with a pharmacokinetic booster ritonavir as Paxlovid®), was recently authorized for emergency use. This review summarizes the basic features of the proteases of human immunodeficiency virus (HIV), hepatitis C virus (HCV), and SARS-CoV-2 and discusses the properties of their inhibitors in clinical use, as well as development of compounds in the pipeline.
Collapse
|
9
|
Hu L, Li Z, Tang Z, Zhao C, Zhou X, Hu P. Effectively predicting HIV-1 protease cleavage sites by using an ensemble learning approach. BMC Bioinformatics 2022; 23:447. [PMID: 36303135 PMCID: PMC9608884 DOI: 10.1186/s12859-022-04999-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
Background The site information of substrates that can be cleaved by human immunodeficiency virus 1 proteases (HIV-1 PRs) is of great significance for designing effective inhibitors against HIV-1 viruses. A variety of machine learning-based algorithms have been developed to predict HIV-1 PR cleavage sites by extracting relevant features from substrate sequences. However, only relying on the sequence information is not sufficient to ensure a promising performance due to the uncertainty in the way of separating the datasets used for training and testing. Moreover, the existence of noisy data, i.e., false positive and false negative cleavage sites, could negatively influence the accuracy performance. Results In this work, an ensemble learning algorithm for predicting HIV-1 PR cleavage sites, namely EM-HIV, is proposed by training a set of weak learners, i.e., biased support vector machine classifiers, with the asymmetric bagging strategy. By doing so, the impact of data imbalance and noisy data can thus be alleviated. Besides, in order to make full use of substrate sequences, the features used by EM-HIV are collected from three different coding schemes, including amino acid identities, chemical properties and variable-length coevolutionary patterns, for the purpose of constructing more relevant feature vectors of octamers. Experiment results on three independent benchmark datasets demonstrate that EM-HIV outperforms state-of-the-art prediction algorithm in terms of several evaluation metrics. Hence, EM-HIV can be regarded as a useful tool to accurately predict HIV-1 PR cleavage sites.
Collapse
Affiliation(s)
- Lun Hu
- grid.9227.e0000000119573309Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| | - Zhenfeng Li
- grid.162110.50000 0000 9291 3229School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
| | - Zehai Tang
- grid.162110.50000 0000 9291 3229School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
| | - Cheng Zhao
- grid.162110.50000 0000 9291 3229School of Computer Science and Artificial Intelligence, Wuhan University of Technology, Wuhan, China
| | - Xi Zhou
- grid.9227.e0000000119573309Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| | - Pengwei Hu
- grid.9227.e0000000119573309Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Ürümqi, China
| |
Collapse
|
10
|
Climaco-Arvizu S, Flores-López V, González-Torres C, Gaytán-Cervantes FJ, Hernández-García MC, Zárate-Segura PB, Chávez-Torres M, Tesoro-Cruz E, Pinto-Cardoso SM, Bekker-Méndez VC. Protease and gag diversity and drug resistance mutations among treatment-naive Mexican people living with HIV. BMC Infect Dis 2022; 22:447. [PMID: 35538426 PMCID: PMC9088029 DOI: 10.1186/s12879-022-07446-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 04/29/2022] [Indexed: 09/17/2024] Open
Abstract
Introduction In Mexico, HIV genotyping is performed in people living with HIV (PLWH) failing their first-line antiretroviral (ARV) regimen; it is not routinely done for all treatment-naive PLWH before ARV initiation. The first nationally representative survey published in 2016 reported that the prevalence of pretreatment drug mutations in treatment-naive Mexican PLWH was 15.5% to any antiretroviral drug and 10.6% to non-nucleoside reverse transcriptase inhibitors (NNRTIs) using conventional Sanger sequencing. Most reports in Mexico focus on HIV pol gene and nucleoside and non-nucleoside reverse transcriptase inhibitor (NRTI and NNRTI) drug resistance mutations (DRMs) prevalence, using Sanger sequencing, next-generation sequencing (NGS) or both. To our knowledge, NGS has not be used to detect pretreatment drug resistance mutations (DRMs) in the HIV protease (PR) gene and its substrate the Gag polyprotein. Methods Treatment-naive adult Mexican PLWH were recruited between 2016 and 2019. HIV Gag and protease sequences were obtained by NGS and DRMs were identified using the WHO surveillance drug resistance mutation (SDRM) list. Results One hundred PLWH attending a public national reference hospital were included. The median age was 28 years-old, and most were male. The median HIV viral load was 4.99 [4.39–5.40] log copies/mL and median CD4 cell count was 150 [68.0–355.78] cells/mm3. As expected, most sequences clustered with HIV-1 subtype B (97.9%). Major PI resistance mutations were detected: 8 (8.3%) of 96 patients at a detection threshold of 1% and 3 (3.1%) at a detection threshold of 20%. A total of 1184 mutations in Gag were detected, of which 51 have been associated with resistance to PI, most of them were detected at a threshold of 20%. Follow-up clinical data was available for 79 PLWH at 6 months post-ART initiation, seven PLWH failed their first ART regimen; however no major PI mutations were identified in these individuals at baseline. Conclusions The frequency of DRM in the HIV protease was 7.3% at a detection threshold of 1% and 3.1% at a detection threshold of 20%. NGS-based HIV drug resistance genotyping provide improved detection of DRMs. Viral load was used to monitor ARV response and treatment failure was 8.9%. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07446-8.
Collapse
Affiliation(s)
- Samantha Climaco-Arvizu
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr Daniel Méndez Hernández", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, C.P. 02990, México.,Laboratorio de Medicina Traslacional, Instituto Politécnico Nacional, Ciudad de México, México
| | | | - Carolina González-Torres
- División de Desarrollo de La Investigación, Instituto Mexicano del Seguro Social, Ciudad de México, México
| | | | - María Concepción Hernández-García
- Instituto Mexicano del Seguro Social (IMSS), Hospital de Infectología "Dr Daniel Méndez Hernández", Centro Médico Nacional (CMN), La Raza", Ciudad de México, México
| | | | - Monserrat Chávez-Torres
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, C.P. 14080, México
| | - Emiliano Tesoro-Cruz
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr Daniel Méndez Hernández", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, C.P. 02990, México
| | - Sandra María Pinto-Cardoso
- Centro de Investigación en Enfermedades Infecciosas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Ciudad de México, C.P. 14080, México.
| | - Vilma Carolina Bekker-Méndez
- Unidad de Investigación Médica en Inmunología e Infectología, Hospital de Infectología "Dr Daniel Méndez Hernández", Centro Médico Nacional "La Raza", Instituto Mexicano del Seguro Social (IMSS), Ciudad de México, C.P. 02990, México.
| |
Collapse
|
11
|
Antiretroviral Drug-Resistance Mutations on the Gag Gene: Mutation Dynamics during Analytic Treatment Interruption among Individuals Experiencing Virologic Failure. Pathogens 2022; 11:pathogens11050534. [PMID: 35631055 PMCID: PMC9145614 DOI: 10.3390/pathogens11050534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/17/2022] Open
Abstract
We describe drug-resistance mutation dynamics of the gag gene among individuals under antiretroviral virologic failure who underwent analytical treatment interruption (ATI). These mutations occur in and around the cleavage sites that form the particles that become the mature HIV-1 virus. The study involved a 12-week interruption in antiretroviral therapy (ART) and sequencing of the gag gene in 38 individuals experiencing virologic failure and harboring triple-class resistant HIV strains. Regions of the gag gene surrounding the NC-p2 and p1-p6 cleavage sites were sequenced at baseline before ATI and after 12 weeks from plasma HIV RNA using population-based Sanger sequencing. Fourteen of the sixteen patients sequenced presented at least one mutation in the gag gene at baseline, with an average of 4.93 mutations per patient. All the mutations had reverted to the wild type by the end of the study. Mutations in the gag gene complement mutations in the pol gene to restore HIV fitness. Those mutations around cleavage sites and within substrates contribute to protease inhibitor resistance and difficulty in re-establishing effective virologic suppression. ART interruption in the presence of antiretroviral resistant HIV strains was used here as a practical measure for more adapted HIV profiles in the absence of ART selective pressure.
Collapse
|
12
|
Potential Associations of Mutations within the HIV-1 Env and Gag Genes Conferring Protease Inhibitor (PI) Drug Resistance. MICROBIOLOGY RESEARCH 2021. [DOI: 10.3390/microbiolres12040071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
An increasing number of patients in Africa are experiencing virological failure on a second-line antiretroviral protease inhibitor (PI)-containing regimen, even without resistance-associated mutations in the protease region, suggesting a potential role of other genes in PI resistance. Here, we investigated the prevalence of mutations associated with Lopinavir/Ritonavir (LPV/r) failure in the Envelope gene and the possible coevolution with mutations within the Gag-protease (gag-PR) region. Env and Gag-PR sequences generated from 24 HIV-1 subtype C infected patients failing an LPV/r inclusive treatment regimen and 344 subtype C drug-naïve isolates downloaded from the Los Alamos Database were analyzed. Fisher’s exact test was used to determine the differences in mutation frequency. Bayesian network probability was applied to determine the relationship between mutations occurring within the env and gag-PR regions and LPV/r treatment. Thirty-five mutations in the env region had significantly higher frequencies in LPV/r-treated patients. A combination of Env and Gag-PR mutations was associated with a potential pathway to LPV/r resistance. While Env mutations were not directly associated with LPV/r resistance, they may exert pressure through the Gag and minor PR mutation pathways. Further investigations using site-directed mutagenesis are needed to determine the impact of Env mutations alone and in combination with Gag-PR mutations on viral fitness and LPV/r efficacy.
Collapse
|
13
|
Koma T, Doi N, Takemoto M, Watanabe K, Yamamoto H, Nakashima S, Adachi A, Nomaguchi M. The Expression Level of HIV-1 Vif Is Optimized by Nucleotide Changes in the Genomic SA1D2prox Region during the Viral Adaptation Process. Viruses 2021; 13:2079. [PMID: 34696508 PMCID: PMC8537775 DOI: 10.3390/v13102079] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 10/05/2021] [Accepted: 10/13/2021] [Indexed: 12/20/2022] Open
Abstract
HIV-1 Vif plays an essential role in viral replication by antagonizing anti-viral cellular restriction factors, a family of APOBEC3 proteins. We have previously shown that naturally-occurring single-nucleotide mutations in the SA1D2prox region, which surrounds the splicing acceptor 1 and splicing donor 2 sites of the HIV-1 genome, dramatically alter the Vif expression level, resulting in variants with low or excessive Vif expression. In this study, we investigated how these HIV-1 variants with poor replication ability adapt and evolve under the pressure of APOBEC3 proteins. Adapted clones obtained through adaptation experiments exhibited an altered replication ability and Vif expression level compared to each parental clone. While various mutations were present throughout the viral genome, all replication-competent adapted clones with altered Vif expression levels were found to bear them within SA1D2prox, without exception. Indeed, the mutations identified within SA1D2prox were responsible for changes in the Vif expression levels and altered the splicing pattern. Moreover, for samples collected from HIV-1-infected patients, we showed that the nucleotide sequences of SA1D2prox can be chronologically changed and concomitantly affect the Vif expression levels. Taken together, these results demonstrated the importance of the SA1D2prox nucleotide sequence for modulating the Vif expression level during HIV-1 replication and adaptation.
Collapse
Affiliation(s)
- Takaaki Koma
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
| | - Naoya Doi
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
| | - Mai Takemoto
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Kyosuke Watanabe
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Hideki Yamamoto
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Satoshi Nakashima
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
- Faculty of Medicine, Tokushima University, Tokushima 770-8503, Japan
| | - Akio Adachi
- Department of Microbiology, Kansai Medical University, Osaka 573-1010, Japan
| | - Masako Nomaguchi
- Department of Microbiology, Tokushima University Graduate School of Biomedical Sciences, Tokushima 770-8503, Japan; (T.K.); (N.D.); (M.T.); (K.W.); (H.Y.); (S.N.)
| |
Collapse
|
14
|
Precursors of Viral Proteases as Distinct Drug Targets. Viruses 2021; 13:v13101981. [PMID: 34696411 PMCID: PMC8537868 DOI: 10.3390/v13101981] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/25/2021] [Accepted: 09/28/2021] [Indexed: 12/16/2022] Open
Abstract
Viral proteases are indispensable for successful virion maturation, thus making them a prominent drug target. Their enzyme activity is tightly spatiotemporally regulated by expression in the precursor form with little or no activity, followed by activation via autoprocessing. These cleavage events are frequently triggered upon transportation to a specific compartment inside the host cell. Typically, precursor oligomerization or the presence of a co-factor is needed for activation. A detailed understanding of these mechanisms will allow ligands with non-canonical mechanisms of action to be designed, which would specifically modulate the initial irreversible steps of viral protease autoactivation. Binding sites exclusive to the precursor, including binding sites beyond the protease domain, can be exploited. Both inhibition and up-regulation of the proteolytic activity of viral proteases can be detrimental for the virus. All these possibilities are discussed using examples of medically relevant viruses including herpesviruses, adenoviruses, retroviruses, picornaviruses, caliciviruses, togaviruses, flaviviruses, and coronaviruses.
Collapse
|
15
|
Absence of Lenacapavir (GS-6207) Phenotypic Resistance in HIV Gag Cleavage Site Mutants and in Isolates with Resistance to Existing Drug Classes. Antimicrob Agents Chemother 2021; 65:AAC.02057-20. [PMID: 33288639 DOI: 10.1128/aac.02057-20] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 11/27/2020] [Indexed: 11/20/2022] Open
Abstract
Lenacapavir (LEN; GS-6207) is a potent first-in-class inhibitor of HIV-1 capsid with long-acting properties and the potential for subcutaneous dosing every 3 months or longer. In the clinic, a single subcutaneous LEN injection (20 mg to 750 mg) in people with HIV (PWH) induced a strong antiviral response, with a >2.3 mean log10 decrease in HIV-1 RNA at day 10. HIV-1 Gag mutations near protease (PR) cleavage sites have emerged with the use of protease inhibitors (PIs). Here, we have characterized the activity of LEN in mutants with Gag cleavage site mutations (GCSMs) and mutants resistant to other drug classes. HIV mutations were inserted into the pXXLAI clone, and the resulting mutants (n = 70) were evaluated using a 5-day antiviral assay. LEN EC50 fold change versus the wild type ranged from 0.4 to 1.9 in these mutants, similar to that for the control drug. In contrast, reduced susceptibility to PIs and maturation inhibitors (MIs) was observed. Testing of isolates with resistance against the 4 main classes of drugs (n = 40) indicated wild-type susceptibility to LEN (fold change ranging from 0.3 to 1.1), while reduced susceptibility was observed for control drugs. HIV GCSMs did not impact the activity of LEN, while some conferred resistance to MIs and PIs. Similarly, LEN activity was not affected by naturally occurring variations in HIV Gag, in contrast to the reduced susceptibility observed for MIs. Finally, the activity of LEN was not affected by the presence of resistance mutations to the 4 main antiretroviral (ARV) drug classes. These data support the evaluation of LEN in PWH with multiclass resistance.
Collapse
|
16
|
Datir R, Kemp S, El Bouzidi K, Mlchocova P, Goldstein R, Breuer J, Towers GJ, Jolly C, Quiñones-Mateu ME, Dakum PS, Ndembi N, Gupta RK. In Vivo Emergence of a Novel Protease Inhibitor Resistance Signature in HIV-1 Matrix. mBio 2020; 11:e02036-20. [PMID: 33144375 PMCID: PMC7642677 DOI: 10.1128/mbio.02036-20] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 09/21/2020] [Indexed: 12/16/2022] Open
Abstract
Protease inhibitors (PIs) are the second- and last-line therapy for the majority of HIV-infected patients worldwide. Only around 20% of individuals who fail PI regimens develop major resistance mutations in protease. We sought to explore the role of mutations in gag-pro genotypic and phenotypic changes in viruses from six Nigerian patients who failed PI-based regimens without known drug resistance-associated protease mutations in order to identify novel determinants of PI resistance. Target enrichment and next-generation sequencing (NGS) with the Illumina MiSeq system were followed by haplotype reconstruction. Full-length Gag-protease gene regions were amplified from baseline (pre-PI) and virologic failure (VF) samples, sequenced, and used to construct gag-pro-pseudotyped viruses. Phylogenetic analysis was performed using maximum-likelihood methods. Susceptibility to lopinavir (LPV) and darunavir (DRV) was measured using a single-cycle replication assay. Western blotting was used to analyze Gag cleavage. In one of six participants (subtype CRF02_AG), we found 4-fold-lower LPV susceptibility in viral clones during failure of second-line treatment. A combination of four mutations (S126del, H127del, T122A, and G123E) in the p17 matrix of baseline virus generated a similar 4-fold decrease in susceptibility to LPV but not darunavir. These four amino acid changes were also able to confer LPV resistance to a subtype B Gag-protease backbone. Western blotting demonstrated significant Gag cleavage differences between sensitive and resistant isolates in the presence of drug. Resistant viruses had around 2-fold-lower infectivity than sensitive clones in the absence of drug. NGS combined with haplotype reconstruction revealed that resistant, less fit clones emerged from a minority population at baseline and thereafter persisted alongside sensitive fitter viruses. We used a multipronged genotypic and phenotypic approach to document emergence and temporal dynamics of a novel protease inhibitor resistance signature in HIV-1 matrix, revealing the interplay between Gag-associated resistance and fitness.
Collapse
Affiliation(s)
| | - Steven Kemp
- University College London, London, United Kingdom
| | | | - Petra Mlchocova
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | | | - Judy Breuer
- University College London, London, United Kingdom
| | | | - Clare Jolly
- University College London, London, United Kingdom
| | | | - Patrick S Dakum
- Institute for Human Virology, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Nicaise Ndembi
- Institute for Human Virology, Abuja, Nigeria
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | - Ravindra K Gupta
- Department of Medicine, University of Cambridge, Cambridge, United Kingdom
- Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
17
|
Wallis CL, Hughes MD, Ritz J, Viana R, de Jesus CS, Saravanan S, van Schalkwyk M, Mngqibisa R, Salata R, Mugyenyi P, Hogg E, Hovind L, Wieclaw L, Gross R, Godfrey C, Collier AC, Grinsztejn B, Mellors JW. Diverse Human Immunodeficiency Virus-1 Drug Resistance Profiles at Screening for ACTG A5288: A Study of People Experiencing Virologic Failure on Second-line Antiretroviral Therapy in Resource-limited Settings. Clin Infect Dis 2020; 71:e170-e177. [PMID: 31724034 PMCID: PMC7583422 DOI: 10.1093/cid/ciz1116] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 11/12/2019] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV) drug resistance profiles are needed to optimize individual patient management and to develop treatment guidelines. Resistance profiles are not well defined among individuals on failing second-line antiretroviral therapy (ART) in low- and middle-income countries (LMIC). METHODS Resistance genotypes were performed during screening for enrollment into a trial of third-line ART (AIDS Clinical Trials Group protocol 5288). Prior exposure to both nucleoside reverse transcriptase inhibitors (NRTIs) and non-NRTIs and confirmed virologic failure on a protease inhibitor-containing regimen were required. Associations of drug resistance with sex, age, treatment history, plasma HIV RNA, nadir CD4+T-cell count, HIV subtype, and country were investigated. RESULTS Plasma HIV genotypes were analyzed for 653 screened candidates; most had resistance (508 of 653; 78%) to 1 or more drugs. Genotypes from 133 (20%) showed resistance to at least 1 drug in a drug class, from 206 (32%) showed resistance to at least 1 drug in 2 drug classes, and from 169 (26%) showed resistance to at least 1 drug in all 3 commonly available drug classes. Susceptibility to at least 1 second-line regimen was preserved in 59%, as were susceptibility to etravirine (78%) and darunavir/ritonavir (97%). Susceptibility to a second-line regimen was significantly higher among women, younger individuals, those with higher nadir CD4+ T-cell counts, and those who had received lopinavir/ritonavir, but was lower among prior nevirapine recipients. CONCLUSIONS Highly divergent HIV drug resistance profiles were observed among candidates screened for third-line ART in LMIC, ranging from no resistance to resistance to 3 drug classes. These findings underscore the need for access to resistance testing and newer antiretrovirals for the optimal management of third-line ART in LMIC.
Collapse
Affiliation(s)
- Carole L Wallis
- Bio Analytical Research Corporation South Africa and Lancet Laboratories, Johannesburg, South Africa
| | - Michael D Hughes
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Justin Ritz
- Harvard TH Chan School of Public Health, Boston, Massachusetts, USA
| | - Raquel Viana
- Bio Analytical Research Corporation South Africa and Lancet Laboratories, Johannesburg, South Africa
| | - Carlos Silva de Jesus
- Instituto Nacional de Infectologia Evandro Chagas, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Marije van Schalkwyk
- Family Clinical Research Unit Clinical Research Site, Stellenbosch University, Cape Town, South Africa
| | - Rosie Mngqibisa
- Durban Adult Human Immunodeficiency Virus Clinical Research Site, Enhancing Care Foundation, Durban, South Africa
| | - Robert Salata
- Department of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | | - Evelyn Hogg
- Social and Scientific Systems, Inc, Silver Spring, Maryland, USA
| | - Laura Hovind
- Frontier Science & Technology Research Foundation, Amherst, New York, USA
| | - Linda Wieclaw
- Frontier Science & Technology Research Foundation, Amherst, New York, USA
| | - Robert Gross
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Catherine Godfrey
- Division of Acquired Immunodeficiency Syndrome, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ann C Collier
- University of Washington School of Medicine, Seattle, Washington, USA
| | - Beatriz Grinsztejn
- Instituto Nacional de Infectologia Evandro Chagas, Fundacao Oswaldo Cruz, Rio de Janeiro, Brazil
| | - John W Mellors
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
18
|
Blanch-Lombarte O, Santos JR, Peña R, Jiménez-Moyano E, Clotet B, Paredes R, Prado JG. HIV-1 Gag mutations alone are sufficient to reduce darunavir susceptibility during virological failure to boosted PI therapy. J Antimicrob Chemother 2020; 75:2535-2546. [PMID: 32556165 PMCID: PMC7443716 DOI: 10.1093/jac/dkaa228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/21/2020] [Accepted: 05/03/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Virological failure (VF) to boosted PIs with a high genetic barrier is not usually linked to the development of resistance-associated mutations in the protease gene. METHODS From a cohort of 520 HIV-infected subjects treated with lopinavir/ritonavir or darunavir/ritonavir monotherapy, we retrospectively identified nine patients with VF. We sequenced the HIV-1 Gag-protease region and generated clonal virus from plasma samples. We characterized phenotypically clonal variants in terms of replicative capacity and susceptibility to PIs. Also, we used VESPA to identify signature mutations and 3D molecular modelling information to detect conformational changes in the Gag region. RESULTS All subjects analysed harboured Gag-associated polymorphisms in the absence of resistance mutations in the protease gene. Most Gag changes occurred outside Gag cleavage sites. VESPA analyses identified K95R and R286K (P < 0.01) as signature mutations in Gag present at VF. In one out of four patients with clonal analysis available, we identified clonal variants with high replicative capacity and 8- to 13-fold reduction in darunavir susceptibility. These clonal variants harboured K95R, R286K and additional mutations in Gag. Low susceptibility to darunavir was dependent on the Gag sequence context. All other clonal variants analysed preserved drug susceptibility and virus replicative capacity. CONCLUSIONS Gag mutations may reduce darunavir susceptibility in the absence of protease mutations while preserving viral fitness. This effect is Gag-sequence context dependent and may occur during boosted PI failure.
Collapse
Affiliation(s)
- Oscar Blanch-Lombarte
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain and Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - José R Santos
- Lluita contra la SIDA Foundation, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
- Infectious Diseases Department, Hospital Universitari Germans Trias i Pujol, Badalona, Spain
| | - Ruth Peña
- IrsiCaixa AIDS Research Institute, Badalona, Spain
| | | | - Bonaventura Clotet
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Roger Paredes
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Faculty of Medicine, University of Vic - Central University of Catalonia (UVic-UCC), Vic, Spain
| | - Julia G Prado
- IrsiCaixa AIDS Research Institute, Badalona, Spain
- Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain and Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| |
Collapse
|
19
|
Castain L, Perrier M, Charpentier C, Palich R, Desire N, Wirden M, Descamps D, Sayon S, Landman R, Valantin MA, Joly V, Peytavin G, Yazdanpanah Y, Katlama C, Calvez V, Marcelin AG, Todesco E. New mechanisms of resistance in virological failure to protease inhibitors: selection of non-described protease, Gag and Gp41 mutations. J Antimicrob Chemother 2020; 74:2019-2023. [PMID: 31050739 DOI: 10.1093/jac/dkz151] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/12/2019] [Accepted: 03/18/2019] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To further characterize HIV-1 viruses of patients experiencing unexplained virological failure (VF) on PI-containing regimens, ultradeep sequencing was performed on protease, gag and gp41 genes in patients failing a first-line treatment. METHODS All naive patients initiating an antiretroviral treatment based on boosted darunavir, atazanavir or lopinavir and experiencing VF without any transmitted drug resistance mutation detected by Sanger sequencing on protease and reverse transcriptase genes were selected. Ultradeep sequencing (IlluminaTM Nextera®) was performed on protease, gag and gp41 genes in plasma before initiation of treatment and at VF to identify emergent mutations. RESULTS Among the 32 patients included in the study, emergent and previously undescribed mutations in the viral protease gene were identified in five patients at VF: 64M (1 CRF02_AG), 64M/70R with mutation 15V (2 CRF02_AG), 79A (1 CRF06_cpx) and 79A with mutation 15V (1 CRF02_AG). Two patients showed the emergence of R286K in the gag region, outside of cleavage sites (2 CRF02_AG). In the gp41 region, the V321I mutation emerged inside the cytoplasmic tail (1 subtype A and 1 subtype B). All these patients were treated with a darunavir/ritonavir-based regimen. CONCLUSIONS In some cases of VF to PIs, we observed the emergence of protease, Gag or Gp41 mutations that had not previously been associated with VF or PI resistance. These mutations should be further studied, in particular the 15V/64M/70R pattern in the protease gene identified among CRF02_AG viruses.
Collapse
Affiliation(s)
- Louise Castain
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| | - Marine Perrier
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Charlotte Charpentier
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Romain Palich
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service des maladies infectieuses et tropicales, Paris, France
| | - Nathalie Desire
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| | - Marc Wirden
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| | - Diane Descamps
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Sophie Sayon
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| | - Roland Landman
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Service de Maladies Infectieuses et Tropicales, Hôpital Bichat, AP-HP, Paris, France
| | - Marc-Antoine Valantin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service des maladies infectieuses et tropicales, Paris, France
| | - Véronique Joly
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Service de Maladies Infectieuses et Tropicales, Hôpital Bichat, AP-HP, Paris, France
| | - Gilles Peytavin
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Département de Pharmaco-Toxicologie, Hôpital Bichat-Claude Bernard, Paris, France
| | - Yazdan Yazdanpanah
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Service de Maladies Infectieuses et Tropicales, Hôpital Bichat, AP-HP, Paris, France
| | - Christine Katlama
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Service des maladies infectieuses et tropicales, Paris, France
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| | - Eve Todesco
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de virologie, Paris, France
| |
Collapse
|
20
|
Datir R, El Bouzidi K, Dakum P, Ndembi N, Gupta RK. Baseline PI susceptibility by HIV-1 Gag-protease phenotyping and subsequent virological suppression with PI-based second-line ART in Nigeria. J Antimicrob Chemother 2020; 74:1402-1407. [PMID: 30726945 PMCID: PMC6477990 DOI: 10.1093/jac/dkz005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 12/14/2018] [Accepted: 12/31/2018] [Indexed: 12/24/2022] Open
Abstract
Objectives Previous work showed that gag-protease-derived phenotypic susceptibility to PIs differed between HIV-1 subtype CRF02_AG/subtype G-infected patients who went on to successfully suppress viral replication versus those who experienced virological failure of lopinavir/ritonavir monotherapy as first-line treatment in a clinical trial. We analysed the relationship between PI susceptibility and outcome of second-line ART in Nigeria, where subtypes CRF02_AG/G dominate the epidemic. Methods Individuals who experienced second-line failure with ritonavir-boosted PI-based ART were matched (by subtype, sex, age, viral load, duration of treatment and baseline CD4 count) to those who achieved virological response (‘successes’). Successes were defined by viral load <400 copies of HIV-1 RNA/mL by week 48. Full-length Gag-protease was amplified from patient samples for in vitro phenotypic susceptibility testing, with PI susceptibility expressed as IC50 fold change (FC) relative to a subtype B reference strain. Results The median (IQR) lopinavir IC50 FC was 4.04 (2.49–7.89) for virological failures and 4.13 (3.14–8.17) for virological successes (P = 0.94). One patient had an FC >10 for lopinavir at baseline and experienced subsequent virological failure with ritonavir-boosted lopinavir as the PI. There was no statistically significant difference in single-round replication efficiency between the two groups (P = 0.93). There was a moderate correlation between single-round replication efficiency and FC for lopinavir (correlation coefficient 0.32). Conclusions We found no impact of baseline HIV-1 Gag-protease-derived phenotypic susceptibility on outcomes of PI-based second-line ART in Nigeria.
Collapse
Affiliation(s)
- R Datir
- Division of Infection and Immunity, University College London, London, UK
| | - K El Bouzidi
- Division of Infection and Immunity, University College London, London, UK
| | - P Dakum
- Institute of Human Virology, Abuja, Nigeria
| | - N Ndembi
- Institute of Human Virology, Abuja, Nigeria
| | - R K Gupta
- Division of Infection and Immunity, University College London, London, UK.,Africa Health Research Institute, Durban, South Africa
| |
Collapse
|
21
|
Perrier M, Castain L, Regad L, Todesco E, Landman R, Visseaux B, Yazdanpanah Y, Rodriguez C, Joly V, Calvez V, Marcelin AG, Descamps D, Charpentier C. HIV-1 protease, Gag and gp41 baseline substitutions associated with virological response to a PI-based regimen. J Antimicrob Chemother 2020; 74:1679-1692. [PMID: 30768160 DOI: 10.1093/jac/dkz043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/04/2019] [Accepted: 01/08/2019] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVES To assess, at ART initiation, the impact of baseline substitutions in protease, Gag and gp41 regions on the virological response to a first-line PI-based regimen. PATIENTS AND METHODS One hundred and fifty-four HIV-infected ART-naive patients initiating a PI-based regimen including darunavir (n = 129) or atazanavir (n = 25) were assessed, including 36 experiencing virological failure (VF). Whole pol, gag and gp41 genes were sequenced at ART baseline by ultra-deep sequencing (UDS) using Illumina® technology. Supervised data-mining analyses were performed to identify mutations associated with virological response. Structural analyses were performed to assess the impact of mutations on protease conformation. RESULTS UDS was successful in 127, 138 and 134 samples for protease, Gag and gp41, respectively (31% subtype B and 38% CRF02_AG). Overall, T4A and S37T mutations in protease were identified as being associated with VF (P = 0.02 and P = 0.005, respectively). Among CRF02_AG sequences, I72M and E21D mutations were associated with VF (P = 0.03 for both). They all induced some conformational changes of some protease side-chain residues located near mutated residues. In Gag, mutations associated with VF were G62D, N315H and Y441S (P = 0.005, P = 0.007 and P = 0.0003, respectively). All were localized outside Gag cleavage sites (G62D, matrix; N315H, capsid; and Y441S, p1). In gp41, the I270T mutation, localized in the cytoplasmic tail, was associated with VF (P = 0.003), and the I4L mutation, in the fusion peptide, was associated with virological success (P = 0.004). CONCLUSIONS In this study, new baseline substitutions in Gag, protease and g41, potentially impacting PI-based regimen outcome, were evidenced. Phenotypic analyses are required to confirm their role in the PI-resistance mechanism.
Collapse
Affiliation(s)
- Marine Perrier
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Louise Castain
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de Virologie, F-75013 Paris, France
| | - Leslie Regad
- Sorbonne Paris Cité, Université Paris-Diderot, CNRS, INSERM, Biologie Fonctionnelle et Adaptative UMR 8251, Computational Modeling of Protein Ligand Interactions U1133, Paris, France
| | - Eve Todesco
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de Virologie, F-75013 Paris, France
| | - Roland Landman
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Service de Maladies Infectieuses et Tropicales, Hôpital Bichat, AP-HP, Paris, France
| | - Benoit Visseaux
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Yazdan Yazdanpanah
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Service de Maladies Infectieuses et Tropicales, Hôpital Bichat, AP-HP, Paris, France
| | - Christophe Rodriguez
- INSERM U955 Eq18, CNR hépatites virales B, C et delta, Laboratoire de Virologie, Hôpital Henri Mondor, AP-HP, Paris, France
| | - Véronique Joly
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Service de Maladies Infectieuses et Tropicales, Hôpital Bichat, AP-HP, Paris, France
| | - Vincent Calvez
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de Virologie, F-75013 Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne Université, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (iPLESP), AP-HP, Hôpital Pitié-Salpêtrière, Laboratoire de Virologie, F-75013 Paris, France
| | - Diane Descamps
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| | - Charlotte Charpentier
- IAME, UMR 1137, INSERM, Université Paris Diderot, Sorbonne Paris Cité, AP-HP, Laboratoire de Virologie, Hôpital Bichat, AP-HP, Paris, France
| |
Collapse
|
22
|
Zondagh J, Basson AE, Achilonu I, Morris L, Dirr HW, Sayed Y. Drug susceptibility and replication capacity of a rare HIV-1 subtype C protease hinge region variant. Antivir Ther 2020; 24:333-342. [PMID: 30958309 DOI: 10.3851/imp3308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/10/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Protease inhibitors form the main component of second-line antiretroviral treatment in South Africa. Despite their efficacy, mutations arising within the HIV-1 gag and protease coding regions contribute to the development of resistance against this class of drug. In this paper we investigate a South African HIV-1 subtype C Gag-protease that contains a hinge region mutation and insertion (N37T↑V). METHODS In vitro single-cycle drug susceptibility and viral replication capacity assays were performed on W1201i, a wild-type reference isolate (MJ4) and a chimeric construct (MJ4GagN37T↑VPR). Additionally, enzyme assays were performed on the N37T↑V protease and a wild-type reference protease. RESULTS W1201i showed a small (threefold), but significant (P<0.0001) reduction in drug susceptibility to darunavir compared with MJ4. Substitution of W1201i-Gag with MJ4-Gag resulted in an additional small (twofold), but significant (P<0.01) reduction in susceptibility to lopinavir and atazanavir. The W1201i pseudovirus had a significantly (P<0.01) reduced replication capacity (16.4%) compared with the MJ4. However, this was dramatically increased to 164% (P<0.05) when W1201i-Gag was substituted with MJ4-Gag. Furthermore, the N37T↑V protease displayed reduced catalytic processing compared with the SK154 protease. CONCLUSIONS Collectively, these data suggest that the N37T↑V mutation and insertion increases viral infectivity and decreases drug susceptibility. These variations are classified as secondary mutations, and indirectly impact inhibitor binding, enzyme fitness and enzyme stability. Additionally, polymorphisms arising in Gag can modify the impact of protease with regards to viral replication and susceptibility to protease inhibitors.
Collapse
Affiliation(s)
- Jake Zondagh
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Adriaan E Basson
- HIV Pathogenesis Research Unit, Department of Molecular Medicine and Haematology, School of Pathology, University of the Witwatersrand, Johannesburg, South Africa.,Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa
| | - Ikechukwu Achilonu
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Lynn Morris
- Centre for HIV and STIs, National Institute for Communicable Diseases (NICD) of the National Health Laboratory Service (NHLS), Johannesburg, South Africa.,Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Heini W Dirr
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| | - Yasien Sayed
- Protein Structure-Function Research Unit, School of Molecular and Cell Biology, University of Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
23
|
Marie V, Gordon M. Gag-protease coevolution shapes the outcome of lopinavir-inclusive treatment regimens in chronically infected HIV-1 subtype C patients. Bioinformatics 2020; 35:3219-3223. [PMID: 30753326 DOI: 10.1093/bioinformatics/btz076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 01/03/2019] [Accepted: 02/11/2019] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION Commonly, protease inhibitor failure is characterized by the development of multiple protease resistance mutations (PRMs). While the impact of PRMs on therapy failure are understood, the introduction of Gag mutations with protease remains largely unclear. RESULTS Here, we utilized phylogenetic analyses and Bayesian network learning as tools to understand Gag-protease coevolution and elucidate the pathways leading to Lopinavir failure in HIV-1 subtype C infected patients. Our analyses indicate that while PRMs coevolve in response to drug selection pressure within protease, the Gag mutations added to the existing network while specifically interacting with known Lopinavir failure PRMs. Additionally, the selection of mutations at specific positions in Gag-protease suggests that these coevolving mutational changes occurs to maintain structural integrity during Gag cleavage. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- V Marie
- KwaZulu-Natal Research Innovation and Sequencing Platform, University of KwaZulu-Natal, Durban, South Africa
| | - M Gordon
- KwaZulu-Natal Research Innovation and Sequencing Platform, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
24
|
Thompson JA, Kityo C, Dunn D, Hoppe A, Ndashimye E, Hakim J, Kambugu A, van Oosterhout JJ, Arribas J, Mugyenyi P, Walker AS, Paton NI. Evolution of Protease Inhibitor Resistance in Human Immunodeficiency Virus Type 1 Infected Patients Failing Protease Inhibitor Monotherapy as Second-line Therapy in Low-income Countries: An Observational Analysis Within the EARNEST Randomized Trial. Clin Infect Dis 2020; 68:1184-1192. [PMID: 30060027 DOI: 10.1093/cid/ciy589] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/24/2018] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Limited viral load (VL) testing in human immunodeficiency virus (HIV) treatment programs in low-income countries often delays detection of treatment failure. The impact of remaining on failing protease inhibitor (PI)-containing regimens is unclear. METHODS We retrospectively tested VL in 2164 stored plasma samples from 386 patients randomized to receive lopinavir monotherapy (after initial raltegravir induction) in the Europe-Africa Research Network for Evaluation of Second-line Therapy (EARNEST) trial. Protease genotypic resistance testing was performed when VL >1000 copies/mL. We assessed evolution of PI resistance mutations from virological failure (confirmed VL >1000 copies/mL) until PI monotherapy discontinuation and examined associations using mixed-effects models. RESULTS Median post-failure follow-up (in 118 patients) was 68 (interquartile range, 48-88) weeks. At failure, 20% had intermediate/high-level resistance to lopinavir. At 40-48 weeks post-failure, 68% and 51% had intermediate/high-level resistance to lopinavir and atazanavir; 17% had intermediate-level resistance (none high) to darunavir. Common PI mutations were M46I, I54V, and V82A. On average, 1.7 (95% confidence interval 1.5-2.0) PI mutations developed per year; increasing after the first mutation; decreasing with subsequent mutations (P < .0001). VL changes were modest, mainly driven by nonadherence (P = .006) and PI mutation development (P = .0002); I47A was associated with a larger increase in VL than other mutations (P = .05). CONCLUSIONS Most patients develop intermediate/high-level lopinavir resistance within 1 year of ongoing viral replication on monotherapy but retain susceptibility to darunavir. Viral load increased slowly after failure, driven by non-adherence and PI mutation development. CLINICAL TRIALS REGISTRATION NCT00988039.
Collapse
Affiliation(s)
- Jennifer A Thompson
- Medical Research Council Clinical Trials Unit at University College London, United Kingdom.,Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, United Kingdom
| | - Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | - David Dunn
- Medical Research Council Clinical Trials Unit at University College London, United Kingdom
| | - Anne Hoppe
- Medical Research Council Clinical Trials Unit at University College London, United Kingdom.,Division of Infection and Immunity, University College London, United Kingdom
| | - Emmanuel Ndashimye
- Joint Clinical Research Centre, Kampala, Uganda.,Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - James Hakim
- University of Zimbabwe Clinical Research Centre, Harare, Zimbabwe
| | - Andrew Kambugu
- Infectious Diseases Institute, Makerere University, Kampala, Uganda
| | - Joep J van Oosterhout
- Department of Medicine, University of Malawi College of Medicine, Blantyre, Malawi.,Dignitas International, Zomba, Malawi
| | | | | | - A Sarah Walker
- Medical Research Council Clinical Trials Unit at University College London, United Kingdom
| | - Nicholas I Paton
- Medical Research Council Clinical Trials Unit at University College London, United Kingdom.,Yong Loo Lin School of Medicine, National University of Singapore
| | | |
Collapse
|
25
|
Collier DA, Monit C, Gupta RK. The Impact of HIV-1 Drug Escape on the Global Treatment Landscape. Cell Host Microbe 2019; 26:48-60. [PMID: 31295424 DOI: 10.1016/j.chom.2019.06.010] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The rising prevalence of HIV drug resistance (HIVDR) could threaten gains made in combating the HIV epidemic and compromise the 90-90-90 target proposed by United Nations Programme on HIV/AIDS (UNAIDS) to have achieved virological suppression in 90% of all persons receiving antiretroviral therapy (ART) by the year 2020. HIVDR has implications for the persistence of HIV, the selection of current and future ART drug regimens, and strategies of vaccine and cure development. Focusing on drug classes that are in clinical use, this Review critically summarizes what is known about the mechanisms the virus utilizes to escape drug control. Armed with this knowledge, strategies to limit the expansion of HIVDR are proposed.
Collapse
Affiliation(s)
- D A Collier
- Division of Infection and Immunity, University College London, London, UK
| | - C Monit
- Division of Infection and Immunity, University College London, London, UK
| | - R K Gupta
- Department of Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
26
|
Novel Protease Inhibitors Containing C-5-Modified bis-Tetrahydrofuranylurethane and Aminobenzothiazole as P2 and P2' Ligands That Exert Potent Antiviral Activity against Highly Multidrug-Resistant HIV-1 with a High Genetic Barrier against the Emergence of Drug Resistance. Antimicrob Agents Chemother 2019; 63:AAC.00372-19. [PMID: 31085520 DOI: 10.1128/aac.00372-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 04/25/2019] [Indexed: 02/08/2023] Open
Abstract
Combination antiretroviral therapy has achieved dramatic reductions in the mortality and morbidity in people with HIV-1 infection. Darunavir (DRV) represents a most efficacious and well-tolerated protease inhibitor (PI) with a high genetic barrier to the emergence of drug-resistant HIV-1. However, highly DRV-resistant variants have been reported in patients receiving long-term DRV-containing regimens. Here, we report three novel HIV-1 PIs (GRL-057-14, GRL-058-14, and GRL-059-14), all of which contain a P2-amino-substituted-bis-tetrahydrofuranylurethane (bis-THF) and a P2'-cyclopropyl-amino-benzothiazole (Cp-Abt). These PIs not only potently inhibit the replication of wild-type HIV-1 (50% effective concentration [EC50], 0.22 nM to 10.4 nM) but also inhibit multi-PI-resistant HIV-1 variants, including highly DRV-resistant HIVDRV R P51 (EC50, 1.6 nM to 30.7 nM). The emergence of HIV-1 variants resistant to the three compounds was much delayed in selection experiments compared to resistance to DRV, using a mixture of 11 highly multi-PI-resistant HIV-1 isolates as a starting HIV-1 population. GRL-057-14 showed the most potent anti-HIV-1 activity and greatest thermal stability with wild-type protease, and potently inhibited HIV-1 protease's proteolytic activity (Ki value, 0.10 nM) among the three PIs. Structural models indicate that the C-5-isopropylamino-bis-THF moiety of GRL-057-14 forms additional polar interactions with the active site of HIV-1 protease. Moreover, GRL-057-14's P1-bis-fluoro-methylbenzene forms strong hydrogen bonding and effective van der Waals interactions. The present data suggest that the combination of C-5-aminoalkyl-bis-THF, P1-bis-fluoro-methylbenzene, and P2'-Cp-Abt confers highly potent activity against wild-type and multi-PI-resistant HIV strains and warrant further development of the three PIs, in particular, that of GRL-057-14, as potential therapeutic for HIV-1 infection and AIDS.
Collapse
|
27
|
Double trouble? Gag in conjunction with double insert in HIV protease contributes to reduced DRV susceptibility. Biochem J 2019; 476:375-384. [PMID: 30573649 DOI: 10.1042/bcj20180692] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 12/19/2018] [Accepted: 12/20/2018] [Indexed: 01/06/2023]
Abstract
HIV protease is essential for processing the Gag polyprotein to produce infectious virions and is a major target in antiretroviral therapy. We have identified an unusual HIV-1 subtype C variant that contains insertions of leucine and asparagine (L38↑N↑L) in the hinge region of protease at position 38. This was isolated from a protease inhibitor naïve infant. Isothermal titration calorimetry showed that 10% less of L38↑N↑L protease was in the active conformation as compared with a reference strain. L38↑N↑L protease displayed a ±50% reduction in K M and k cat The catalytic efficiency (k cat/K M) of L38↑N↑L protease was not significantly different from that of wild type although there was a 42% reduction in specific activity for the variant. An in vitro phenotypic assay showed the L38↑N↑L protease to be susceptible to lopinavir (LPV), atazanavir (ATV) and darunavir in the context of an unrelated Gag. However, in the presence of the related Gag, L38↑N↑L showed reduced susceptibility to darunavir while remaining susceptible to LPV and ATV. Furthermore, a reduction in viral replication capacity (RC) was observed in combination with the related Gag. The reduced susceptibility to darunavir and decrease in RC may be due to PTAPP duplication in the related Gag. The present study shows the importance of considering the Gag region when looking at drug susceptibility of HIV-1 protease variants.
Collapse
|
28
|
HIV-1 second-line failure and drug resistance at high-level and low-level viremia in Western Kenya. AIDS 2018; 32:2485-2496. [PMID: 30134290 DOI: 10.1097/qad.0000000000001964] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Characterize failure and resistance above and below guidelines-recommended 1000 copies/ml virologic threshold, upon second-line failure. DESIGN Cross-sectional study. METHODS Kenyan adults on lopinavir/ritonavir-based second-line were enrolled at AMPATH (Academic Model Providing Access to Healthcare). Charts were reviewed for demographic/clinical characteristics and CD4/viral load were obtained. Participants with detectable viral load had a second visit and pol genotyping was attempted in both visits. Accumulated resistance was defined as mutations in the second, not the first visit. Low-level viremia (LLV) was detectable viral load less than 1000 copies/ml. Failure and resistance associations were evaluated using logistic and Poisson regression, Fisher Exact and t-tests. RESULTS Of 394 participants (median age 42, 60% women, median 1.9 years on second-line) 48% had detectable viral load; 21% had viral load more than 1000 copies/ml, associated with younger age, tuberculosis treatment, shorter time on second-line, lower CD4count/percentage, longer first-line treatment interruption and pregnancy. In 105 sequences from the first visit (35 with LLV), 79% had resistance (57% dual-class, 7% triple-class; 46% with intermediate-to-high-level resistance to ≥1 future drug option). LLV was associated with more overall and NRTI-associated mutations and with predicted resistance to more next-regimen drugs. In 48 second-visit sequences (after median 55 days; IQR 28-33), 40% accumulated resistance and LLV was associated with more mutation accumulation. CONCLUSION High resistance upon second-line failure exists at levels above and below guideline-recommended virologic-failure threshold, impacting future treatment options. Optimization of care should include increased viral load monitoring, resistance testing and third-line ART access, and consideration of lowering the virologic failure threshold, though this demands further investigation.
Collapse
|
29
|
Tzou PL, Rhee SY, Pond SLK, Manasa J, Shafer RW. Selection analyses of paired HIV-1 gag and gp41 sequences obtained before and after antiretroviral therapy. Sci Data 2018; 5:180147. [PMID: 30040081 PMCID: PMC6057438 DOI: 10.1038/sdata.2018.147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Accepted: 05/29/2018] [Indexed: 11/08/2022] Open
Abstract
Most HIV-1-infected individuals with virological failure on a pharmacologically-boosted protease inhibitor (PI) regimen do not develop PI-resistance protease mutations. One proposed explanation is that HIV-1 gag or gp41 cytoplasmic domain mutations might also reduce PI susceptibility. In a recent study of paired gag and gp41 sequences from individuals with virological failure on a PI regimen, we did not identify PI-selected mutations and concluded that if such mutations existed, larger numbers of paired sequences from multiple studies would be needed for their identification. In this study, we generated site-specific amino acid profiles using gag and gp41 published sequences from 5,338 and 4,242 ART-naïve individuals, respectively, to assist researchers identify unusual mutations arising during therapy and to provide scripts for performing established and novel maximal likelihood estimates of dN/dS substitution rates in paired sequences. The pipelines used to generate the curated sequences, amino acid profiles, and dN/dS analyses will facilitate the application of consistent methods to paired gag and gp41 sequence datasets and expedite the identification of potential sites under PI-selection pressure.
Collapse
Affiliation(s)
- Philip L. Tzou
- Division of Infectious Diseases, Department of Medicine Stanford University, Stanford, CA 94305, USA
| | - Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine Stanford University, Stanford, CA 94305, USA
| | | | - Justen Manasa
- Division of Infectious Diseases, Department of Medicine Stanford University, Stanford, CA 94305, USA
| | - Robert W. Shafer
- Division of Infectious Diseases, Department of Medicine Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
30
|
Sanusi ZK, Govender T, Maguire GEM, Maseko SB, Lin J, Kruger HG, Honarparvar B. An insight to the molecular interactions of the FDA approved HIV PR drugs against L38L↑N↑L PR mutant. J Comput Aided Mol Des 2018; 32:459-471. [PMID: 29397520 DOI: 10.1007/s10822-018-0099-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 01/16/2018] [Indexed: 01/12/2023]
Abstract
The aspartate protease of the human immune deficiency type-1 virus (HIV-1) has become a crucial antiviral target in which many useful antiretroviral inhibitors have been developed. However, it seems the emergence of new HIV-1 PR mutations enhances drug resistance, hence, the available FDA approved drugs show less activity towards the protease. A mutation and insertion designated L38L↑N↑L PR was recently reported from subtype of C-SA HIV-1. An integrated two-layered ONIOM (QM:MM) method was employed in this study to examine the binding affinities of the nine HIV PR inhibitors against this mutant. The computed binding free energies as well as experimental data revealed a reduced inhibitory activity towards the L38L↑N↑L PR in comparison with subtype C-SA HIV-1 PR. This observation suggests that the insertion and mutations significantly affect the binding affinities or characteristics of the HIV PIs and/or parent PR. The same trend for the computational binding free energies was observed for eight of the nine inhibitors with respect to the experimental binding free energies. The outcome of this study shows that ONIOM method can be used as a reliable computational approach to rationalize lead compounds against specific targets. The nature of the intermolecular interactions in terms of the host-guest hydrogen bond interactions is discussed using the atoms in molecules (AIM) analysis. Natural bond orbital analysis was also used to determine the extent of charge transfer between the QM region of the L38L↑N↑L PR enzyme and FDA approved drugs. AIM analysis showed that the interaction between the QM region of the L38L↑N↑L PR and FDA approved drugs are electrostatic dominant, the bond stability computed from the NBO analysis supports the results from the AIM application. Future studies will focus on the improvement of the computational model by considering explicit water molecules in the active pocket. We believe that this approach has the potential to provide information that will aid in the design of much improved HIV-1 PR antiviral drugs.
Collapse
Affiliation(s)
- Zainab K Sanusi
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Thavendran Govender
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Glenn E M Maguire
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.,School of Chemistry and Physics, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Sibusiso B Maseko
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Johnson Lin
- School of Life Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa
| | - Hendrik G Kruger
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| | - Bahareh Honarparvar
- Catalysis and Peptide Research Unit, School of Health Sciences, University of KwaZulu-Natal, Durban, 4001, South Africa.
| |
Collapse
|
31
|
Wallis CL, Godfrey C, Fitzgibbon JE, Mellors JW. Key Factors Influencing the Emergence of Human Immunodeficiency Virus Drug Resistance in Low- and Middle-Income Countries. J Infect Dis 2017; 216:S851-S856. [PMID: 29207000 PMCID: PMC5853971 DOI: 10.1093/infdis/jix409] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The emergence and spread of human immunodeficiency virus (HIV) drug resistance from antiretroviral roll-out programs remain a threat to long-term control of the HIV-AIDS epidemic in low- and middle-income countries (LMICs). The patterns of drug resistance and factors driving emergence of resistance are complex and multifactorial. The key drivers of drug resistance in LMICs are reviewed here, and recommendations are made to limit their influence on antiretroviral therapy efficacy.
Collapse
Affiliation(s)
- Carole L Wallis
- Bio Analytical Research Corporation-South Africa and Lancet Laboratories, Johannesburg, South Africa
| | - Catherine Godfrey
- HIV Research Branch, Therapeutics Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - Joseph E Fitzgibbon
- Drug Development and Clinical Sciences Branch, Therapeutics Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health
| | - John W Mellors
- HIV Research Branch, Therapeutics Research Program, Division of AIDS, National Institute of Allergy and Infectious Diseases, National Institutes of Health
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pennsylvania
| |
Collapse
|
32
|
Gag P2/NC and pol genetic diversity, polymorphism, and drug resistance mutations in HIV-1 CRF02_AG- and non-CRF02_AG-infected patients in Yaoundé, Cameroon. Sci Rep 2017; 7:14136. [PMID: 29074854 PMCID: PMC5658410 DOI: 10.1038/s41598-017-14095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/29/2017] [Indexed: 12/21/2022] Open
Abstract
In HIV-1 subtype-B, specific mutations in Gag cleavage sites (CS) are associated with treatment failure, with limited knowledge among non-B subtypes. We analyzed non-B HIV-1 gag and pol (protease/reverse-transcriptase) sequences from Cameroonians for drug resistance mutations (DRMs) in the gag P2/NC CS, and pol major DRMs. Phylogeny of the 141 sequences revealed a high genetic diversity (12 subtypes): 67.37% CRF02_AG versus 32.6% non-CRF02_AG. Overall, 7.3% transmitted and 34.3% acquired DRMs were found, including M184V, thymidine analogue mutations (T215F, D67N, K70R, K219Q), NNRTIs (L100I, Y181C, K103N, V108I, Y188L), and PIs (V82L). Twelve subjects [10 with HIV-1 CRF02_AG, 8 treatment-naïve and 4 on 3TC-AZT-NVP] showed 3 to 4 mutations in the Gag P2/NC CS: S373Q/T/A, A374T/S/G/N, T375S/A/N/G, I376V, G381S, and R380K. Subjects with or without Gag P2/NC CS mutations showed no significant difference in viral loads. Treatment-naïve subjects harboring NRTI-DRMs had significantly lower CD4 cells than those with NRTI-DRMs on ART (p = 0.042). Interestingly, two subjects had major DRMs to NRTIs, NNRTIs, and 4 mutations in the Gag P2/NC CS. In this prevailing CRF02_AG population with little exposure to PIs (~3%), mutations in the Gag P2/NC CS could increase the risk of treatment failure if there is increased use of PIs-based therapy.
Collapse
|
33
|
Tsai HC, Chen IT, Wu KS, Tseng YT, Sy CL, Chen JK, Lee SSJ, Chen YS. High rate of HIV-1 drug resistance in treatment failure patients in Taiwan, 2009-2014. Infect Drug Resist 2017; 10:343-352. [PMID: 29081666 PMCID: PMC5652926 DOI: 10.2147/idr.s146584] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Background Drug resistance to nucleoside reverse transcriptase inhibitors (NRTIs), non-nucleoside reverse transcriptase inhibitors (NNRTIs), and protease inhibitors (PIs) has been associated with loss of viral suppression measured by a rise in HIV-1 RNA levels, a decline in CD4 cell counts, persistence on a failing treatment regimen, and lack of adherence to combination antiretroviral therapy. Objectives This study aimed to monitor the prevalence and risk factors associated with drug resistance in Taiwan after failure of first-line therapy. Materials and methods Data from the Veterans General Hospital Surveillance and Monitor Network for the period 2009–2014 were analyzed. Plasma samples from patients diagnosed with virologic failure and an HIV-1 RNA viral load >1000 copies/mL were analyzed by the ViroSeq™ HIV-1 genotyping system for drug susceptibility. Hazard ratios (HRs) for drug resistance were calculated using a Cox proportional hazard model. Results From 2009 to 2014, 359 patients were tested for resistance. The median CD4 count and viral load (log) were 214 cells/μL (interquartile range [IQR]: 71–367) and 4.5 (IQR: 3.9–5.0), respectively. Subtype B HIV-1 strains were found in 90% of individuals. The resistance rate to any of the three classes of antiretroviral drugs (NRTI, NNRTI, and PI) was 75.5%. The percentage of NRTI, NNRTI, and PI resistance was 58.6%, 61.4%, and 11.4%, respectively. The risk factors for any class of drug resistance included age ≤35 years (adjusted HR: 2.30, CI: 1.48–3.56; p<0.0001), initial NNRTI-based antiretroviral regimens (adjusted HR: 1.70, CI: 1.10–2.63; p=0.018), and current NNRTI-based antiretroviral regimens when treatment failure occurs (odds ratio: 4.04, CI: 2.47–6.59; p<0.001). There was no association between HIV-1 subtype, viral load, and resistance. Conclusion This study demonstrated a high level of resistance to NRTI and NNRTI in patients with virologic failure to first-line antiretroviral therapy despite routine viral load monitoring. Educating younger men who have sex with men to maintain good adherence is crucial, as PI use is associated with lower possibility of drug resistance.
Collapse
Affiliation(s)
- Hung-Chin Tsai
- Department of Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei.,Department of Parasitology, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - I-Tzu Chen
- Department of Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Kuan-Sheng Wu
- Department of Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei
| | - Yu-Ting Tseng
- Department of Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Cheng-Len Sy
- Department of Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Jui-Kuang Chen
- Department of Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung
| | - Susan Shin-Jung Lee
- Department of Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei
| | - Yao-Shen Chen
- Department of Medicine, Division of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei
| |
Collapse
|
34
|
Kletenkov K, Hoffmann D, Böni J, Yerly S, Aubert V, Schöni-Affolter F, Struck D, Verheyen J, Klimkait T. Role of Gag mutations in PI resistance in the Swiss HIV cohort study: bystanders or contributors? J Antimicrob Chemother 2017; 72:866-875. [PMID: 27999036 DOI: 10.1093/jac/dkw493] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 10/15/2016] [Indexed: 12/24/2022] Open
Abstract
Background HIV Gag mutations have been reported to confer PI drug resistance. However, clinical implications are still controversial and most current genotyping algorithms consider solely the protease gene for assessing PI resistance. Objectives Our goal was to describe for HIV infections in Switzerland the potential role of the C-terminus of Gag (NC-p6) in PI resistance. We aimed to characterize resistance-relevant mutational patterns in Gag and protease and their possible interactions. Methods Resistance information on plasma samples from 2004-12 was collected for patients treated by two diagnostic centres of the Swiss HIV Cohort Study. Sequence information on protease and the C-terminal Gag region was paired with the corresponding patient treatment history. The prevalence of Gag and protease mutations was analysed for PI treatment-experienced patients versus PI treatment-naive patients. In addition, we modelled multiple paths of an assumed ordered accumulation of genetic changes using random tree mixture models. Results More than half of all PI treatment-experienced patients in our sample set carried HIV variants with at least one of the known Gag mutations, and 17.9% (66/369) carried at least one Gag mutation for which a phenotypic proof of PI resistance by in vitro mutagenesis has been reported. We were able to identify several novel Gag mutations that are associated with PI exposure and therapy failure. Conclusions Our analysis confirmed the association of Gag mutations, well known and new, with PI exposure. This could have clinical implications, since the level of potential PI drug resistance might be underestimated.
Collapse
Affiliation(s)
- K Kletenkov
- Molecular Virology, Department of Biomedicine - Petersplatz, University of Basel, Basel, Switzerland
| | - D Hoffmann
- Bioinformatics and Computational Biophysics, Centre for Medical Biotechnology, University of Duisburg-Essen, Duisburg, Germany
| | - J Böni
- Institute of Medical Virology, National Reference Center for Retroviruses, University of Zurich, Zurich, Switzerland
| | - S Yerly
- Laboratory of Virology, University Hospital Geneva, University of Geneva, Geneva, Switzerland
| | - V Aubert
- Division of Immunology and Allergy, University Hospital Lausanne, University of Lausanne, Lausanne, Switzerland
| | - F Schöni-Affolter
- Swiss HIV Cohort Study, Data Centre, Institute for Social and Preventive Medicine, University of Lausanne, Lausanne, Switzerland
| | - D Struck
- Department of Population Health, Luxembourg Institute of Health, Luxembourg
| | - J Verheyen
- Institute of Virology, University Hospital Essen, University Duisburg-Essen, Duisburg, Germany
| | - T Klimkait
- Molecular Virology, Department of Biomedicine - Petersplatz, University of Basel, Basel, Switzerland
| | | |
Collapse
|
35
|
Malet I, Subra F, Charpentier C, Collin G, Descamps D, Calvez V, Marcelin AG, Delelis O. Mutations Located outside the Integrase Gene Can Confer Resistance to HIV-1 Integrase Strand Transfer Inhibitors. mBio 2017. [PMID: 28951475 DOI: 10.1128/mbio.00922-17/asset/aaecbcca-7eaf-4566-ac85-49e1b03887ed/assets/graphic/mbo0051735020005.jpeg] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2023] Open
Abstract
Resistance to the integrase strand transfer inhibitors raltegravir and elvitegravir is often due to well-identified mutations in the integrase gene. However, the situation is less clear for patients who fail dolutegravir treatment. Furthermore, most in vitro experiments to select resistance to dolutegravir have resulted in few mutations of the integrase gene. We performed an in vitro dolutegravir resistance selection experiment by using a breakthrough method. First, MT4 cells were infected with human immunodeficiency virus type 1 (HIV-1) Lai. After integration into the host cell genome, cells were washed to remove unbound virus and 500 nM dolutegravir was added to the cell medium. This high concentration of the drug was maintained throughout selection. At day 80, we detected a virus highly resistant to dolutegravir, raltegravir, and elvitegravir that remained susceptible to zidovudine. Sequencing of the virus showed no mutations in the integrase gene but highlighted the emergence of five mutations, all located in the nef region, of which four were clustered in the 3' polypurine tract (PPT). Mutations selected in vitro by dolutegravir, located outside the integrase gene, can confer a high level of resistance to all integrase inhibitors. Thus, HIV-1 can use an alternative mechanism to develop resistance to integrase inhibitors by selecting mutations in the 3' PPT region. Further studies are required to determine to what extent these mutations may explain virological failure during integrase inhibitor therapy.IMPORTANCE Integrase strand transfer inhibitors (INSTIs) are increasingly used both as first-line drugs and in rescue therapy because of their low toxicity and high efficacy in both treatment-naive and treatment-experienced patients. Until now, resistance mutations selected by INSTI exposure have either been described in patients or selected in vitro and involve the integrase gene. Most mutations selected by raltegravir, elvitegravir, or dolutegravir exposure are located inside the catalytic site of the integrase gene, but mutations outside the catalytic site of the integrase gene have also been selected with dolutegravir. Following in vitro selection with dolutegravir, we report, for the first time, a virus with selected mutations outside the HIV-1 integrase gene that confer resistance to all integrase inhibitors currently used to treat patients, such as raltegravir, elvitegravir, and dolutegravir. Our observation may explain why some viruses responsible for virological failure in patients treated with dolutegravir did not show mutations in the integrase gene.
Collapse
Affiliation(s)
- Isabelle Malet
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
- Department of Virology, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Frédéric Subra
- LBPA, ENS Cachan, CNRS UMR 8113, IDA, FR3242, Université Paris-Saclay, Cachan, France
| | - Charlotte Charpentier
- INSERM, IAME, UMR1137, Paris, France
- Université Paris Diderot, IAME, UMR1137, Sorbonne Paris Cité, Paris, France
- AP-HP, Hôpital Bichat, Laboratoire de Virologie, Paris, France
| | - Gilles Collin
- INSERM, IAME, UMR1137, Paris, France
- Université Paris Diderot, IAME, UMR1137, Sorbonne Paris Cité, Paris, France
- AP-HP, Hôpital Bichat, Laboratoire de Virologie, Paris, France
| | - Diane Descamps
- INSERM, IAME, UMR1137, Paris, France
- Université Paris Diderot, IAME, UMR1137, Sorbonne Paris Cité, Paris, France
- AP-HP, Hôpital Bichat, Laboratoire de Virologie, Paris, France
| | - Vincent Calvez
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
- Department of Virology, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Anne-Geneviève Marcelin
- Sorbonne Universités, UPMC Université Paris 06, INSERM, Institut Pierre Louis d'Epidémiologie et de Santé Publique (IPLESP UMRS 1136), Paris, France
- Department of Virology, AP-HP, Hôpital Pitié-Salpêtrière, Paris, France
| | - Olivier Delelis
- LBPA, ENS Cachan, CNRS UMR 8113, IDA, FR3242, Université Paris-Saclay, Cachan, France
| |
Collapse
|
36
|
Mutations Located outside the Integrase Gene Can Confer Resistance to HIV-1 Integrase Strand Transfer Inhibitors. mBio 2017; 8:mBio.00922-17. [PMID: 28951475 PMCID: PMC5615196 DOI: 10.1128/mbio.00922-17] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Resistance to the integrase strand transfer inhibitors raltegravir and elvitegravir is often due to well-identified mutations in the integrase gene. However, the situation is less clear for patients who fail dolutegravir treatment. Furthermore, most in vitro experiments to select resistance to dolutegravir have resulted in few mutations of the integrase gene. We performed an in vitro dolutegravir resistance selection experiment by using a breakthrough method. First, MT4 cells were infected with human immunodeficiency virus type 1 (HIV-1) Lai. After integration into the host cell genome, cells were washed to remove unbound virus and 500 nM dolutegravir was added to the cell medium. This high concentration of the drug was maintained throughout selection. At day 80, we detected a virus highly resistant to dolutegravir, raltegravir, and elvitegravir that remained susceptible to zidovudine. Sequencing of the virus showed no mutations in the integrase gene but highlighted the emergence of five mutations, all located in the nef region, of which four were clustered in the 3′ polypurine tract (PPT). Mutations selected in vitro by dolutegravir, located outside the integrase gene, can confer a high level of resistance to all integrase inhibitors. Thus, HIV-1 can use an alternative mechanism to develop resistance to integrase inhibitors by selecting mutations in the 3′ PPT region. Further studies are required to determine to what extent these mutations may explain virological failure during integrase inhibitor therapy. Integrase strand transfer inhibitors (INSTIs) are increasingly used both as first-line drugs and in rescue therapy because of their low toxicity and high efficacy in both treatment-naive and treatment-experienced patients. Until now, resistance mutations selected by INSTI exposure have either been described in patients or selected in vitro and involve the integrase gene. Most mutations selected by raltegravir, elvitegravir, or dolutegravir exposure are located inside the catalytic site of the integrase gene, but mutations outside the catalytic site of the integrase gene have also been selected with dolutegravir. Following in vitro selection with dolutegravir, we report, for the first time, a virus with selected mutations outside the HIV-1 integrase gene that confer resistance to all integrase inhibitors currently used to treat patients, such as raltegravir, elvitegravir, and dolutegravir. Our observation may explain why some viruses responsible for virological failure in patients treated with dolutegravir did not show mutations in the integrase gene.
Collapse
|
37
|
Manasa J, Varghese V, Pond SLK, Rhee SY, Tzou PL, Fessel WJ, Jang KS, White E, Rögnvaldsson T, Katzenstein DA, Shafer RW. Evolution of gag and gp41 in Patients Receiving Ritonavir-Boosted Protease Inhibitors. Sci Rep 2017; 7:11559. [PMID: 28912582 PMCID: PMC5599673 DOI: 10.1038/s41598-017-11893-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 08/31/2017] [Indexed: 11/15/2022] Open
Abstract
Several groups have proposed that genotypic determinants in gag and the gp41 cytoplasmic domain (gp41-CD) reduce protease inhibitor (PI) susceptibility without PI-resistance mutations in protease. However, no gag and gp41-CD mutations definitively responsible for reduced PI susceptibility have been identified in individuals with virological failure (VF) while receiving a boosted PI (PI/r)-containing regimen. To identify gag and gp41 mutations under selective PI pressure, we sequenced gag and/or gp41 in 61 individuals with VF on a PI/r (n = 40) or NNRTI (n = 20) containing regimen. We quantified nonsynonymous and synonymous changes in both genes and identified sites exhibiting signal for directional or diversifying selection. We also used published gag and gp41 polymorphism data to highlight mutations displaying a high selection index, defined as changing from a conserved to an uncommon amino acid. Many amino acid mutations developed in gag and in gp41-CD in both the PI- and NNRTI-treated groups. However, in neither gene, were there discernable differences between the two groups in overall numbers of mutations, mutations displaying evidence of diversifying or directional selection, or mutations with a high selection index. If gag and/or gp41 encode PI-resistance mutations, they may not be confined to consistent mutations at a few sites.
Collapse
Affiliation(s)
- Justen Manasa
- Division of Infectious Diseases, Department of Medicine Stanford University, Stanford, CA, USA
| | - Vici Varghese
- Division of Infectious Diseases, Department of Medicine Stanford University, Stanford, CA, USA
| | | | - Soo-Yon Rhee
- Division of Infectious Diseases, Department of Medicine Stanford University, Stanford, CA, USA
| | - Philip L Tzou
- Division of Infectious Diseases, Department of Medicine Stanford University, Stanford, CA, USA
| | - W Jeffrey Fessel
- Department of Internal Medicine, Kaiser Permanente Medical Care Program - Northern California, San Francisco, CA, United States
| | - Karen S Jang
- Division of Infectious Diseases, Department of Medicine Stanford University, Stanford, CA, USA
| | - Elizabeth White
- Division of Infectious Diseases, Department of Medicine Stanford University, Stanford, CA, USA
| | | | - David A Katzenstein
- Division of Infectious Diseases, Department of Medicine Stanford University, Stanford, CA, USA
| | - Robert W Shafer
- Division of Infectious Diseases, Department of Medicine Stanford University, Stanford, CA, USA.
| |
Collapse
|
38
|
Codoñer FM, Peña R, Blanch-Lombarte O, Jimenez-Moyano E, Pino M, Vollbrecht T, Clotet B, Martinez-Picado J, Draenert R, Prado JG. Gag-protease coevolution analyses define novel structural surfaces in the HIV-1 matrix and capsid involved in resistance to Protease Inhibitors. Sci Rep 2017. [PMID: 28623276 PMCID: PMC5473930 DOI: 10.1038/s41598-017-03260-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Despite the major role of Gag in establishing resistance of HIV-1 to protease inhibitors (PIs), very limited data are available on the total contribution of Gag residues to resistance to PIs. To identify in detail Gag residues and structural interfaces associated with the development of HIV-1 resistance to PIs, we traced viral evolution under the pressure of PIs using Gag-protease single genome sequencing and coevolution analysis of protein sequences in 4 patients treated with PIs over a 9-year period. We identified a total of 38 Gag residues correlated with the protease, 32 of which were outside Gag cleavage sites. These residues were distributed in 23 Gag-protease groups of coevolution, with the viral matrix and the capsid represented in 87% and 52% of the groups. In addition, we uncovered the distribution of Gag correlated residues in specific protein surfaces of the inner face of the viral matrix and at the Cyclophilin A binding loop of the capsid. In summary, our findings suggest a tight interdependency between Gag structural proteins and the protease during the development of resistance of HIV-1 to PIs.
Collapse
Affiliation(s)
- Francisco M Codoñer
- Lifesequencing SL, Paterna, Spain.,Universidad Catolica de Valencia, Valencia, Spain
| | - Ruth Peña
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Oscar Blanch-Lombarte
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Esther Jimenez-Moyano
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Maria Pino
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain
| | - Thomas Vollbrecht
- Veterans Affairs San Diego Healthcare System, San Diego, California, USA.,University of California San Diego, La Jolla, California, USA
| | - Bonaventura Clotet
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya, Vic, Spain
| | - Javier Martinez-Picado
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.,Universitat de Vic-Universitat Central de Catalunya, Vic, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Rika Draenert
- Medizinische Poliklinik, Klinikum der Ludwig-Maximilians-Universität München, Munich, Germany
| | - Julia G Prado
- AIDS Research Institute IrsiCaixa, Hospital Universitari Germans Trias i Pujol, Universitat Autònoma de Barcelona, Badalona, Spain.
| |
Collapse
|
39
|
Lebbink RJ, de Jong DCM, Wolters F, Kruse EM, van Ham PM, Wiertz EJHJ, Nijhuis M. A combinational CRISPR/Cas9 gene-editing approach can halt HIV replication and prevent viral escape. Sci Rep 2017; 7:41968. [PMID: 28176813 PMCID: PMC5296774 DOI: 10.1038/srep41968] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 12/30/2016] [Indexed: 01/05/2023] Open
Abstract
HIV presents one of the highest evolutionary rates ever detected and combination antiretroviral therapy is needed to overcome the plasticity of the virus population and control viral replication. Conventional treatments lack the ability to clear the latent reservoir, which remains the major obstacle towards a cure. Novel strategies, such as CRISPR/Cas9 gRNA-based genome-editing, can permanently disrupt the HIV genome. However, HIV genome-editing may accelerate viral escape, questioning the feasibility of the approach. Here, we demonstrate that CRISPR/Cas9 targeting of single HIV loci, only partially inhibits HIV replication and facilitates rapid viral escape at the target site. A combinatorial approach of two strong gRNAs targeting different regions of the HIV genome can completely abrogate viral replication and prevent viral escape. Our data shows that the accelerating effect of gene-editing on viral escape can be overcome and as such gene-editing may provide a future alternative for control of HIV-infection.
Collapse
Affiliation(s)
- Robert Jan Lebbink
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Dorien C. M. de Jong
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Femke Wolters
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Elisabeth M. Kruse
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Petra M. van Ham
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Emmanuel J. H. J. Wiertz
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Monique Nijhuis
- Department of Medical Microbiology, Virology, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
40
|
Kurt Yilmaz N, Swanstrom R, Schiffer CA. Improving Viral Protease Inhibitors to Counter Drug Resistance. Trends Microbiol 2016; 24:547-557. [PMID: 27090931 DOI: 10.1016/j.tim.2016.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022]
Abstract
Drug resistance is a major problem in health care, undermining therapy outcomes and necessitating novel approaches to drug design. Extensive studies on resistance to viral protease inhibitors, particularly those of HIV-1 and hepatitis C virus (HCV) protease, revealed a plethora of information on the structural and molecular mechanisms underlying resistance. These insights led to several strategies to improve viral protease inhibitors to counter resistance, such as exploiting the essential biological function and leveraging evolutionary constraints. Incorporation of these strategies into structure-based drug design can minimize vulnerability to resistance, not only for viral proteases but for other quickly evolving drug targets as well, toward designing inhibitors one step ahead of evolution to counter resistance with more intelligent and rational design.
Collapse
Affiliation(s)
- Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
41
|
Abstract
The virally encoded protease is an important drug target for AIDS therapy. Despite the potency of the current drugs, infections with resistant viral strains limit the long-term effectiveness of therapy. Highly resistant variants of HIV protease from clinical isolates have different combinations of about 20 mutations and several orders of magnitude worse binding affinity for clinical inhibitors. Strategies are being explored to inhibit these highly resistant mutants. The existing inhibitors can be modified by introducing groups with the potential to form new interactions with conserved protease residues, and the flexible flaps. Alternative strategies are discussed, including designing inhibitors to bind to the open conformation of the protease dimer, and inhibition of the protease-catalyzed processing of the Gag-Pol precursor.
Collapse
|
42
|
Contribution of Gag and Protease to HIV-1 Phenotypic Drug Resistance in Pediatric Patients Failing Protease Inhibitor-Based Therapy. Antimicrob Agents Chemother 2016; 60:2248-56. [PMID: 26833162 DOI: 10.1128/aac.02682-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 01/17/2016] [Indexed: 12/15/2022] Open
Abstract
Protease inhibitors (PIs) are used as a first-line regimen in HIV-1-infected children. Here we investigated the phenotypic consequences of amino acid changes in Gag and protease on lopinavir (LPV) and ritonavir (RTV) susceptibility among pediatric patients failing PI therapy. The Gag-protease from isolates from 20 HIV-1 subtype C-infected pediatric patients failing an LPV and/or RTV-based regimen was phenotyped using a nonreplicativein vitroassay. Changes in sensitivity to LPV and RTV relative to that of the matched baseline (pretherapy) sample were calculated. Gag and protease amino acid substitutions associated with PI failure were created in a reference clone by site-directed mutagenesis and assessed. Predicted phenotypes were determined using the Stanford drug resistance algorithm. Phenotypic resistance or reduced susceptibility to RTV and/or LPV was observed in isolates from 10 (50%) patients, all of whom had been treated with RTV. In most cases, this was associated with protease resistance mutations, but substitutions at Gag cleavage and noncleavage sites were also detected. Gag amino acid substitutions were also found in isolates from three patients with reduced drug susceptibilities who had wild-type protease. Site-directed mutagenesis confirmed that some amino acid changes in Gag contributed to PI resistance but only in the presence of major protease resistance-associated substitutions. The isolates from all patients who received LPV exclusively were phenotypically susceptible. Baseline isolates from the 20 patients showed a large (47-fold) range in the 50% effective concentration of LPV, which accounted for most of the discordance seen between the experimentally determined and the predicted phenotypes. Overall, the inclusion of thegaggene and the use of matched baseline samples provided a more comprehensive assessment of the effect of PI-induced amino acid changes on PI resistance. The lack of phenotypic resistance to LPV supports the continued use of this drug in pediatric patients.
Collapse
|
43
|
Chakravarty J, Sundar S, Chourasia A, Singh PN, Kurle S, Tripathy SP, Chaturbhuj DN, Rai M, Agarwal AK, Mishra RN, Paranjape RS. Outcome of patients on second line antiretroviral therapy under programmatic condition in India. BMC Infect Dis 2015; 15:517. [PMID: 26572102 PMCID: PMC4647630 DOI: 10.1186/s12879-015-1270-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/06/2015] [Indexed: 11/10/2022] Open
Abstract
Background The National AIDS Control Organization of India has been providing free second line antiretroviral therapy (ART) since 2008. This observational study reports the survival and virologic suppression of patients on second-line ART under programmatic condition and type of mutations acquired by those failing therapy. Methods 170 patients initiated on second-line therapy between 2008 and 2012 were followed up till 2013. Viral Load (VL) was repeated at 6 months for all patients and at 12 months for those with VL >400 copies/ml at 6 months. Adequate virological response was defined as plasma HIV-1 VL <400 copies/ml and virological failure was defined as VL >1000 copies/ml. Genotyping was done in 16 patients with virological failure. Results Out of 170 patients, 110 (64.7 %) were alive and on therapy and 35 (20.5 %) expired. In the first year the occurrence of death was 13.7 /100 person years while between1 and 5 year it was 3.88 /100 person years. In the first year, duration of immunological failure >12 months, weight <45 kg, WHO clinical stage 3 and 4 and WHO criteria CD4 count less than pretherapy baseline [hazard ratio HR 4.2. 15.8, 11.9 & 4.1 respectively] and beyond first year poor first and second line adherence and first line CD4 count < 200/μL [HR 5.2,15.8, 3.3 respectively] had high risk of death. 119/152 (78.2 %) had adequate virological response and 27/152 (17.7 %) had virological failure. High viral load at baseline and poor second line adherence (Odds Ratio 3.4 & 2.8 respectively) had increased risk of virological failure. Among those genotyped, 50 % had major Protease Inhibitor mutation (M46I commonest) however 87.5 % were still susceptible to darunavir. Conclusions Second line therapy has shown high early mortality but good virological suppression under programmatic conditions.
Collapse
Affiliation(s)
- Jaya Chakravarty
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Shyam Sundar
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Ankita Chourasia
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Pallav Narayan Singh
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Swarali Kurle
- Indian Council of Medical Research, National AIDS Research Institute, Bhosari, Pune, India.
| | - Srikanth P Tripathy
- Indian Council of Medical Research, National JALMA Institute of Leprosy and Other Mycobacterial Diseases, Agra, India.
| | - Devidas N Chaturbhuj
- Indian Council of Medical Research, National AIDS Research Institute, Bhosari, Pune, India.
| | - Madhukar Rai
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Amit Kumar Agarwal
- Department of Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, 221005, India.
| | - Rabindra Nath Mishra
- Department of Community Medicine, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India.
| | - Ramesh S Paranjape
- Indian Council of Medical Research, National AIDS Research Institute, Bhosari, Pune, India.
| |
Collapse
|
44
|
Elucidation of the Molecular Mechanism Driving Duplication of the HIV-1 PTAP Late Domain. J Virol 2015; 90:768-79. [PMID: 26512081 DOI: 10.1128/jvi.01640-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 10/19/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED HIV-1 uses cellular machinery to bud from infected cells. This cellular machinery is comprised of several multiprotein complexes known as endosomal sorting complexes required for transport (ESCRTs). A conserved late domain motif, Pro-Thr-Ala-Pro (PTAP), located in the p6 region of Gag (p6(Gag)), plays a central role in ESCRT recruitment to the site of virus budding. Previous studies have demonstrated that PTAP duplications are selected in HIV-1-infected patients during antiretroviral therapy; however, the consequences of these duplications for HIV-1 biology and drug resistance are unclear. To address these questions, we constructed viruses carrying a patient-derived PTAP duplication with and without drug resistance mutations in the viral protease. We evaluated the effect of the PTAP duplication on viral release efficiency, viral infectivity, replication capacity, drug susceptibility, and Gag processing. In the presence of protease inhibitors, we observed that the PTAP duplication in p6(Gag) significantly increased the infectivity and replication capacity of the virus compared to those of viruses bearing only resistance mutations in protease. Our biochemical analysis showed that the PTAP duplication, in combination with mutations in protease, enhances processing between the nucleocapsid and p6 domains of Gag, resulting in more complete Gag cleavage in the presence of protease inhibitors. These results demonstrate that duplication of the PTAP motif in p6(Gag) confers a selective advantage in viral replication by increasing Gag processing efficiency in the context of protease inhibitor treatment, thereby enhancing the drug resistance of the virus. These findings highlight the interconnected role of PTAP duplications and protease mutations in the development of resistance to antiretroviral therapy. IMPORTANCE Resistance to current drug therapy limits treatment options in many HIV-1-infected patients. Duplications in a Pro-Thr-Ala-Pro (PTAP) motif in the p6 domain of Gag are frequently observed in viruses derived from patients on protease inhibitor (PI) therapy. However, the reason that these duplications arise and their consequences for virus replication remain to be established. In this study, we examined the effect of PTAP duplication on PI resistance in the context of wild-type protease or protease bearing PI resistance mutations. We observe that PTAP duplication markedly enhances resistance to a panel of PIs. Biochemical analysis reveals that the PTAP duplication reverses a Gag processing defect imposed by the PI resistance mutations in the context of PI treatment. The results provide a long-sought explanation for why PTAP duplications arise in PI-treated patients.
Collapse
|
45
|
Sutherland KA, Parry CM, McCormick A, Kapaata A, Lyagoba F, Kaleebu P, Gilks CF, Goodall R, Spyer M, Kityo C, Pillay D, Gupta RK. Evidence for Reduced Drug Susceptibility without Emergence of Major Protease Mutations following Protease Inhibitor Monotherapy Failure in the SARA Trial. PLoS One 2015; 10:e0137834. [PMID: 26382239 PMCID: PMC4575205 DOI: 10.1371/journal.pone.0137834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/23/2015] [Indexed: 12/11/2022] Open
Abstract
Background Major protease mutations are rarely observed following failure with protease inhibitors (PI), and other viral determinants of failure to PI are poorly understood. We therefore characterized Gag-Protease phenotypic susceptibility in subtype A and D viruses circulating in East Africa following viral rebound on PIs. Methods Samples from baseline and treatment failure in patients enrolled in the second line LPV/r trial SARA underwent phenotypic susceptibility testing. Data were expressed as fold-change in susceptibility relative to a LPV-susceptible reference strain. Results We cloned 48 Gag-Protease containing sequences from seven individuals and performed drug resistance phenotyping from pre-PI and treatment failure timepoints in seven patients. For the six patients where major protease inhibitor resistance mutations did not emerge, mean fold-change EC50 to LPV was 4.07 fold (95% CI, 2.08–6.07) at the pre-PI timepoint. Following viral failure the mean fold-change in EC50 to LPV was 4.25 fold (95% CI, 1.39–7.11, p = 0.91). All viruses remained susceptible to DRV. In our assay system, the major PI resistance mutation I84V, which emerged in one individual, conferred a 10.5-fold reduction in LPV susceptibility. One of the six patients exhibited a significant reduction in susceptibility between pre-PI and failure timepoints (from 4.7 fold to 9.6 fold) in the absence of known major mutations in protease, but associated with changes in Gag: V7I, G49D, R69Q, A120D, Q127K, N375S and I462S. Phylogenetic analysis provided evidence of the emergence of genetically distinct viruses at the time of treatment failure, indicating ongoing viral evolution in Gag-protease under PI pressure. Conclusions Here we observe in one patient the development of significantly reduced susceptibility conferred by changes in Gag which may have contributed to treatment failure on a protease inhibitor containing regimen. Further phenotype-genotype studies are required to elucidate genetic determinants of protease inhibitor failure in those who fail without traditional resistance mutations whilst PI use is being scaled up globally.
Collapse
Affiliation(s)
| | - Chris M. Parry
- Uganda Research Unit on AIDS, Medical Research Council (MRC), Uganda Virus Research Institute, Entebbe, Uganda
| | | | - Anne Kapaata
- Uganda Research Unit on AIDS, Medical Research Council (MRC), Uganda Virus Research Institute, Entebbe, Uganda
| | - Fred Lyagoba
- Uganda Research Unit on AIDS, Medical Research Council (MRC), Uganda Virus Research Institute, Entebbe, Uganda
| | - Pontiano Kaleebu
- Uganda Research Unit on AIDS, Medical Research Council (MRC), Uganda Virus Research Institute, Entebbe, Uganda
| | - Charles F. Gilks
- School of Population Health, University of Queensland, Brisbane, Australia
| | - Ruth Goodall
- MRC Clinical Trials Unit at UCL, London, United Kingdom
| | - Moira Spyer
- MRC Clinical Trials Unit at UCL, London, United Kingdom
| | - Cissy Kityo
- Joint Clinical Research Centre, Kampala, Uganda
| | - Deenan Pillay
- University College London, London, United Kingdom
- Wellcome Trust Africa Centre for Health and Population Sciences, University of KwaZulu Natal, Mtubatuba, South Africa
- * E-mail: (DP); (RKG)
| | - Ravindra K. Gupta
- University College London, London, United Kingdom
- * E-mail: (DP); (RKG)
| | | |
Collapse
|
46
|
Konvalinka J, Kräusslich HG, Müller B. Retroviral proteases and their roles in virion maturation. Virology 2015; 479-480:403-17. [PMID: 25816761 DOI: 10.1016/j.virol.2015.03.021] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 02/12/2015] [Accepted: 03/05/2015] [Indexed: 10/23/2022]
Abstract
Proteolytic processing of viral polyproteins is essential for retrovirus infectivity. Retroviral proteases (PR) become activated during or after assembly of the immature, non-infectious virion. They cleave viral polyproteins at specific sites, inducing major structural rearrangements termed maturation. Maturation converts retroviral enzymes into their functional form, transforms the immature shell into a metastable state primed for early replication events, and enhances viral entry competence. Not only cleavage at all PR recognition sites, but also an ordered sequence of cleavages is crucial. Proteolysis is tightly regulated, but the triggering mechanisms and kinetics and pathway of morphological transitions remain enigmatic. Here, we outline PR structures and substrate specificities focusing on HIV PR as a therapeutic target. We discuss design and clinical success of HIV PR inhibitors, as well as resistance development towards these drugs. Finally, we summarize data elucidating the role of proteolysis in maturation and highlight unsolved questions regarding retroviral maturation.
Collapse
Affiliation(s)
- Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry, Academy of Sciences of the Czech Republic, Gilead Sciences and IOCB Research Center, Flemingovo n. 2, 166 10 Prague 6, Czech Republic; Department of Biochemistry, Faculty of Science, Charles University in Prague, Hlavova 8, 128 43 Prague 2, Czech Republic
| | - Hans-Georg Kräusslich
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany.
| | - Barbara Müller
- Department of Infectious Diseases, Virology, University Hospital Heidelberg, Im Neuenheimer Feld 324, 69120 Heidelberg, Germany; Molecular Medicine Partnership Unit, Heidelberg, Germany
| |
Collapse
|
47
|
Dayer MR, Dayer MS. Resistance mechanism of human immunodeficiency virus type-1 protease to inhibitors: A molecular dynamic approach. MOLECULAR BIOLOGY RESEARCH COMMUNICATIONS 2014; 3:253-267. [PMID: 27843989 PMCID: PMC5019311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus type 1 (HIV-1) protease inhibitors comprise an important class of drugs used in HIV treatments. However, mutations of protease genes accelerated by low fidelity of reverse transcriptase yield drug resistant mutants of reduced affinities for the inhibitors. This problem is considered to be a serious barrier against HIV treatment for the foreseeable future. In this study, molecular dynamic simulation method was used to examine the combinational and additive effects of all known mutations involved in drug resistance against FDA approved inhibitors. Results showed that drug resistant mutations are not randomly distributed along the protease sequence; instead, they are localized on flexible or hot points of the protein chain. Substitution of more hydrophobic residues in flexible points of protease chains tends to increase the folding, lower the flexibility and decrease the active site area of the protease. The reduced affinities of HIV-1 protease for inhibitors seemed to be due to substantial decrease in the size of the active site and flap mobility. A correlation was found between the binding energy of inhibitors and their affinities for each mutant suggesting the distortion of the active site geometry in drug resistance by preventing effective fitting of inhibitors into the enzymes' active site. To overcome the problem of drug resistance of HIV-1 protease, designing inhibitors of variable functional groups and configurations is proposed.
Collapse
Affiliation(s)
- Mohammad Reza Dayer
- Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Iran,Address for correspondence: Department of Biology, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran ,Tel: +98611-3331045, Fax: +98611-3331045, E-mail:
| | - Mohammad Saaid Dayer
- Department of Parasitology and Medical Entomology, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
48
|
Abstract
UNLABELLED HIV-1 assembles at the plasma membrane of virus-producing cells as an immature, noninfectious particle. Processing of the Gag and Gag-Pol polyproteins by the viral protease (PR) activates the viral enzymes and results in dramatic structural rearrangements within the virion--termed maturation--that are a prerequisite for infectivity. Despite its fundamental importance for viral replication, little is currently known about the regulation of proteolysis and about the dynamics and structural intermediates of maturation. This is due mainly to the fact that HIV-1 release and maturation occur asynchronously both at the level of individual cells and at the level of particle release from a single cell. Here, we report a method to synchronize HIV-1 proteolysis in vitro based on protease inhibitor (PI) washout from purified immature virions, thereby temporally uncoupling virus assembly and maturation. Drug washout resulted in the induction of proteolysis with cleavage efficiencies correlating with the off-rate of the respective PR-PI complex. Proteolysis of Gag was nearly complete and yielded the correct products with an optimal half-life (t(1/2)) of ~5 h, but viral infectivity was not recovered. Failure to gain infectivity following PI washout may be explained by the observed formation of aberrant viral capsids and/or by pronounced defects in processing of the reverse transcriptase (RT) heterodimer associated with a lack of RT activity. Based on our results, we hypothesize that both the polyprotein processing dynamics and the tight temporal coupling of immature particle assembly and PR activation are essential for correct polyprotein processing and morphological maturation and thus for HIV-1 infectivity. IMPORTANCE Cleavage of the Gag and Gag-Pol HIV-1 polyproteins into their functional subunits by the viral protease activates the viral enzymes and causes major structural rearrangements essential for HIV-1 infectivity. This proteolytic maturation occurs concomitant with virus release, and investigation of its dynamics is hampered by the fact that virus populations in tissue culture contain particles at all stages of assembly and maturation. Here, we developed an inhibitor washout strategy to synchronize activation of protease in wild-type virus. We demonstrated that nearly complete Gag processing and resolution of the immature virus architecture are accomplished under optimized conditions. Nevertheless, most of the resulting particles displayed irregular morphologies, Gag-Pol processing was not faithfully reconstituted, and infectivity was not recovered. These data show that HIV-1 maturation is sensitive to the dynamics of processing and also that a tight temporal link between virus assembly and PR activation is required for correct polyprotein processing.
Collapse
|
49
|
Tzoupis H, Leonis G, Avramopoulos A, Mavromoustakos T, Papadopoulos MG. Systematic molecular dynamics, MM-PBSA, and ab initio approaches to the saquinavir resistance mechanism in HIV-1 PR due to 11 double and multiple mutations. J Phys Chem B 2014; 118:9538-52. [PMID: 25036111 DOI: 10.1021/jp502687q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Mutations in the human immunodeficiency virus (HIV) enable virus replication even when appropriate antiretroviral therapy is followed, thus leading to the emergence of drug resistance. In a previous work, we systematically examined seven single mutations that are associated with saquinavir (SQV) resistance in HIV-1 protease (Tzoupis, H.; Leonis, G.; Mavromoustakos, T.; Papadopoulos, M. G. J. Chem. Theory Comput. 2013, 9, 1754-1764). Herein, we extend our analysis, which includes seven double (G48V-V82A, L10I-G48V, G48V-L90M, I84V-L90M, L10I-V82A, L10I-L63P, A71V-G73S) and four multiple (L10I-L63P-A71V, L10I-G48V-V82A, G73S-I84V-L90M, L10I-L63P-A71V-G73S-I84V-L90M) SQV-HIV-1 PR mutant complexes, in an attempt to generalize our findings and formulate the main elements of the SQV resistance mechanism in the protease. On the basis of molecular dynamics (MD), molecular mechanics Poisson-Boltzmann surface area (MM-PBSA), and ab initio computational approaches, we identified specific features that constitute the HIV-1 PR mechanism of resistance at the molecular level: the low flexibility of SQV in the binding cavity and the preservation of hydrogen bonding (HB) and van der Waals interactions between SQV and several active-site (Gly27/27', Asp29/29'/30/30', especially Asp25/25') and flap (Ile50/50', Gly48/48') residues of the protease contribute significantly to efficient binding. The total enthalpy loss in all mutants is mostly due to the loss in enthalpy of the active-site region. Furthermore, it was observed that mutation accumulation may induce stabilization to SQV and to the flaps through enhanced HB interactions that lead to improved inhibition (e.g., accumulation of mutations in complexes containing L10I, G48V, L63P, I84V, or L90M single mutations). It was also concluded that permanent flap closure is obtained independently of mutations and SQV binding is mostly driven by van der Waals, nonpolar, and exchange-energy contributions. Importantly, it was indicated that the optimal positioning of SQV and the structure of the binding cavity are tightly coupled, since small changes in geometry may affect the binding energy greatly. The results of our theoretical approaches are in agreement with experimental evidence and provide a reliable description of SQV resistance in HIV-1 PR.
Collapse
Affiliation(s)
- Haralambos Tzoupis
- Institute of Biology, Pharmaceutical Chemistry and Biotechnology, National Hellenic Research Foundation , 48 Vas. Constantinou Avenue, Athens 11635, Greece
| | | | | | | | | |
Collapse
|
50
|
Altered viral fitness and drug susceptibility in HIV-1 carrying mutations that confer resistance to nonnucleoside reverse transcriptase and integrase strand transfer inhibitors. J Virol 2014; 88:9268-76. [PMID: 24899199 DOI: 10.1128/jvi.00695-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
UNLABELLED Nonnucleoside reverse transcriptase (RT) inhibitors (NNRTI) and integrase (IN) strand transfer inhibitors (INSTI) are key components of antiretroviral regimens. To explore potential interactions between NNRTI and INSTI resistance mutations, we investigated the combined effects of these mutations on drug susceptibility and fitness of human immunodeficiency virus type 1 (HIV-1). In the absence of drug, single-mutant viruses were less fit than the wild type; viruses carrying multiple mutations were less fit than single-mutant viruses. These findings were explained in part by the observation that mutant viruses carrying NNRTI plus INSTI resistance mutations had reduced amounts of virion-associated RT and/or IN protein. In the presence of efavirenz (EFV), a virus carrying RT-K103N together with IN-G140S and IN-Q148H (here termed IN-G140S/Q148H) mutations was fitter than a virus with a RT-K103N mutation alone. Similarly, in the presence of EFV, the RT-E138K plus IN-G140S/Q148H mutant virus was fitter than one with the RT-E138K mutation alone. No effect of INSTI resistance mutations on the fitness of RT-Y181C mutant viruses was observed. Conversely, RT-E138K and -Y181C mutations improved the fitness of the IN-G140S/Q148H mutant virus in the presence of raltegravir (RAL); the RT-K103N mutation had no effect. The NNRTI resistance mutations had no effect on RAL susceptibility. Likewise, the IN-G140S/Q148H mutations had no effect on EFV or RPV susceptibility. However, both the RT-K103N plus IN-G140S/Q148H and the RT-E138K plus IN-G140S/Q148H mutant viruses had significantly greater fold increases in 50% inhibitory concentration (IC50) of EFV than viruses carrying a single NNRTI mutation. Likewise, the RT-E138K plus IN-G140S/Q148H mutant virus had significantly greater fold increases in RAL IC50 than that of the IN-G140S/Q148H mutant virus. These results suggest that interactions between RT and IN mutations are important for NNRTI and INSTI resistance and viral fitness. IMPORTANCE Nonnucleoside reverse transcriptase inhibitors and integrase inhibitors are used to treat infection with HIV-1. Mutations that confer resistance to these drugs reduce the ability of HIV-1 to reproduce (that is, they decrease viral fitness). It is known that reverse transcriptase and integrase interact and that some mutations can disrupt their interaction, which is necessary for proper functioning of these two enzymes. To determine whether resistance mutations in these enzymes interact, we investigated their effects on drug sensitivity and viral fitness. Although individual drug resistance mutations usually reduced viral fitness, certain combinations of mutations increased fitness. When present in certain combinations, some integrase inhibitor resistance mutations increased resistance to nonnucleoside reverse transcriptase inhibitors and vice versa. Because these drugs are sometimes used together in the treatment of HIV-1 infection, these interactions could make viruses more resistant to both drugs, further limiting their clinical benefit.
Collapse
|