1
|
Rodriguez R, Müller S, Colombeau L, Solier S, Sindikubwabo F, Cañeque T. Metal Ion Signaling in Biomedicine. Chem Rev 2025; 125:660-744. [PMID: 39746035 PMCID: PMC11758815 DOI: 10.1021/acs.chemrev.4c00577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/10/2024] [Accepted: 12/10/2024] [Indexed: 01/04/2025]
Abstract
Complex multicellular organisms are composed of distinct tissues involving specialized cells that can perform specific functions, making such life forms possible. Species are defined by their genomes, and differences between individuals within a given species directly result from variations in their genetic codes. While genetic alterations can give rise to disease-causing acquisitions of distinct cell identities, it is now well-established that biochemical imbalances within a cell can also lead to cellular dysfunction and diseases. Specifically, nongenetic chemical events orchestrate cell metabolism and transcriptional programs that govern functional cell identity. Thus, imbalances in cell signaling, which broadly defines the conversion of extracellular signals into intracellular biochemical changes, can also contribute to the acquisition of diseased cell states. Metal ions exhibit unique chemical properties that can be exploited by the cell. For instance, metal ions maintain the ionic balance within the cell, coordinate amino acid residues or nucleobases altering folding and function of biomolecules, or directly catalyze specific chemical reactions. Thus, metals are essential cell signaling effectors in normal physiology and disease. Deciphering metal ion signaling is a challenging endeavor that can illuminate pathways to be targeted for therapeutic intervention. Here, we review key cellular processes where metal ions play essential roles and describe how targeting metal ion signaling pathways has been instrumental to dissecting the biochemistry of the cell and how this has led to the development of effective therapeutic strategies.
Collapse
Affiliation(s)
- Raphaël Rodriguez
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Sebastian Müller
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Ludovic Colombeau
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| | - Stéphanie Solier
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
- Université
Paris-Saclay, UVSQ, 78180 Montigny-le-Bretonneux, France
| | | | - Tatiana Cañeque
- Institut
Curie, CNRS, INSERM, PSL Research University, 75005 Paris, France
| |
Collapse
|
2
|
Squarcina A, Franke A, Senft L, Onderka C, Langer J, Vignane T, Filipovic MR, Grill P, Michalke B, Ivanović-Burmazović I. Zinc complexes of chloroquine and hydroxychloroquine versus the mixtures of their components: Structures, solution equilibria/speciation and cellular zinc uptake. J Inorg Biochem 2024; 252:112478. [PMID: 38218140 DOI: 10.1016/j.jinorgbio.2024.112478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/15/2024]
Abstract
The zinc complexes of chloroquine (CQ; [Zn(CQH+)Cl3]) and hydroxychloroquine (HO-CQ; [Zn(HO-CQH+)Cl3]) were synthesized and characterized by X-Ray structure analysis, FT-IR, NMR, UV-Vis spectroscopy, and cryo-spray mass spectrometry in solid state as well as in aqueous and organic solvent solutions, respectively. In acetonitrile, up to two Zn2+ ions bind to CQ and HO-CQ through the tertiary amine and aromatic nitrogen atoms (KN-aminCQ = (3.8 ± 0.5) x 104 M-1 and KN-aromCQ = (9.0 ± 0.7) x 103 M-1 for CQ, and KN-aminHO-CQ = (3.3 ± 0.4) x 104 M-1 and KN-aromHO-CQ = (1.6 ± 0.2) x 103 M-1 for HO-CQ). In MOPS buffer (pH 7.4) the coordination proceeds through the partially deprotonated aromatic nitrogen, with the corresponding equilibrium constants of KN-arom(aq)CQ = (3.9 ± 1.9) x 103 M-1and KN-arom(aq)HO-CQ = (0.7 + 0.4) x 103 M-1 for CQ and HO-CQ, respectively. An apparent partition coefficient of 0.22 was found for [Zn(CQH+)Cl3]. Mouse embryonic fibroblast (MEF) cells were treated with pre-synthesized [Zn((HO-)CQH+)Cl3] complexes and corresponding ZnCl2/(HO-)CQ mixtures and zinc uptake was determined by application of the fluorescence probe and ICP-OES measurements. Administration of pre-synthesized complexes led to higher total zinc levels than those obtained upon administration of the related zinc/(hydroxy)chloroquine mixtures. The differences in the zinc uptake between these two types of formulations were discussed in terms of different speciation and character of the complexes. The obtained results suggest that intact zinc complexes may exhibit biological effects distinct from that of the related zinc/ligand mixtures.
Collapse
Affiliation(s)
- Andrea Squarcina
- Department of Chemistry, Ludwig-Maximilians Universität (LMU) München, München 81377, Germany
| | - Alicja Franke
- Department of Chemistry, Ludwig-Maximilians Universität (LMU) München, München 81377, Germany
| | - Laura Senft
- Department of Chemistry, Ludwig-Maximilians Universität (LMU) München, München 81377, Germany
| | - Constantin Onderka
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Jens Langer
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Thibaut Vignane
- Leibniz Institute for Analytical Sciences, ISAS e.V., 44227 Dortmund, Germany
| | - Milos R Filipovic
- Leibniz Institute for Analytical Sciences, ISAS e.V., 44227 Dortmund, Germany
| | - Peter Grill
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | - Bernhard Michalke
- Research Unit Analytical BioGeoChemistry, Helmholtz Center Munich, 85764 Neuherberg, Germany
| | | |
Collapse
|
3
|
Chen B, Yu P, Chan WN, Xie F, Zhang Y, Liang L, Leung KT, Lo KW, Yu J, Tse GMK, Kang W, To KF. Cellular zinc metabolism and zinc signaling: from biological functions to diseases and therapeutic targets. Signal Transduct Target Ther 2024; 9:6. [PMID: 38169461 PMCID: PMC10761908 DOI: 10.1038/s41392-023-01679-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 09/15/2023] [Accepted: 10/10/2023] [Indexed: 01/05/2024] Open
Abstract
Zinc metabolism at the cellular level is critical for many biological processes in the body. A key observation is the disruption of cellular homeostasis, often coinciding with disease progression. As an essential factor in maintaining cellular equilibrium, cellular zinc has been increasingly spotlighted in the context of disease development. Extensive research suggests zinc's involvement in promoting malignancy and invasion in cancer cells, despite its low tissue concentration. This has led to a growing body of literature investigating zinc's cellular metabolism, particularly the functions of zinc transporters and storage mechanisms during cancer progression. Zinc transportation is under the control of two major transporter families: SLC30 (ZnT) for the excretion of zinc and SLC39 (ZIP) for the zinc intake. Additionally, the storage of this essential element is predominantly mediated by metallothioneins (MTs). This review consolidates knowledge on the critical functions of cellular zinc signaling and underscores potential molecular pathways linking zinc metabolism to disease progression, with a special focus on cancer. We also compile a summary of clinical trials involving zinc ions. Given the main localization of zinc transporters at the cell membrane, the potential for targeted therapies, including small molecules and monoclonal antibodies, offers promising avenues for future exploration.
Collapse
Affiliation(s)
- Bonan Chen
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Peiyao Yu
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Wai Nok Chan
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Fuda Xie
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Yigan Zhang
- Institute of Biomedical Research, Taihe Hospital, Hubei University of Medicine, Shiyan, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and Basic Medical College, Southern Medical University, Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou, China
| | - Kam Tong Leung
- Department of Pediatrics, The Chinese University of Hong Kong, Hong Kong, China
| | - Kwok Wai Lo
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Jun Yu
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Gary M K Tse
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
- CUHK-Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China.
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Translational Oncology, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong, China.
- State Key Laboratory of Digestive Disease, Institute of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
4
|
Mwangi MN, Mzembe G, Ngwira CC, Vokhiwa M, Kapulula MD, Larson LM, Braat S, Harding R, McLean ARD, Hamadani JD, Biggs BA, Ataíde R, Phiri KS, Pasricha SR. Protocol for a randomised, multicentre, four-arm, double-blinded, placebo-controlled trial to assess the benefits and safety of iron supplementation with malaria chemoprevention to children in Malawi: IRMA trial. BMJ Open 2023; 13:e069011. [PMID: 37832986 PMCID: PMC10583080 DOI: 10.1136/bmjopen-2022-069011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 09/19/2023] [Indexed: 10/15/2023] Open
Abstract
INTRODUCTION Approximately 40% of children aged 6-59 months worldwide are anaemic. Iron-containing multiple micronutrient powders (MNPs) and iron supplements (syrup/drops) are used to combat anaemia in children in different parts of the world. However, evidence for functional benefits of iron supplementation in children is scarce, and potential risks remain poorly defined, particularly concerning diarrhoea and malaria. This trial aims to determine if: (1) the efficacy of iron supplements or MNPs (containing iron) given with malaria chemoprevention is superior to malaria chemoprevention alone, or (2) if the efficacy of malaria chemoprevention alone is superior to placebo on child cognitive development. METHODS AND ANALYSIS IRMA is a four-arm, parallel-group, double-blinded, placebo-controlled, triple-dummy, randomised trial in Southern Malawi. The study recruits 2168 infants aged 6 months, with an intervention period of 6 months and a post-intervention period of a further 6 months. Children are randomised into four arms: (1) No intervention (placebo); (2) malaria chemoprevention only; (3) MNPs and malaria chemoprevention; and (4) iron syrup and malaria chemoprevention. The primary outcome, cognitive development (Cognitive Composite Score (CogCS)), is measured at the end of the 6 months intervention. Secondary outcomes include CogCS at a further 6 months post-intervention, motor, language and behavioural development, physical growth and prevalence of anaemia and iron deficiency. Safety outcomes include incidence of malaria and other infections, and prevalence of malaria parasitaemia during and post-intervention period. ETHICS AND DISSEMINATION The trial is approved by the National Health Sciences Research Committee (#19/01/2213) (Malawi) and the Human Research Ethics Committee (WEHI: 19/012) (Australia). Written informed consent in the local language is obtained from each participant before conducting any study-related procedure. Results will be shared with the local community and internationally with academic and policy stakeholders. TRIAL REGISTRATION NUMBER ACTRN12620000386932.
Collapse
Affiliation(s)
- Martin N Mwangi
- Training and Research Unit of Excellence (TRUE), Blantyre, Malawi
- The Micronutrient Forum, Healthy Mothers Healthy Babies Consortium, Washington DC, Washington, USA
| | - Glory Mzembe
- Training and Research Unit of Excellence (TRUE), Blantyre, Malawi
- Department of Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Maclean Vokhiwa
- Training and Research Unit of Excellence (TRUE), Blantyre, Malawi
- Department of Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | | | - Leila M Larson
- Department of Health Promotion, Education, and Behaviour, University of South Carolina Arnold School of Public Health, Columbia, South Carolina, USA
| | - Sabine Braat
- Department of Infectious Diseases at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Centre for Epidemiology and Biostatistics, University of Melbourne School of Population and Global Health, Carlton, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Rebecca Harding
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Alistair R D McLean
- Centre for Epidemiology and Biostatistics, University of Melbourne School of Population and Global Health, Carlton, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Jena D Hamadani
- International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Beverley-Ann Biggs
- Department of Infectious Diseases at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Diagnostic Haematology, The Royal Melbourne Hospital; and Clinical Haematology, Melbourne, Victoria, Australia
| | - Ricardo Ataíde
- Department of Infectious Diseases at the Peter Doherty Institute of Infection and Immunity, The University of Melbourne, Melbourne, Victoria, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Kamija S Phiri
- Training and Research Unit of Excellence (TRUE), Blantyre, Malawi
- Department of Public Health, Kamuzu University of Health Sciences, Blantyre, Malawi
| | - Sant-Rayn Pasricha
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Diagnostic Haematology, The Royal Melbourne Hospital; and Clinical Haematology, Melbourne, Victoria, Australia
- Department of Medical Biology, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Kotepui M, Wilairatana P, Mala W, Kotepui KU, Masangkay FR, Wangdi K. Effects of Daily Zinc Alone or in Combination with Other Nutrient Supplements on the Risk of Malaria Parasitaemia: A Systematic Review and Meta-Analysis of Randomised Controlled Trials. Nutrients 2023; 15:2855. [PMID: 37447182 DOI: 10.3390/nu15132855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Zinc supplementation has been explored as a potential intervention to reduce the risk of malaria parasitaemia in randomised controlled trials (RCTs). However, inconsistent evidence has been obtained regarding the efficacy of zinc supplementation in the context of malaria prevention. This systematic review was implemented to survey the existing literature to determine the effects of the daily oral administration of zinc, either alone or in combination with other nutrient supplements, on the risk of malaria parasitaemia. The systematic review was prospectively registered in the PROSPERO database CRD42023424345 and followed PRISMA protocols. A comprehensive search was conducted across multiple databases, including Embase, MEDLINE, Ovid, PubMed, Scopus, ProQuest, and Google Scholar, from their inception until 6 May 2023. The risk of bias in RCTs was assessed using the Cochrane Risk of Bias Tool 2 (RoB 2). The effect sizes, represented as risk ratios (RRs) with 95% confidence intervals (CIs), were standardised by transforming them into log RRs and then pooling them using a fixed-effects or random-effects model depending on the heterogeneity across studies. Comparisons were made between individuals who received zinc alone or zinc in combination with other micronutrient supplements and those who did not receive zinc. A total of 1339 articles were identified through the database searches, and after the screening and selection process, 10 studies were included in the final synthesis. The meta-analysis revealed that zinc supplementation alone did not significantly affect the risk of malaria parasitaemia compared with placebo (p = 0.30, log RR = 0.05, 95% CI: -0.05-0.15, I2 = 0.00%, with 566 malaria cases in the zinc intake group and 521 malaria cases in the placebo group). However, the analysis demonstrated a borderline significant effect of zinc supplementation in combination with other micronutrients on the risk of malaria parasitaemia compared with placebo (p = 0.05, log RR = 1.31, 95% CI: 0.03-2.59, I2 = 99.22%, with 8904 malaria cases in the zinc intake group and 522 malaria cases in the placebo group). The findings of this systematic review indicate that zinc supplementation, either alone or combined with the supplementation of other micronutrients such as vitamin A, iron, or multiple nutrients, does not significantly alter the risk of malaria parasitaemia. Further research with larger sample sizes is warranted to explore the potential effects of multi-nutrient supplementation and to identify more specific micronutrients and additional factors associated with the risk of malaria, rather than just zinc alone, among individuals in different malaria-endemic areas.
Collapse
Affiliation(s)
- Manas Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok 10400, Thailand
| | - Wanida Mala
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | - Kwuntida Uthaisar Kotepui
- Medical Technology, School of Allied Health Sciences, Walailak University, Tha Sala, Nakhon Si Thammarat 80160, Thailand
| | | | - Kinley Wangdi
- Department of Global Health, National Centre for Epidemiology and Population Health, College of Health and Medicine, Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Imdad A, Rogner J, Sherwani RN, Sidhu J, Regan A, Haykal MR, Tsistinas O, Smith A, Chan XHS, Mayo-Wilson E, Bhutta ZA. Zinc supplementation for preventing mortality, morbidity, and growth failure in children aged 6 months to 12 years. Cochrane Database Syst Rev 2023; 3:CD009384. [PMID: 36994923 PMCID: PMC10061962 DOI: 10.1002/14651858.cd009384.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
BACKGROUND Zinc deficiency is prevalent in low- and middle-income countries, and is considered a significant risk factor for morbidity, mortality, and linear growth failure. The effectiveness of preventive zinc supplementation in reducing prevalence of zinc deficiency needs to be assessed. OBJECTIVES To assess the effects of zinc supplementation for preventing mortality and morbidity, and for promoting growth, in children aged 6 months to 12 years. SEARCH METHODS A previous version of this review was published in 2014. In this update, we searched CENTRAL, MEDLINE, Embase, five other databases, and one trials register up to February 2022, together with reference checking and contact with study authors to identify additional studies. SELECTION CRITERIA Randomized controlled trials (RCTs) of preventive zinc supplementation in children aged 6 months to 12 years compared with no intervention, a placebo, or a waiting list control. We excluded hospitalized children and children with chronic diseases or conditions. We excluded food fortification or intake, sprinkles, and therapeutic interventions. DATA COLLECTION AND ANALYSIS Two review authors screened studies, extracted data, and assessed the risk of bias. We contacted study authors for missing information and used GRADE to assess the certainty of evidence. The primary outcomes of this review were all-cause mortality; and cause-specific mortality, due to all-cause diarrhea, lower respiratory tract infection (LRTI, including pneumonia), and malaria. We also collected information on a number of secondary outcomes, such as those related to diarrhea and LRTI morbidity, growth outcomes and serum levels of micronutrients, and adverse events. MAIN RESULTS We included 16 new studies in this review, resulting in a total of 96 RCTs with 219,584 eligible participants. The included studies were conducted in 34 countries; 87 of them in low- or middle-income countries. Most of the children included in this review were under five years of age. The intervention was delivered most commonly in the form of syrup as zinc sulfate, and the most common dose was between 10 mg and 15 mg daily. The median duration of follow-up was 26 weeks. We did not consider that the evidence for the key analyses of morbidity and mortality outcomes was affected by risk of bias. High-certainty evidence showed little to no difference in all-cause mortality with preventive zinc supplementation compared to no zinc (risk ratio (RR) 0.93, 95% confidence interval (CI) 0.84 to 1.03; 16 studies, 17 comparisons, 143,474 participants). Moderate-certainty evidence showed that preventive zinc supplementation compared to no zinc likely results in little to no difference in mortality due to all-cause diarrhea (RR 0.95, 95% CI 0.69 to 1.31; 4 studies, 132,321 participants); but probably reduces mortality due to LRTI (RR 0.86, 95% CI 0.64 to 1.15; 3 studies, 132,063 participants) and mortality due to malaria (RR 0.90, 95% CI 0.77 to 1.06; 2 studies, 42,818 participants); however, the confidence intervals around the summary estimates for these outcomes were wide, and we could not rule out a possibility of increased risk of mortality. Preventive zinc supplementation likely reduces the incidence of all-cause diarrhea (RR 0.91, 95% CI 0.90 to 0.93; 39 studies, 19,468 participants; moderate-certainty evidence) but results in little to no difference in morbidity due to LRTI (RR 1.01, 95% CI 0.95 to 1.08; 19 studies, 10,555 participants; high-certainty evidence) compared to no zinc. There was moderate-certainty evidence that preventive zinc supplementation likely leads to a slight increase in height (standardized mean difference (SMD) 0.12, 95% CI 0.09 to 0.14; 74 studies, 20,720 participants). Zinc supplementation was associated with an increase in the number of participants with at least one vomiting episode (RR 1.29, 95% CI 1.14 to 1.46; 5 studies, 35,192 participants; high-certainty evidence). We report a number of other outcomes, including the effect of zinc supplementation on weight and serum markers such as zinc, hemoglobin, iron, copper, etc. We also performed a number of subgroup analyses and there was a consistent finding for a number of outcomes that co-supplementation of zinc with iron decreased the beneficial effect of zinc. AUTHORS' CONCLUSIONS Even though we included 16 new studies in this update, the overall conclusions of the review remain unchanged. Zinc supplementation might help prevent episodes of diarrhea and improve growth slightly, particularly in children aged 6 months to 12 years of age. The benefits of preventive zinc supplementation may outweigh the harms in regions where the risk of zinc deficiency is relatively high.
Collapse
Affiliation(s)
- Aamer Imdad
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jaimie Rogner
- Departments of Medicine and Pediatrics, University of Rochester Medical Center, Rochester, NY, USA
| | - Rida N Sherwani
- Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Jasleen Sidhu
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Allison Regan
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Maya R Haykal
- Norton College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Olivia Tsistinas
- Health Sciences Library, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Abigail Smith
- Health Sciences Library, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Xin Hui S Chan
- Pandemic Sciences Institute, University of Oxford, Oxford, UK
| | - Evan Mayo-Wilson
- Department of Epidemiology, UNC Gillings School of Global Public HealthMcGavran-Greenberg Hall, Chapel Hill, NC, USA
| | - Zulfiqar A Bhutta
- Centre for Global Child Health, The Hospital for SickKids, Toronto, Canada
- Center of Excellence for Women and Child Health, Aga Khan University, Karachi, Pakistan
| |
Collapse
|
7
|
Wegmüller R, Bah A, Kendall L, Goheen MM, Sanyang S, Danso E, Sise EA, Jallow A, Verhoef H, Jallow MW, Wathuo M, Armitage AE, Drakesmith H, Pasricha SR, Cross JH, Cerami C, Prentice AM. Hepcidin-guided screen-and-treat interventions for young children with iron-deficiency anaemia in The Gambia: an individually randomised, three-arm, double-blind, controlled, proof-of-concept, non-inferiority trial. Lancet Glob Health 2023; 11:e105-e116. [PMID: 36521942 PMCID: PMC9764454 DOI: 10.1016/s2214-109x(22)00449-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/22/2022] [Accepted: 10/04/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND Iron deficiency is the most prevalent nutritional disorder worldwide. Iron supplementation has modest efficacy, causes gastrointestinal side-effects that limit compliance, and has been associated with serious adverse outcomes in children across low-income settings. We aimed to compare two hepcidin-guided screen-and-treat regimens designed to reduce overall iron dosage by targeting its administration to periods when children were safe and ready to receive iron supplementation, with WHO's recommendation of universal iron supplementation. METHODS We conducted an individually randomised, three-arm, double-blind, controlled, proof-of-concept, non-inferiority trial in 12 rural communities across The Gambia. Eligible participants were children aged 6-23 months with anaemia. Participants were randomly assigned (1:1:1) to either the WHO recommended regimen of one sachet of multiple micronutrient powder (MMP) daily containing 12·0 mg iron as encapsulated ferrous fumarate (control group); to MMP with 12·0 mg per day iron for the next 7 days if plasma hepcidin concentration was less than 5·5 μg/L, or to MMP without iron for the next 7 days if plasma hepcidin concentration was at least 5·5 μg/L (12 mg screen-and-treat group); or to MMP with 6·0 mg per day iron for the next 7 days if plasma hepcidin concentration was less than 5·5 μg/L, or to MMP without iron for the next 7 days if plasma hepcidin concentration was at least 5·5 μg/L (6 mg screen-and-treat group). Randomisation was done by use of a permuted block design (block size of 9), with stratification by haemoglobin and age, using computer-generated numbers. Participants and the research team (except for the data manager) were masked to group allocation. The primary outcome was haemoglobin concentration, with a non-inferiority margin of -5 g/L. A per-protocol analysis, including only children who had consumed at least 90% of the supplements (ie, supplement intake on ≥75 days during the study), was done to assess non-inferiority of the primary outcome at day 84 using a one-sided t test adjusted for multiple comparisons. Safety was assessed by use of ex-vivo growth tests of Plasmodium falciparum in erythrocytes and three species of sentinel bacteria in plasma samples from participants. This trial is registered with the ISRCTN registry, ISRCTN07210906. FINDINGS Between April 23, 2014, and Aug 7, 2015, we prescreened 783 children, of whom 407 were enrolled into the study: 135 were randomly assigned to the control group, 136 to the 12 mg screen-and-treat group, and 136 to the 6 mg screen-and-treat group. 345 (85%) children were included in the per-protocol population: 115 in the control group, 116 in the 12 mg screen-and-treat group, and 114 in the 6 mg screen-and-treat group. Directly observed adherence was high across all groups (control group 94·8%, 12 mg screen-and-treat group 95·3%, and 6 mg screen-and-treat group 95·0%). 82 days of iron supplementation increased mean haemoglobin concentration by 7·7 g/L (95% CI 3·2 to 12·2) in the control group. Both screen-and-treat regimens were significantly less efficacious at improving haemoglobin (-5·6 g/L [98·3% CI -9·9 to -1·3] in the 12 mg screen-and-treat group and -7·8 g/L [98·3% CI -12·2 to -3·5] in the 6 mg screen-and-treat group) and neither regimen met the preset non-inferiority margin of -5 g/L. The 12 mg screen-and-treat regimen reduced iron dosage to 6·1 mg per day and the 6 mg screen-and-treat regimen reduced dosage to 3·0 mg per day. 580 adverse events were observed in 316 participants, of which eight were serious adverse events requiring hospitalisation mainly due to diarrhoeal disease (one [1%] participant in the control group, three [2%] in the 12 mg screen-and-treat group, and four [3%] in the 6 mg screen-and-treat group). The most common causes of non-serious adverse events (n=572) were diarrhoea (145 events [25%]), upper respiratory tract infections (194 [34%]), lower respiratory tract infections (62 [11%]), and skin infections (122 [21%]). No adverse events were deemed to be related to the study interventions. INTERPRETATION The hepcidin-guided screen-and-treat strategy to target iron administration succeeded in reducing overall iron dosage, but was considerably less efficacious at increasing haemoglobin and combating iron deficiency and anaemia than was WHO's standard of care, and showed no differences in morbidity or safety outcomes. FUNDING Bill & Melinda Gates Foundation and UK Medical Research Council.
Collapse
Affiliation(s)
- Rita Wegmüller
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia; GroundWork, Fläsch, Switzerland
| | - Amat Bah
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia; National Nutrition Agency, Bakau, The Gambia
| | - Lindsay Kendall
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Morgan M Goheen
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia; Department of Internal Medicine, Yale University, New Haven, CT, USA
| | - Saikou Sanyang
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Ebrima Danso
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Ebrima A Sise
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Amadou Jallow
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Hans Verhoef
- Wageningen University & Research, Wageningen, Netherlands
| | - Momodou W Jallow
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia; Regeneron Genetics Center, Tarrytown, NY, USA
| | - Miriam Wathuo
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia; One Acre Fund, Kigali, Rwanda
| | - Andrew E Armitage
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Hal Drakesmith
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, UK
| | - Sant-Rayn Pasricha
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - James H Cross
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Carla Cerami
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Andrew M Prentice
- Medical Research Council Unit The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia.
| |
Collapse
|
8
|
Ceballos-Rasgado M, Lowe NM, Mallard S, Clegg A, Moran VH, Harris C, Montez J, Xipsiti M. Adverse Effects of Excessive Zinc Intake in Infants and Children Aged 0-3 Years: A Systematic Review and Meta-Analysis. Adv Nutr 2022; 13:2488-2518. [PMID: 36055780 PMCID: PMC9776731 DOI: 10.1093/advances/nmac088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/18/2022] [Accepted: 08/17/2022] [Indexed: 01/29/2023] Open
Abstract
Zinc supplementation reduces morbidity, but evidence suggests that excessive intakes can have negative health consequences. Current guidelines of upper limits (ULs) of zinc intake for young children are extrapolated from adult data. This systematic review (PROSPERO; registration no. CRD42020215187) aimed to determine the levels of zinc intake at which adverse effects are observed in young children. Studies reporting potential adverse effects of zinc intake in children aged 0-3 y were identified (from inception to August 2020) in MEDLINE, Embase, and the Cochrane Library, with no limits on study design. Adverse clinical and physical effects of zinc intake were synthesized narratively, and meta-analyses of biochemical outcomes were conducted. Random effects models were used to generate forest plots to examine the evidence by age category, dose, dose duration, chemical formula of zinc, and zinc compared with placebo. The Joanna Briggs Institute Critical Appraisal Checklist, Cochrane Risk of Bias 2, and Grading of Recommendations Assessment, Development, and Evaluation (GRADE) guideline were employed to assess risk of bias and to appraise the certainty of evidence. Fifty-eight studies assessed possible adverse effects of zinc doses ranging from 3 to 70 mg/d. Data from 39 studies contributed to meta-analyses. Zinc supplementation had an adverse effect on serum ferritin, plasma/serum copper concentration, serum transferrin receptor, hemoglobin, hematocrit, and the odds of anemia in ≥1 of the subgroups investigated. Lactulose:mannitol ratio was improved with zinc supplementation, and no significant effect was observed on C-reactive protein, erythrocyte superoxide dismutase, zinc protoporphyrin, blood cholesterol, and iron deficiency anemia. The certainty of the evidence, as assessed using GRADE, was very low to moderate. Although possible adverse effects of zinc supplementation were observed in some subgroups, it is unclear whether these findings are clinically important. The synthesized data can be used to undertake a dose-response analysis to update current guidelines of ULs of zinc intake for young children.
Collapse
Affiliation(s)
- Marena Ceballos-Rasgado
- Centre for Global Development, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | | | | | - Andrew Clegg
- Synthesis, Economic Evaluation and Decision Science (SEEDS) Group, Applied Health Research Hub, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | - Victoria H Moran
- Centre for Global Development, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | - Catherine Harris
- Synthesis, Economic Evaluation and Decision Science (SEEDS) Group, Applied Health Research Hub, University of Central Lancashire, Preston, Lancashire, United Kingdom
| | - Jason Montez
- Department of Nutrition and Food Safety, World Health Organization, Geneva, Switzerland
| | - Maria Xipsiti
- Food and Nutrition Division, Food and Agriculture Organization of the United Nations, Rome, Italy
| |
Collapse
|
9
|
Zinc in Human Health and Infectious Diseases. Biomolecules 2022; 12:biom12121748. [PMID: 36551176 PMCID: PMC9775844 DOI: 10.3390/biom12121748] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022] Open
Abstract
During the last few decades, the micronutrient zinc has proven to be an important metal ion for a well-functioning immune system, and thus also for a suitable immune defense. Nowadays, it is known that the main cause of zinc deficiency is malnutrition. In particular, vulnerable populations, such as the elderly in Western countries and children in developing countries, are often affected. However, sufficient zinc intake and homeostasis is essential for a healthy life, as it is known that zinc deficiency is associated with a multitude of immune disorders such as metabolic and chronic diseases, as well as infectious diseases such as respiratory infections, malaria, HIV, or tuberculosis. Moreover, the modulation of the proinflammatory immune response and oxidative stress is well described. The anti-inflammatory and antioxidant properties of zinc have been known for a long time, but are not comprehensively researched and understood yet. Therefore, this review highlights the current molecular mechanisms underlying the development of a pro-/ and anti-inflammatory immune response as a result of zinc deficiency and zinc supplementation. Additionally, we emphasize the potential of zinc as a preventive and therapeutic agent, alone or in combination with other strategies, that could ameliorate infectious diseases.
Collapse
|
10
|
Wuehler S, Lopez de Romaña D, Haile D, McDonald CM, Brown KH. Reconsidering the Tolerable Upper Levels of Zinc Intake among Infants and Young Children: A Systematic Review of the Available Evidence. Nutrients 2022; 14:1938. [PMID: 35565906 PMCID: PMC9102402 DOI: 10.3390/nu14091938] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/25/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023] Open
Abstract
Safe upper levels (UL) of zinc intake for children were established based on either (1) limited data from just one study among children or (2) extrapolations from studies in adults. Resulting ULs are less than amounts of zinc consumed by children in many studies that reported benefits of zinc interventions, and usual dietary zinc intakes often exceed the UL, with no apparent adverse effects. Therefore, existing ULs may be too low. We conducted a systematic bibliographic review of studies among preadolescent children, in which (1) additional zinc was provided vs. no additional zinc provided, and (2) the effect of zinc on serum or plasma copper, ceruloplasmin, ferritin, transferrin receptor, lipids, or hemoglobin or erythrocyte super-oxide dismutase were assessed. We extracted data from 44 relevant studies with 141 comparisons. Meta-analyses found no significant overall effect of providing additional zinc, except for a significant negative effect on ferritin (p = 0.001), albeit not consistent in relation to the zinc dose. Interpretation is complicated by the significant heterogeneity of results and uncertainties regarding the physiological and clinical significance of outcomes. Current zinc ULs should be reassessed and potentially revised using data now available for preadolescent children and considering challenges regarding interpretation of results.
Collapse
Affiliation(s)
- Sara Wuehler
- Nutrition International, Global Technical Services, Ottawa, ON K2P 2K3, Canada;
| | | | - Demewoz Haile
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, CA 95616, USA;
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA 98195, USA
| | - Christine M. McDonald
- Department of Pediatrics, University of California, San Francisco, CA 92161, USA;
- International Zinc Nutrition Consultative Group, Oakland, CA 94609, USA
| | - Kenneth H. Brown
- Department of Nutrition, Institute for Global Nutrition, University of California, Davis, CA 95616, USA;
| |
Collapse
|
11
|
Mrimi EC, Palmeirim MS, Minja EG, Long KZ, Keiser J. Malnutrition, anemia, micronutrient deficiency and parasitic infections among schoolchildren in rural Tanzania. PLoS Negl Trop Dis 2022; 16:e0010261. [PMID: 35245314 PMCID: PMC8926280 DOI: 10.1371/journal.pntd.0010261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 03/16/2022] [Accepted: 02/15/2022] [Indexed: 12/01/2022] Open
Abstract
Background Malnutrition, anemia, micronutrient deficiency and parasitic infections continue to impact the nutritional status and health of children in lower-income countries. However, not enough data concerning this issue is available. The aim of this study was to assess the distribution of nutritional indicators, anemia and micronutrient deficiency and their underlying risk factors among schoolchildren in south-eastern Tanzania. Methodology/Principal findings This cross-sectional study enrolled primary schoolchildren aged 6–12 years from Kikwawila and Kiberege wards, Tanzania. In total, 471 schoolchildren underwent a physical examination and provided blood, stool and urine samples for an assessment of the levels of different micronutrients, nutritional and anemia status, and parasitic infection status. We employed bivariate and multivariate logistic regression to determine the association between nutritional statuses, anemia, micronutrient deficiency and parasitic infections. We found that 23.90%, 12.60% and 16.20% of schoolchildren were stunted, underweight and wasted, respectively. About 14.0% of schoolchildren were found to be anemic. Children diagnosed with Plasmodium falciparum infection were more likely to have low levels of ferritin (aOR: 10.40, 95% CI: 2.88-40.53) and elevated levels of serum soluble transferrin receptor (aOR: 3.59, 95% CI: 1.27-11.23), respectively. Vitamin A (34.71%) and vitamin B12 (8.79%) were the most prevalent micronutrients found to be deficient in diagnosed children. Finally, we found that schoolchildren attending the most rural schools were five times more likely to be diagnosed with at least one micronutrient deficiency (aOR: 5.04, 95% CI: 2.38–11.44). Conclusions/Significance Malnutrition, anemia and micronutrient deficiency still pose a significant health burden among schoolchildren living in rural Tanzania. To effectively tackle this burden, health interventions such as deworming, micronutrient supplementation, vector control, health education and access to clean water and improved sanitation should be strengthened and made sustainable. In this study, we assessed the distribution and risk factors of nutritional indicators, anemia and micronutrient deficiency among schoolchildren of the Kikwawila and Kiberege wards, Tanzania. Our analysis revealed that malnutrition in form of stunting and wasting is still very high among schoolchildren in this region. About 14.0% of children were found to be anemic. Micronutrient deficiency was highly variable ranging from 0.50% (Folate) to 35.0% (Vitamin A). Schoolchildren from most rural schools were more likely to be found stunted and deficient with at least one type of micronutrient. Efforts to control and eliminate malnutrition, anemia, micronutrient deficiency and parasitic infections would benefit from sustainable and integrated approaches such as deworming, micronutrient supplementation, health education, vector control and an improvement in access to clean water and improved sanitation.
Collapse
Affiliation(s)
- Emmanuel C. Mrimi
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- Ifakara Health Institute, Ifakara, Tanzania
| | - Marta S. Palmeirim
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | | | - Kurt Z. Long
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
| | - Jennifer Keiser
- Swiss Tropical and Public Health Institute, Allschwil, Switzerland
- University of Basel, Basel, Switzerland
- * E-mail:
| |
Collapse
|
12
|
Sloan MA, Aghabi D, Harding CR. Orchestrating a heist: uptake and storage of metals by apicomplexan parasites. MICROBIOLOGY (READING, ENGLAND) 2021; 167. [PMID: 34898419 PMCID: PMC7612242 DOI: 10.1099/mic.0.001114] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Megan A Sloan
- Wellcome Centre for Integrative Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, UK
| | - Dana Aghabi
- Wellcome Centre for Integrative Parasitology, Institute for Infection, Immunity and Inflammation, University of Glasgow, UK
| | | |
Collapse
|
13
|
Baranwal AK, Das R, Rameshkumar R, Kumar-M P, Bhatia P, Nair A. Effect of Sepsis on Iron Parameters in a Population with High Prevalence of Malnutrition and Iron Deficiency: A Cross-Sectional Case-Control Pilot Study. Indian J Hematol Blood Transfus 2021; 37:609-615. [PMID: 34744344 DOI: 10.1007/s12288-020-01393-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/05/2020] [Indexed: 11/29/2022] Open
Abstract
There is lack of data on iron metabolism in critically ill sepsis children from population with high prevalence of iron deficiency (ID). The study was designed to study impact of sepsis on iron parameters in children with ID. Sepsis patients (age 6-59 months) and their apparently healthy sibling/cousin as controls were enrolled in this case-control pilot study. Serum iron, TIBC, transferrin saturation, ferritin and sTfR were measured in the two groups. sTfR-Ferritin index was calculated. Patients (n = 134) were significantly underweight compared to controls (n = 54) (WAZ score < - 2; 58% vs. 28%; p < 0.001). Serum iron and sTfR (mg/L) were lower [71.5 (51.0, 115.0) vs. 87.0 (64.5, 130.5), p = 0.068; 3.1 (2.1, 4.5) vs. 3.5 (2.8, 4.8), p = 0.026 respectively] while serum ferritin was higher [229 (94, 484.5) vs. 22 (9.2, 51); p < 0.001] in patients compared to controls. sTfR-Ferritin index was lower in patients [1.3 (0.8, 2.3) vs. 2.5 (1.8, 4.5); p < 0.001]. ROC AUC (patients vs. controls) were 0.89 (95% CI 0.83-0.95) and 0.76 (95% CI 0.68-0.85) for ferritin and sTfR-ferritin index respectively. Survivors and non-survivors were similar in terms of iron parameters. Sepsis-induced alterations in iron parameters among ID children are complex. Qualitatively it is similar (with quantitative differences) to non-ID adult population. Lack of correlation of iron parameters with mortality may be due to ID-associated immune dysfunction.
Collapse
Affiliation(s)
- Arun K Baranwal
- Division of Pediatric Critical Care, Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Reena Das
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ramachandran Rameshkumar
- Division of Pediatric Critical Care, Department of Pediatrics, Jawaharlal Institute of Postgraduate Medical Education and Research (JIPMER), Puducherry, 605006 India
| | - Praveen Kumar-M
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Prateek Bhatia
- Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashwini Nair
- Advanced Pediatrics Center, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Mwangi MN, Mzembe G, Moya E, Verhoef H. Iron deficiency anaemia in sub-Saharan Africa: a review of current evidence and primary care recommendations for high-risk groups. Lancet Haematol 2021; 8:e732-e743. [PMID: 34481549 DOI: 10.1016/s2352-3026(21)00193-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 06/01/2021] [Accepted: 06/10/2021] [Indexed: 11/19/2022]
Abstract
The epidemiology of iron deficiency anaemia in sub-Saharan Africa differs from that in other parts of the world. The low-quality diets prevalent in this region are a poor source of iron, the population is frequently exposed to infection, and demographic characteristics result in a greater prevalence of people at high risk of iron deficiency anaemia than in other parts of the world. We herein review the causes, disease burden, and consequences of iron deficiency anaemia in the general population in this region, and current policies and interventions for its control. The current debate is dominated by concerns about the safety of iron interventions, namely regarding its effects on malaria and other infectious diseases. However, universal antenatal iron supplementation and delayed cord clamping are safe interventions and stand out for their potential to improve maternal and infant health. Effective infection control is a precondition to safe and efficacious iron interventions in children. Greater emphasis should be given to approaches aiming to reduce iron loss due to helminth infections and menstruation, alongside interventions to increase iron intake. TRANSLATION: For the French translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Martin N Mwangi
- Training and Research Unit of Excellence, Blantyre, Malawi; School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi.
| | - Glory Mzembe
- Training and Research Unit of Excellence, Blantyre, Malawi; School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Ernest Moya
- Training and Research Unit of Excellence, Blantyre, Malawi; School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Hans Verhoef
- Division of Human Nutrition and Health, Wageningen University, Wageningen, Netherlands; MRC Unit The Gambia at London School of Hygiene and Tropical Medicine, Banjul, The Gambia
| |
Collapse
|
15
|
Wessells KR, Arnold CD, Stewart CP, Prado EL, Abbeddou S, Adu-Afarwuah S, Arnold BF, Ashorn P, Ashorn U, Becquey E, Brown KH, Byrd KA, Campbell RK, Christian P, Fernald L, Fan YM, Galasso E, Hess SY, Huybregts L, Jorgensen JM, Kiprotich M, Kortekangas E, Lartey A, Le Port A, Leroy JL, Lin A, Maleta K, Matias SL, Mbuya M, Mridha MK, Mutasa K, Naser AM, Paul RR, Okronipa H, Ouédraogo JB, Pickering AJ, Rahman M, Schulze K, Smith LE, Weber AM, Zongrone A, Dewey KG. Characteristics that modify the effect of small-quantity lipid-based nutrient supplementation on child anemia and micronutrient status: an individual participant data meta-analysis of randomized controlled trials. Am J Clin Nutr 2021; 114:68S-94S. [PMID: 34590114 PMCID: PMC8560313 DOI: 10.1093/ajcn/nqab276] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 08/04/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Small-quantity lipid-based nutrient supplements (SQ-LNSs) have been shown to reduce the prevalence of child anemia and iron deficiency, but effects on other micronutrients are less well known. Identifying subgroups who benefit most from SQ-LNSs could support improved program design. OBJECTIVES We aimed to identify study-level and individual-level modifiers of the effect of SQ-LNSs on child hemoglobin (Hb), anemia, and inflammation-adjusted micronutrient status outcomes. METHODS We conducted a 2-stage meta-analysis of individual participant data from 13 randomized controlled trials of SQ-LNSs provided to children 6-24 mo of age (n = 15,946). We generated study-specific and subgroup estimates of SQ-LNSs compared with control, and pooled the estimates using fixed-effects models. We used random-effects meta-regression to examine potential study-level effect modifiers. RESULTS SQ-LNS provision decreased the prevalence of anemia (Hb < 110 g/L) by 16% (relative reduction), iron deficiency (plasma ferritin < 12 µg/L) by 56%, and iron deficiency anemia (IDA; Hb < 110 g/L and plasma ferritin <12 µg/L) by 64%. We observed positive effects of SQ-LNSs on hematological and iron status outcomes within all subgroups of the study- and individual-level effect modifiers, but effects were larger in certain subgroups. For example, effects of SQ-LNSs on anemia and iron status were greater in trials that provided SQ-LNSs for >12 mo and provided 9 (as opposed to <9) mg Fe/d, and among later-born (than among first-born) children. There was no effect of SQ-LNSs on plasma zinc or retinol, but there was a 7% increase in plasma retinol-binding protein (RBP) and a 56% reduction in vitamin A deficiency (RBP < 0.70 µmol/L), with little evidence of effect modification by individual-level characteristics. CONCLUSIONS SQ-LNSs can substantially reduce the prevalence of anemia, iron deficiency, and IDA among children across a range of individual, population, and study design characteristics. Policy-makers and program planners should consider SQ-LNSs within intervention packages to prevent anemia and iron deficiency.This trial was registered at www.crd.york.ac.uk/PROSPERO as CRD42020156663.
Collapse
Affiliation(s)
| | - Charles D Arnold
- Institute for Global Nutrition and Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Christine P Stewart
- Institute for Global Nutrition and Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Elizabeth L Prado
- Institute for Global Nutrition and Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Souheila Abbeddou
- Public Health Nutrition, Department of Public Health and Primary Care, University of Ghent, Ghent, Belgium
| | - Seth Adu-Afarwuah
- Department of Nutrition and Food Science, University of Ghana, Legon, Accra, Ghana
| | - Benjamin F Arnold
- Francis I Proctor Foundation, University of California, San Francisco, San Francisco, CA, USA
| | - Per Ashorn
- Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland,Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| | - Ulla Ashorn
- Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Elodie Becquey
- Poverty, Health, and Nutrition Division, International Food Policy Research Institute, Washington, DC, USA
| | - Kenneth H Brown
- Institute for Global Nutrition and Department of Nutrition, University of California, Davis, Davis, CA, USA,Helen Keller International, New York, NY, USA
| | | | - Rebecca K Campbell
- Division of Epidemiology and Biostatistics, University of Illinois at Chicago School of Public Health, Chicago, IL, USA
| | - Parul Christian
- Program in Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Lia C H Fernald
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Yue-Mei Fan
- Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | | | - Sonja Y Hess
- Institute for Global Nutrition and Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Lieven Huybregts
- Poverty, Health, and Nutrition Division, International Food Policy Research Institute, Washington, DC, USA
| | - Josh M Jorgensen
- Nutrition Program, College of Public Health and Human Sciences, Oregon State University, Corvallis, OR, USA
| | | | - Emma Kortekangas
- Center for Child Health Research, Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Anna Lartey
- Department of Nutrition and Food Science, University of Ghana, Legon, Accra, Ghana
| | | | - Jef L Leroy
- Poverty, Health, and Nutrition Division, International Food Policy Research Institute, Washington, DC, USA
| | - Audrie Lin
- School of Public Health, University of California, Berkeley, Berkeley, CA, USA
| | - Kenneth Maleta
- Department of Public Health, School of Public Health and Family Medicine, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Susana L Matias
- Department of Nutritional Sciences and Toxicology, University of California, Berkeley, Berkeley, CA, USA
| | - Mduduzi N N Mbuya
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe,Global Alliance for Improved Nutrition, Washington, DC, USA
| | - Malay K Mridha
- Center for Non-communicable Diseases and Nutrition, BRAC James P Grant School of Public Health, Dhaka, Bangladesh
| | - Kuda Mutasa
- Zvitambo Institute for Maternal and Child Health Research, Harare, Zimbabwe
| | - Abu M Naser
- International Center for Diarrheal Diseases Research (icddr,b), Dhaka, Bangladesh,Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Rina R Paul
- Center for Non-communicable Diseases and Nutrition, BRAC James P Grant School of Public Health, Dhaka, Bangladesh
| | - Harriet Okronipa
- Department of Population Medicine and Diagnostic Sciences, Cornell University, Ithaca, NY, USA
| | | | | | - Mahbubur Rahman
- International Center for Diarrheal Diseases Research (icddr,b), Dhaka, Bangladesh
| | - Kerry Schulze
- Program in Human Nutrition, Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Laura E Smith
- Department of Epidemiology and Environmental Health, School of Public Health and Health Professions, The State University of New York at Buffalo, Buffalo, NY, USA
| | - Ann M Weber
- Division of Epidemiology, School of Community Health Sciences, University of Nevada, Reno, Reno, NV, USA
| | | | - Kathryn G Dewey
- Institute for Global Nutrition and Department of Nutrition, University of California, Davis, Davis, CA, USA
| |
Collapse
|
16
|
Praharaj S, Skalicky M, Maitra S, Bhadra P, Shankar T, Brestic M, Hejnak V, Vachova P, Hossain A. Zinc Biofortification in Food Crops Could Alleviate the Zinc Malnutrition in Human Health. Molecules 2021; 26:molecules26123509. [PMID: 34207649 PMCID: PMC8230286 DOI: 10.3390/molecules26123509] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/21/2021] [Accepted: 06/04/2021] [Indexed: 12/02/2022] Open
Abstract
Micronutrient malnutrition is a global health issue and needs immediate attention. Over two billion people across the globe suffer from micronutrient malnutrition. The widespread zinc (Zn) deficiency in soils, poor zinc intake by humans in their diet, low bioavailability, and health consequences has led the research community to think of an economic as well as sustainable strategy for the alleviation of zinc deficiency. Strategies like fortification and diet supplements, though effective, are not economical and most people in low-income countries cannot afford them, and they are the most vulnerable to Zn deficiency. In this regard, the biofortification of staple food crops with Zn has been considered a useful strategy. An agronomic biofortification approach that uses crop fertilization with Zn-based fertilizers at the appropriate time to ensure grain Zn enrichment has been found to be cost-effective, easy to practice, and efficient. Genetic biofortification, though time-consuming, is also highly effective. Moreover, a Zn-rich genotype once developed can also be used for many years without any recurring cost. Hence, both agronomic and genetic biofortification can be a very useful tool in alleviating Zn deficiency.
Collapse
Affiliation(s)
- Subhashisa Praharaj
- Department of Agronomy, Centurion University of Technology and Management, Pralakhemundi 761211, India; (S.P.); (S.M.); (T.S.)
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.B.); (V.H.); (P.V.)
- Correspondence: (M.S.); (A.H.)
| | - Sagar Maitra
- Department of Agronomy, Centurion University of Technology and Management, Pralakhemundi 761211, India; (S.P.); (S.M.); (T.S.)
| | - Preetha Bhadra
- Department of Biotechnology, Centurion University of Technology and Management, Pralakhemundi 761211, India;
| | - Tanmoy Shankar
- Department of Agronomy, Centurion University of Technology and Management, Pralakhemundi 761211, India; (S.P.); (S.M.); (T.S.)
| | - Marian Brestic
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.B.); (V.H.); (P.V.)
- Department of Plant Physiology, Slovak University of Agriculture, Nitra, Tr. A. Hlinku 2, 949 01 Nitra, Slovakia
| | - Vaclav Hejnak
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.B.); (V.H.); (P.V.)
| | - Pavla Vachova
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Prague, Czech Republic; (M.B.); (V.H.); (P.V.)
| | - Akbar Hossain
- Department of Agronomy, Bangladesh Wheat and Maize Research Institute, Dinajpur 5200, Bangladesh
- Correspondence: (M.S.); (A.H.)
| |
Collapse
|
17
|
Larson LM, Cyriac S, Djimeu EW, Mbuya MNN, Neufeld LM. Can Double Fortification of Salt with Iron and Iodine Reduce Anemia, Iron Deficiency Anemia, Iron Deficiency, Iodine Deficiency, and Functional Outcomes? Evidence of Efficacy, Effectiveness, and Safety. J Nutr 2021; 151:15S-28S. [PMID: 33582785 PMCID: PMC7882357 DOI: 10.1093/jn/nxaa192] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/24/2020] [Accepted: 06/12/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Anemia, iron deficiency, and iodine deficiency are problems of important public health concern in many parts of the world, with consequences for the health, development, and work capacity of populations. Several countries are beginning to implement double fortified salt (DFS) programs to simultaneously address iodine and iron deficiencies. OBJECTIVE Our objective was to summarize the evidence for efficacy and effectiveness of DFS on the full range of status and functional outcomes and across different implementation and evaluation designs essential to successful interventions. METHODS We conducted a systematic review and meta-analysis of published and gray literature examining the effects of DFS on nutritional status, cognition, work productivity, development, and morbidity of all population groups. We searched for articles in Medline, Embase, CINAHL, Cochrane Central Register, and ProQuest for randomized trials, quasi-randomized trials, and program effectiveness evaluations. RESULTS A total of 22 studies (N individuals = 52,758) were included. Efficacy studies indicated a significant overall positive effect on hemoglobin concentration [standardized mean difference (95% CI): 0.33 (0.18, 0.48)], ferritin [0.42 (0.08, 0.76)], anemia [risk ratio (95% CI): 0.80 (0.70, 0.92)], and iron deficiency anemia [0.36 (0.24, 0.55)]. Effects on urinary iodine concentration were not significantly different between DFS and iodized salt. The impact on functional outcomes was mixed. Only 2 effectiveness studies were identified. They reported programmatic challenges including low coverage, suboptimal DFS quality, and storage constraints. CONCLUSIONS Given the biological benefits of DFS across several populations in efficacy research, additional evaluations of robust DFS programs delivered at scale, which consider effective implementation and measure appropriate biomarkers, are needed.
Collapse
Affiliation(s)
- Leila M Larson
- University of South Carolina, Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, Columbia, SC, USA
| | - Shruthi Cyriac
- Emory University, Doctoral Program in Nutrition and Health Sciences, Laney Graduate School, Atlanta, GA, USA
| | - Eric W Djimeu
- Global Alliance for Improved Nutrition, Geneva, Switzerland
| | | | | |
Collapse
|
18
|
Anemia in preschool children from Angola: a review of the evidence. Porto Biomed J 2020; 5:e60. [PMID: 33299941 PMCID: PMC7722406 DOI: 10.1097/j.pbj.0000000000000060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/06/2020] [Indexed: 11/26/2022] Open
Abstract
Angola is one of the southern African countries with the highest prevalence of anemia, and despite the high geographic heterogeneity of its distribution across the country, it was reported to be indicative of a severe public health problem in some areas, mainly in children. Despite the relevance of this condition in the country there is still an important gap regarding scientific evidences and knowledge systematization in the indexed literature, that could be used to inform and optimize national public health policies willing to address it. Furthermore, the changes in anemia epidemiology among African preschool children and the late updates in nutrition-specific and nutrition-sensitive preventive strategies in the continent are of imperative relevance, as they could contribute to design context-specific national approaches to reduce anemia's morbidity and mortality. In this study we intent to perform a systematic review regarding the sparse evidence available on the country regarding the prevalence of anemia, its associated factors, the prevention, and/or control strategies with potential to reduce anemia that were implemented, and to discuss interventions targeting infections and/or nutrition conducted in other African countries.
Collapse
|
19
|
Cusick SE, Opoka RO, Ssemata AS, Georgieff MK, John CC. Delayed iron improves iron status without altering malaria risk in severe malarial anemia. Am J Clin Nutr 2020; 111:1059-1067. [PMID: 32005992 PMCID: PMC7198296 DOI: 10.1093/ajcn/nqaa004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Accepted: 01/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND WHO guidelines recommend concurrent iron and antimalarial treatment in children with malaria and iron deficiency, but iron may not be well absorbed or utilized during a malaria episode. OBJECTIVES We aimed to determine whether starting iron 28 d after antimalarial treatment in children with severe malaria and iron deficiency would improve iron status and lower malaria risk. METHODS We conducted a randomized clinical trial on the effect of immediate compared with delayed iron treatment in Ugandan children 18 mo-5 y of age with 2 forms of severe malaria: cerebral malaria (CM; n = 79) or severe malarial anemia (SMA; n = 77). Asymptomatic community children (CC; n = 83) were enrolled as a comparison group. Children with iron deficiency, defined as zinc protoporphyrin (ZPP) ≥ 80 µmol/mol heme, were randomly assigned to receive a 3-mo course of daily oral ferrous sulfate (2 mg · kg-1 · d-1) either concurrently with antimalarial treatment (immediate arm) or 28 d after receiving antimalarial treatment (delayed arm). Children were followed for 12 mo. RESULTS All children with CM or SMA, and 35 (42.2%) CC, were iron-deficient and were randomly assigned to immediate or delayed iron treatment. Immediate compared with delayed iron had no effect in any of the 3 study groups on the primary study outcomes (hemoglobin concentration and prevalence of ZPP ≥ 80 µmol/mol heme at 6 mo, malaria incidence over 12 mo). However, after 12 mo, children with SMA in the delayed compared with the immediate arm had a lower prevalence of iron deficiency defined by ZPP (29.4% compared with 65.6%, P = 0.006), a lower mean concentration of soluble transferrin receptor (6.1 compared with 7.8 mg/L, P = 0.03), and showed a trend toward fewer episodes of severe malaria (incidence rate ratio: 0.39; 95% CI: 0.14, 1.12). CONCLUSIONS In children with SMA, delayed iron treatment did not increase hemoglobin concentration, but did improve long-term iron status over 12 mo without affecting malaria incidence.This trial was registered at clinicaltrials.gov as NCT01093989.
Collapse
Affiliation(s)
- Sarah E Cusick
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Robert O Opoka
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Andrew S Ssemata
- Department of Paediatrics and Child Health, Makerere University College of Health Sciences, Kampala, Uganda
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN, USA
| | - Chandy C John
- Department of Pediatrics, University of Minnesota School of Medicine, Minneapolis, MN, USA
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA
| |
Collapse
|
20
|
Lanou HB, Osendarp SJ, Argaw A, De Polnay K, Ouédraogo C, Kouanda S, Kolsteren P. Micronutrient powder supplements combined with nutrition education marginally improve growth amongst children aged 6-23 months in rural Burkina Faso: A cluster randomized controlled trial. MATERNAL & CHILD NUTRITION 2019; 15:e12820. [PMID: 30941887 PMCID: PMC6859995 DOI: 10.1111/mcn.12820] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 03/07/2019] [Accepted: 03/19/2019] [Indexed: 01/18/2023]
Abstract
Micronutrients powder (MNP) can prevent anaemia amongst children 6-23 months old. However, evidence of an effect on growth is limited and concerns about the safety of iron-containing MNP interventions limits their applicability. In a cluster randomized controlled intervention, we evaluated the effectiveness of a nutritional package including counselling and provision of MNP to improve the nutritional status of children aged 6-23 months and the effect of sustained use of MNP on morbidity in a malaria-endemic area. Child feeding practises and nutritional status were assessed through cross-sectional surveys. Biweekly morbidity surveillance and anthropometry measurements were carried out in a nested cohort study. No significant differences in the prevalence of wasting (-0.7% [-6.8, 5.3] points; p = .805), stunting (+4.6% [-2.9, 12.0] points; p = .201), or mean length-for-age z-score and weight-for-length z-score scores were found between study groups. The proportion of children with a minimum dietary diversity score and those with a minimum acceptable diet significantly increased in the intervention group compared with the control by 6.5% points (p = .043) and 5.8% points (p = .037), respectively. There were no significant differences in the risk of diarrhoea (RR: 1.68, 95% CI [0.94, 3.08]), fever (RR: 1.20 [0.82, 1.77]), and malaria (RR: 0.68 [0.37, 1.26]) between study groups. In the nested study, the rate of linear growth was higher in the intervention than in the control group by 0.013 SD/month (p = .027). In a programmatic intervention, MNP and nutrition education marginally improved child feeding practises and growth, without increasing morbidity from malaria or fever.
Collapse
Affiliation(s)
- Hermann B. Lanou
- Ministry of Higher Education, Scientific Research and InnovationInstitut de Recherche en Sciences de la SantéOuagadougouBurkina Faso
- Department of Food Technology, Safety and HealthGhent UniversityGhentBelgium
| | | | - Alemayehu Argaw
- Nutrition InternationalOttawaOntarioCanada
- Department of Food Technology, Safety and HealthGhent UniversityGhentBelgium
- Department of Population and Family HealthJimma UniversityJimmaEthiopia
| | - Kirrily De Polnay
- Child Health and Nutrition Unit, Department of Public HealthInstitute of Tropical MedicineAntwerpBelgium
| | | | - Seni Kouanda
- Ministry of Higher Education, Scientific Research and InnovationInstitut de Recherche en Sciences de la SantéOuagadougouBurkina Faso
| | - Patrick Kolsteren
- Child Health and Nutrition Unit, Department of Public HealthInstitute of Tropical MedicineAntwerpBelgium
- Department of Food Technology, Safety and HealthGhent UniversityGhentBelgium
| |
Collapse
|
21
|
Armitage AE, Moretti D. The Importance of Iron Status for Young Children in Low- and Middle-Income Countries: A Narrative Review. Pharmaceuticals (Basel) 2019; 12:E59. [PMID: 30995720 PMCID: PMC6631790 DOI: 10.3390/ph12020059] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
Early childhood is characterised by high physiological iron demand to support processes including blood volume expansion, brain development and tissue growth. Iron is also required for other essential functions including the generation of effective immune responses. Adequate iron status is therefore a prerequisite for optimal child development, yet nutritional iron deficiency and inflammation-related iron restriction are widespread amongst young children in low- and middle-income countries (LMICs), meaning iron demands are frequently not met. Consequently, therapeutic iron interventions are commonly recommended. However, iron also influences infection pathogenesis: iron deficiency reduces the risk of malaria, while therapeutic iron may increase susceptibility to malaria, respiratory and gastrointestinal infections, besides reshaping the intestinal microbiome. This means caution should be employed in administering iron interventions to young children in LMIC settings with high infection burdens. In this narrative review, we first examine demand and supply of iron during early childhood, in relation to the molecular understanding of systemic iron control. We then evaluate the importance of iron for distinct aspects of physiology and development, particularly focusing on young LMIC children. We finally discuss the implications and potential for interventions aimed at improving iron status whilst minimising infection-related risks in such settings. Optimal iron intervention strategies will likely need to be individually or setting-specifically adapted according to iron deficiency, inflammation status and infection risk, while maximising iron bioavailability and considering the trade-offs between benefits and risks for different aspects of physiology. The effectiveness of alternative approaches not centred around nutritional iron interventions for children should also be thoroughly evaluated: these include direct targeting of common causes of infection/inflammation, and maternal iron administration during pregnancy.
Collapse
Affiliation(s)
- Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| | - Diego Moretti
- Laboratory of Human Nutrition, Institute of Food Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, CH-8092 Zürich, Switzerland.
- Nutrition Group, Health Department, Swiss Distance University of Applied Sciences, CH-8105 Regensdorf, Switzerland.
| |
Collapse
|
22
|
Efficacy of Nutrition and WASH/Malaria Educational Community-Based Interventions in Reducing Anemia in Preschool Children from Bengo, Angola: Study Protocol of a Randomized Controlled Trial. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16030466. [PMID: 30764549 PMCID: PMC6388146 DOI: 10.3390/ijerph16030466] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 01/26/2019] [Accepted: 02/02/2019] [Indexed: 01/26/2023]
Abstract
Angola reports one of the highest infant mortality rates in the world, and anemia represents one of its important causes. Recent studies, in under-five children from the Bengo province of Angola, described high prevalence’s, suggesting malaria, undernutrition and urogenital schistosomiasis as important contributors for the occurrence and spatial variations of anemia. Educational community-based interventions, either in Nutrition and Water, Sanitation, Hygiene and Malaria are recommended to correct anemia. Herein, we designed a cluster-randomized controlled trial to study the efficacy of two educational-plus-therapeutic interventions in the reduction of anemia: one in nutrition and the other in WASH/Malaria. Socioeconomic, nutritional, anthropometric, parasitological and biochemical data will be collected from all willing-to-participate children, aging under four and resident in the Health Research Center of Angola study area. Considering the multifactorial causes of this condition, determining the efficacy of both interventions might help documenting weaknesses and opportunities for planning integrated strategies to reduce anemia.
Collapse
|
23
|
Tong L, Kauer J, Chen X, Chu K, Dou H, Smith ZJ. Screening of nutritional and genetic anemias using elastic light scattering. LAB ON A CHIP 2018; 18:3263-3271. [PMID: 30264831 DOI: 10.1039/c8lc00377g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Anemia affects more than ¼ of the world's population, mostly concentrated in low-resource areas, and carries serious health risks. Yet current screening methods are inadequate due to their inability to separate iron deficiency anemia (IDA) from genetic anemias such as thalassemia trait (TT), thus preventing targeted supplementation of oral iron. Here we present an accurate approach to diagnose anemia and anemia type using measures of pediatric red cell morphology determined through machine learning applied to optical light scattering measurements. A partial least squares model shows that our system can accurately extract mean cell volume, red cell size heterogeneity, and mean cell hemoglobin concentration with high accuracy. These clinical parameters (or the raw data itself) can be submitted to machine learning algorithms such as quadratic discriminants or support vector machines to classify a patient into healthy, IDA, or TT. A clinical trial conducted on 268 Chinese children, of which 49 had IDA and 24 had TT, shows >98% sensitivity and specificity for diagnosing anemia, with 81% sensitivity and 86% specificity for discriminating IDA and TT. The majority of the misdiagnoses are IDA patients with particularly severe anemia, possibly requiring hospital care. Therefore, in a screening paradigm where anyone testing positive for TT is sent to the hospital for gold-standard diagnosis and care, we maximize patient benefit while minimizing use of scarce resources.
Collapse
Affiliation(s)
- Lieshu Tong
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui, China.
| | | | | | | | | | | |
Collapse
|
24
|
Abstract
Malaria is a major cause of anaemia in tropical areas. Malaria infection causes haemolysis of infected and uninfected erythrocytes and bone marrow dyserythropoiesis which compromises rapid recovery from anaemia. In areas of high malaria transmission malaria nearly all infants and young children, and many older children and adults have a reduced haemoglobin concentration as a result. In these areas severe life-threatening malarial anaemia requiring blood transfusion in young children is a major cause of hospital admission, particularly during the rainy season months when malaria transmission is highest. In severe malaria, the mortality rises steeply below an admission haemoglobin of 3 g/dL, but it also increases with higher haemoglobin concentrations approaching the normal range. In the management of severe malaria transfusion thresholds remain uncertain. Prevention of malaria by vector control, deployment of insecticide-treated bed nets, prompt and accurate diagnosis of illness and appropriate use of effective anti-malarial drugs substantially reduces the burden of anaemia in tropical countries.
Collapse
Affiliation(s)
- Nicholas J White
- Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
25
|
Ntamabyaliro NY, Burri C, Nzolo DB, Engo AB, Lula YN, Mampunza SM, Nsibu CN, Mesia GK, Kayembe JMN, Likwela JL, Kintaudi LM, Tona GL. Drug use in the management of uncomplicated malaria in public health facilities in the Democratic Republic of the Congo. Malar J 2018; 17:189. [PMID: 29724210 PMCID: PMC5934796 DOI: 10.1186/s12936-018-2332-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 04/25/2018] [Indexed: 02/04/2023] Open
Abstract
Background Malaria the first causes of death from parasitic infection worldwide. Interventions to reduce the burden of malaria have produced a tremendous drop in malaria morbidity and mortality. However, progress is slower in DRC, which shares with Nigeria 39% of deaths related to malaria globally. Inappropriate use of drugs may be one of the factors of this below-average performance. The aim of this study was to describe the use of drugs in the management of uncomplicated malaria in public health facilities in DRC. Methods A drug use study was carried out in DRC from January to March 2014. In each of the former 11 provinces of DRC, one Rural Health Centre, one Urban Health Centre and one General Hospital were selected. In each of them, 100 patient’s files containing prescription of anti-malarials from January to December 2013 were randomly selected. Among them, all of the files with diagnosis of uncomplicated malaria were included in this study. Prescribed anti-malarials, co-prescribed drugs and their indications were collected. Descriptive analyses were performed. Results A total of 2300 files out of 3300 (69.7%) concerned uncomplicated malaria and were included in analysis. Malaria treatment was initiated after a positive RDT or microscopy in 51.5% of cases, upon suspicion without requesting biological confirmation in 37% and despite negative results in 11%. Twenty-nine (29) different treatment regimens were used. The drugs recommended by the National Malaria Control Programme were used in 54.3% of cases (artesunate–amodiaquine 37.4% or artemether–lumefantrine 16.9%). The second most used anti-malarial was quinine (32.4%). Apart from anti-malarials, an average of 3.1 drugs per patient were prescribed, among which antibiotics (67.9%), analgesics and non-steroidal anti-inflammatory (NSAIDs) (all abbreviations to be explicated on first use) (70.6%), vitamins (29.1%), anaemia drugs, including blood transfusion (9.1%) and corticosteroids (5.7%), In 51.4% of cases there was no indication for the concomitant medication. Conclusion Management of uncomplicated malaria in DRC is characterized by a low adherence to treatment policy, numerous treatment regimens, and abundant concomitant medication potentially harmful to the patient. This may contribute to the low performance of DRC in malaria control. Determinant of this irrational use of drugs need to be assessed in order to formulate and implement efficient corrective measures.
Collapse
Affiliation(s)
- Nsengi Y Ntamabyaliro
- Unité de Pharmacologie Clinique, Faculté de Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo.
| | - Christian Burri
- Division of Medicines Research, Swiss Tropical and Public Health Institute, Basel, Switzerland.,Department of Pharmaceutical Sciences, University of Basel, Basel, Switzerland
| | - Didier B Nzolo
- Unité de Pharmacologie Clinique, Faculté de Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Aline B Engo
- Unité de Pharmacologie Clinique, Faculté de Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Yves N Lula
- Unité de Pharmacologie Clinique, Faculté de Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo.,Epidemiology for Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Samuel M Mampunza
- Unité de Pharmacologie Clinique, Faculté de Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo.,Centre Neuropsychopathologique, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Célestin N Nsibu
- Unité de Pharmacologie Clinique, Faculté de Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo.,Département de Pédiatrie, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Gauthier K Mesia
- Unité de Pharmacologie Clinique, Faculté de Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Jean-Marie N Kayembe
- Unité de Pharmacologie Clinique, Faculté de Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo.,Département de Médecine Interne, Faculté de Médecine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Joris L Likwela
- Programme National de Lutte Contre le Paludisme, Ministère de la Santé, RDC, Kinshasa, Democratic Republic of the Congo
| | | | - Gaston L Tona
- Unité de Pharmacologie Clinique, Faculté de Medicine, Université de Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
26
|
Moya-Alvarez V, Ouédraogo S, Accrombessi M, Cot M. High folate levels are not associated with increased malaria risk but with reduced anaemia rates in the context of high-dosed folate supplements and intermittent preventive treatment against malaria in pregnancy with sulphadoxine-pyrimethamine in Benin. Trop Med Int Health 2018; 23:582-588. [PMID: 29683544 DOI: 10.1111/tmi.13064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
OBJECTIVES To investigate whether high-dosed folate supplements might diminish the efficacy of malaria intermittent preventive treatment in pregnancy (IPTp) with sulphadoxine-pyrimethamine (SP) in a cohort of pregnant women in Benin, where malaria is holoendemic. METHODS We followed 318 women during the entire pregnancy and analysed haematological and Plasmodium falciparum indicators in the context of an intermittent preventive treatment trial in Benin. During the follow-up, women received two-dose IPTp (1500/75 mg of SP per dose) at the maternity clinic and 600 mg of albendazole, 200 mg ferrous sulphate and 5 mg folic acid per day for home treatment. RESULTS High folate levels were not associated with increased malaria risk (adjusted OR (aOR) = 0.51 (95% CI: 0.17; 1.56, P-value = 0.24)), nor with increased P. falciparum density (beta coefficient = -0.26 (95% CI: -0.53; 0.02), P-value = 0.07) in a randomised trial of IPTp in Benin. On the contrary, higher iron levels were statistically associated with increased odds of a positive blood smear (aOR = 1.7 95% CI (1.2; 2.3), P-value < 0.001) and P. falciparum parasite density (beta coefficient = 0.2 95% CI (0.1; 0.3), P-value < 0.001). High folate levels were statistically associated with decreased odds of anaemia (aOR = -0.30 95% CI (0.10; 0.88), P-value = 0.03). CONCLUSIONS High folate levels are not associated with increased malarial risk in a prospective longitudinal cohort in the context of both iron and high-dosed folate supplements and IPTp. They are associated with reduced risk of anaemia, which is particularly important because iron, also given to treat anaemia, might be associated with increased malaria risk.
Collapse
Affiliation(s)
- Violeta Moya-Alvarez
- UMR 216 Institut de Recherche pour le Développement, MERIT - Mère et enfant face aux infections tropicales, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Réseau doctoral de l'Ecole des Hautes Etudes en Santé Publique, Rennes, France
| | - Smaila Ouédraogo
- Institut de Recherche pour le Développement, MERIT - Mère et enfant face aux infections tropicales, Cotonou, Benin.,Unité de Formation et de Recherche en Sciences de la Santé, Université de Ouagadougou, Ouagadougou, Burkina Faso.,Public Health Department, Centre Hospitalier Universitaire Yalgado Ouédraogo (CHU-YO), Ouagadougou, Burkina Faso
| | - Manfred Accrombessi
- UMR 216 Institut de Recherche pour le Développement, MERIT - Mère et enfant face aux infections tropicales, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France.,Réseau doctoral de l'Ecole des Hautes Etudes en Santé Publique, Rennes, France.,Institut de Recherche pour le Développement, MERIT - Mère et enfant face aux infections tropicales, Cotonou, Benin
| | - Michel Cot
- UMR 216 Institut de Recherche pour le Développement, MERIT - Mère et enfant face aux infections tropicales, Université Paris Descartes, Sorbonne Paris Cité, Paris, France.,Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
27
|
Approaches for Reducing the Risk of Early-Life Iron Deficiency-Induced Brain Dysfunction in Children. Nutrients 2018; 10:nu10020227. [PMID: 29462970 PMCID: PMC5852803 DOI: 10.3390/nu10020227] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 02/12/2018] [Accepted: 02/14/2018] [Indexed: 12/23/2022] Open
Abstract
Iron deficiency is the most common micronutrient deficiency in the world. Women of reproductive age and young children are particularly vulnerable. Iron deficiency in late prenatal and early postnatal periods can lead to long-term neurobehavioral deficits, despite iron treatment. This may occur because screening and treatment of iron deficiency in children is currently focused on detection of anemia and not neurodevelopment. Anemia is the end-stage state of iron deficiency. The brain becomes iron deficient before the onset of anemia due to prioritization of the available iron to the red blood cells (RBCs) over other organs. Brain iron deficiency, independent of anemia, is responsible for the adverse neurological effects. Early diagnosis and treatment of impending brain dysfunction in the pre-anemic stage is necessary to prevent neurological deficits. The currently available hematological indices are not sensitive biomarkers of brain iron deficiency and dysfunction. Studies in non-human primate models suggest that serum proteomic and metabolomic analyses may be superior for this purpose. Maternal iron supplementation, delayed clamping or milking of the umbilical cord, and early iron supplementation improve the iron status of at-risk infants. Whether these strategies prevent iron deficiency-induced brain dysfunction has yet to be determined. The potential for oxidant stress, altered gastrointestinal microbiome and other adverse effects associated with iron supplementation cautions against indiscriminate iron supplementation of children in malaria-endemic regions and iron-sufficient populations.
Collapse
|
28
|
Goheen MM, Bah A, Wegmüller R, Verhoef H, Darboe B, Danso E, Prentice AM, Cerami C. Host iron status and erythropoietic response to iron supplementation determines susceptibility to the RBC stage of falciparum malaria during pregnancy. Sci Rep 2017; 7:17674. [PMID: 29247172 PMCID: PMC5732269 DOI: 10.1038/s41598-017-16896-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/14/2017] [Indexed: 01/14/2023] Open
Abstract
Anaemia and malaria are both common in pregnant women in Sub-Saharan Africa. Previous evidence has shown that iron supplementation may increase malaria risk. In this observational cohort study, we evaluated P. falciparum pathogenesis in vitro in RBCs from pregnant women during their 2nd and 3rd trimesters. RBCs were collected and assayed before (n = 327), 14 days (n = 82), 49 days (n = 112) and 84 days (n = 115) after iron supplementation (60 mg iron as ferrous fumarate daily). P. falciparum erythrocytic stage growth in vitro is reduced in anaemic pregnant women at baseline, but increased during supplementation. The elevated growth rates parallel increases in circulating CD71-positive reticulocytes and other markers of young RBCs. We conclude that Plasmodium growth in vitro is associated with elevated erythropoiesis, an obligate step towards erythroid recovery in response to supplementation. Our findings support current World Health Organization recommendations that iron supplementation be given in combination with malaria prevention and treatment services in malaria endemic areas.
Collapse
Affiliation(s)
- Morgan M Goheen
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, Chapel Hill, NC, USA
| | - Amat Bah
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia
| | - Rita Wegmüller
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia
| | - Hans Verhoef
- London School of Hygiene & Tropical Medicine, London, UK.,Division of Human Nutrition and Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| | - Bakary Darboe
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia
| | - Ebrima Danso
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia
| | - Andrew M Prentice
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia.,London School of Hygiene & Tropical Medicine, London, UK
| | - Carla Cerami
- Nutrition Theme, MRC Unit The Gambia, MRC International Nutrition Group, Keneba, The Gambia.
| |
Collapse
|
29
|
Abstract
The global impact of childhood malnutrition is staggering. The synergism between malnutrition and infection contributes substantially to childhood morbidity and mortality. Anthropometric indicators of malnutrition are associated with the increased risk and severity of infections caused by many pathogens, including viruses, bacteria, protozoa, and helminths. Since childhood malnutrition commonly involves the inadequate intake of protein and calories, with superimposed micronutrient deficiencies, the causal factors involved in impaired host defense are usually not defined. This review focuses on literature related to impaired host defense and the risk of infection in primary childhood malnutrition. Particular attention is given to longitudinal and prospective cohort human studies and studies of experimental animal models that address causal, mechanistic relationships between malnutrition and host defense. Protein and micronutrient deficiencies impact the hematopoietic and lymphoid organs and compromise both innate and adaptive immune functions. Malnutrition-related changes in intestinal microbiota contribute to growth faltering and dysregulated inflammation and immune function. Although substantial progress has been made in understanding the malnutrition-infection synergism, critical gaps in our understanding remain. We highlight the need for mechanistic studies that can lead to targeted interventions to improve host defense and reduce the morbidity and mortality of infectious diseases in this vulnerable population.
Collapse
|
30
|
Engle-Stone R, Aaron GJ, Huang J, Wirth JP, Namaste SM, Williams AM, Peerson JM, Rohner F, Varadhan R, Addo OY, Temple V, Rayco-Solon P, Macdonald B, Suchdev PS. Predictors of anemia in preschool children: Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project. Am J Clin Nutr 2017; 106:402S-415S. [PMID: 28615260 PMCID: PMC5490650 DOI: 10.3945/ajcn.116.142323] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Background: A lack of information on the etiology of anemia has hampered the design and monitoring of anemia-control efforts.Objective: We aimed to evaluate predictors of anemia in preschool children (PSC) (age range: 6-59 mo) by country and infection-burden category.Design: Cross-sectional data from 16 surveys (n = 29,293) from the Biomarkers Reflecting Inflammation and Nutritional Determinants of Anemia (BRINDA) project were analyzed separately and pooled by category of infection burden. We assessed relations between anemia (hemoglobin concentration <110 g/L) and severe anemia (hemoglobin concentration <70 g/L) and individual-level (age, anthropometric measures, micronutrient deficiencies, malaria, and inflammation) and household-level predictors; we also examined the proportion of anemia with concomitant iron deficiency (defined as an inflammation-adjusted ferritin concentration <12 μg/L). Countries were grouped into 4 categories on the basis of risk and burden of infectious disease, and a pooled multivariable logistic regression analysis was conducted for each group.Results: Iron deficiency, malaria, breastfeeding, stunting, underweight, inflammation, low socioeconomic status, and poor sanitation were each associated with anemia in >50% of surveys. Associations between breastfeeding and anemia were attenuated by controlling for child age, which was negatively associated with anemia. The most consistent predictors of severe anemia were malaria, poor sanitation, and underweight. In multivariable pooled models, child age, iron deficiency, and stunting independently predicted anemia and severe anemia. Inflammation was generally associated with anemia in the high- and very high-infection groups but not in the low- and medium-infection groups. In PSC with anemia, 50%, 30%, 55%, and 58% of children had concomitant iron deficiency in low-, medium-, high-, and very high-infection categories, respectively.Conclusions: Although causal inference is limited by cross-sectional survey data, results suggest anemia-control programs should address both iron deficiency and infections. The relative importance of factors that are associated with anemia varies by setting, and thus, country-specific data are needed to guide programs.
Collapse
Affiliation(s)
| | - Grant J Aaron
- Global Alliance for Improved Nutrition, Geneva, Switzerland
| | - Jin Huang
- Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University, Baltimore, MD
| | | | - Sorrel Ml Namaste
- Strengthening Partnerships, Results, and Innovations in Nutrition Globally, Arlington, VA
| | | | - Janet M Peerson
- Department of Nutrition, University of California, Davis, CA
| | | | - Ravi Varadhan
- Division of Biostatistics and Bioinformatics, Department of Oncology, Johns Hopkins University, Baltimore, MD
| | - O Yaw Addo
- Department of Global Health, Rollins School of Public Health, Atlanta, GA
| | - Victor Temple
- School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
| | - Pura Rayco-Solon
- Department of Nutrition for Health and Development, WHO, Geneva, Switzerland
| | | | - Parminder S Suchdev
- Department of Pediatrics, Emory University, Atlanta, GA;
- Department of Global Health, Rollins School of Public Health, Atlanta, GA
- Nutrition Branch, CDC, Atlanta, GA
| |
Collapse
|
31
|
Mwangi MN, Prentice AM, Verhoef H. Safety and benefits of antenatal oral iron supplementation in low-income countries: a review. Br J Haematol 2017; 177:884-895. [PMID: 28272734 PMCID: PMC5485170 DOI: 10.1111/bjh.14584] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The World Health Organization recommends universal iron supplementation of 30-60 mg/day in pregnancy but coverage is low in most countries. Its efficacy is uncertain, however, and there has been a vigorous debate in the last decade about its safety, particularly in areas with a high burden of malaria and other infectious diseases. We reviewed the evidence on the safety and efficacy of antenatal iron supplementation in low-income countries. We found no evidence that daily supplementation at a dose of 60 mg leads to increased maternal Plasmodium infection risk. On the other hand, recent meta-analyses found that antenatal iron supplementation provides benefits for maternal health (severe anaemia at postpartum, blood transfusion). For neonates, there was a reduced prematurity risk, and only a small or no effect on birth weight. A recent trial showed, however, that benefits of antenatal iron supplementation on maternal and neonatal health vary by maternal iron status, with substantial benefits in iron-deficient women. The benefits of universal iron supplementation are likely to vary with the prevalence of iron deficiency. As a consequence, the balance between benefits and risks is probably more favourable in low-income countries than in high-income countries despite the higher exposure to infectious pathogens.
Collapse
Affiliation(s)
- Martin N Mwangi
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- Nutrition and Health Department, School of Public Health and Community Development, Maseno University, Maseno, Kenya
| | - Andrew M Prentice
- MRC Unit The Gambia, Banjul, The Gambia
- MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Hans Verhoef
- Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
- MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
32
|
Abstract
OBJECTIVE Because iron is both an essential and toxic micronutrient influencing the development of microbial infections, we evaluated the usefulness of iron parameters as outcome predictors in ICU patients. DESIGN Prospective clinical single-center non-interventional study. SETTING General internal medicine ICU; German University hospital. PATIENTS One hundred and twelve septic and 43 nonseptic ICU patients, 156 healthy blood donors. MEASUREMENTS AND MAIN RESULTS Serum iron parameters at admission were correlated with short and long term mortality in ICU subjects. Both hepcidin and ferritin concentrations were significantly elevated in ICU patients compared with blood donors and were the highest in septic patients. On the contrary, serum iron and transferrin levels were decreased in ICU subjects with lowest values among septic patients. Hepcidin values correlated with ferritin levels, and serum iron correlated strongly with transferrin saturation. A moderate correlation of hepcidin, ferritin, and transferrin with inflammatory parameters was noted. Both short- and long-term survivors displayed higher ferritin/transferrin levels and lower transferrin saturation. In Kaplan-Meier analyses, low iron levels (cutoff 10.5 μmol/mL), low transferrin saturation (cutoff 55%), and high serum transferrin concentrations (cutoff 1.6 g/L) were associated with short- and long-term survival. In the subgroup of septic ICU subjects, low iron levels and transferrin saturation went along with a nonlethal outcome. CONCLUSIONS Our findings demonstrate that parameters of iron metabolism, particularly transferrin saturation, that reflect serum iron availability, are strong outcome predictors in ICU patients. These data suggest that a failure of iron homeostasis with increased iron availability in serum occurs in lethally ill ICU patients and should trigger prospective clinical trials evaluating the usefulness of iron-chelating therapy in critical illness and sepsis.
Collapse
|
33
|
Hibberd MC, Wu M, Rodionov DA, Li X, Cheng J, Griffin NW, Barratt MJ, Giannone RJ, Hettich RL, Osterman AL, Gordon JI. The effects of micronutrient deficiencies on bacterial species from the human gut microbiota. Sci Transl Med 2017; 9:eaal4069. [PMID: 28515336 PMCID: PMC5524138 DOI: 10.1126/scitranslmed.aal4069] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/14/2017] [Indexed: 12/13/2022]
Abstract
Vitamin and mineral (micronutrient) deficiencies afflict 2 billion people. Although the impact of these imbalances on host biology has been studied extensively, much less is known about their effects on the gut microbiota of developing or adult humans. Therefore, we established a community of cultured, sequenced human gut-derived bacterial species in gnotobiotic mice and fed the animals a defined micronutrient-sufficient diet, followed by a derivative diet devoid of vitamin A, folate, iron, or zinc, followed by return to the sufficient diet. Acute vitamin A deficiency had the largest effect on bacterial community structure and metatranscriptome, with Bacteroides vulgatus, a prominent responder, increasing its abundance in the absence of vitamin A. Applying retinol selection to a library of 30,300 B. vulgatus transposon mutants revealed that disruption of acrR abrogated retinol sensitivity. Genetic complementation studies, microbial RNA sequencing, and transcription factor-binding assays disclosed that AcrR is a repressor of an adjacent AcrAB-TolC efflux system. Retinol efflux measurements in wild-type and acrR-mutant strains plus treatment with a pharmacologic inhibitor of the efflux system revealed that AcrAB-TolC is a determinant of retinol and bile acid sensitivity in B. vulgatus Acute vitamin A deficiency was associated with altered bile acid metabolism in vivo, raising the possibility that retinol, bile acid metabolites, and AcrAB-TolC interact to influence the fitness of B. vulgatus and perhaps other microbiota members. This type of preclinical model can help to develop mechanistic insights about the effects of, and more effective treatment strategies for micronutrient deficiencies.
Collapse
Affiliation(s)
- Matthew C Hibberd
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Meng Wu
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Dmitry A Rodionov
- A. A. Kharkevich Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow 127994, Russia
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Xiaoqing Li
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jiye Cheng
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas W Griffin
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Michael J Barratt
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Richard J Giannone
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Robert L Hettich
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA
| | - Andrei L Osterman
- Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92037, USA
| | - Jeffrey I Gordon
- Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
- Center for Gut Microbiome and Nutrition Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
34
|
Teshome EM, Otieno W, Terwel SR, Osoti V, Demir AY, Andango PEA, Prentice AM, Verhoef H. Comparison of home fortification with two iron formulations among Kenyan children: Rationale and design of a placebo-controlled non-inferiority trial. Contemp Clin Trials Commun 2017; 7:1-10. [PMID: 29696163 PMCID: PMC5898495 DOI: 10.1016/j.conctc.2017.04.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 03/11/2017] [Accepted: 04/08/2017] [Indexed: 10/24/2022] Open
Abstract
Introduction Home fortification powders containing iron and other micronutrients have been recommended by World Health Organisation to prevent iron deficiency anaemia in areas of high prevalence. There is evidence, however, that home fortification at this iron dose may cause gastrointestinal adverse events including diarrhoea. Providing a low dose of highly absorbable iron (3 mg iron as NaFeEDTA) may be safer because the decreased amount of iron in the gut lumen can possibly reduce the burden of these adverse effects whilst resulting in similar or higher amounts of absorbed iron. Objective To show non-inferiority of home fortification with 3 mg iron as NaFeEDTA compared with 12.5 mg iron as encapsulated ferrous fumarate, with haemoglobin response as the primary outcome. Design 338 Kenyan children aged 12-36 months will be randomly allocated to daily home fortification with either: a) 3 mg iron as NaFeEDTA (experimental treatment), b) 12.5 mg iron as encapsulated ferrous fumarate (reference), or c) placebo. At baseline, after 30 days of intervention and within 100 days post-intervention, blood samples will be assessed for primary outcome (haemoglobin concentration), iron status markers, Plasmodium parasitaemia and inflammation markers. Urine and stool samples will be assessed for hepcidin concentrations and inflammation, respectively. Adherence will be assessed by self-reporting, sachet counts and by an electronic monitoring device. Conclusion If daily home fortification with a low dose of iron (3 mg NaFeEDTA) has similar or superior efficacy to a high dose (12.5 mg ferrous fumarate) then it would be the preferred choice for treatment of iron deficiency anaemia in children.
Collapse
Affiliation(s)
- Emily M Teshome
- MRCG Keneba, MRC Unit The Gambia, Banjul, Gambia.,MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Walter Otieno
- Maseno University, School of Medicine, Maseno, Kenya
| | - Sofie R Terwel
- Wageningen University, Cell Biology and Immunology Group, Division of Human Nutrition, Wageningen, The Netherlands
| | - Victor Osoti
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Ayşe Y Demir
- Meander Medical Centre, Laboratory for Clinical Chemistry, Amersfoort, The Netherlands
| | - Pauline E A Andango
- Maseno University, School of Public Health and Community Development, Maseno, Kenya
| | - Andrew M Prentice
- MRCG Keneba, MRC Unit The Gambia, Banjul, Gambia.,MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Hans Verhoef
- MRCG Keneba, MRC Unit The Gambia, Banjul, Gambia.,MRC International Nutrition Group, London School of Hygiene and Tropical Medicine, London, UK.,Wageningen University, Cell Biology and Immunology Group, Division of Human Nutrition, Wageningen, The Netherlands
| |
Collapse
|
35
|
Darling AM, Mugusi FM, Etheredge AJ, Gunaratna NS, Abioye AI, Aboud S, Duggan C, Mongi R, Spiegelman D, Roberts D, Hamer DH, Kain KC, Fawzi WW. Vitamin A and Zinc Supplementation Among Pregnant Women to Prevent Placental Malaria: A Randomized, Double-Blind, Placebo-Controlled Trial in Tanzania. Am J Trop Med Hyg 2017; 96:826-834. [PMID: 28115667 DOI: 10.4269/ajtmh.16-0599] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AbstractVitamin A and zinc are important for immune function and may improve host defense against malaria and reduce the risk of adverse pregnancy outcomes. Our objective was to determine whether daily oral supplementation with either or both nutrients starting in the first trimester reduces the risk of placental malaria and adverse pregnancy outcomes. We undertook a randomized, double-blind placebo-controlled trial with a factorial design among 2,500 human immunodeficiency virus-negative primigravid or secundigravid pregnant women in their first trimester of pregnancy in Dar es Salaam, Tanzania. We randomly allocated equal numbers of participants to 2,500 IU of vitamin A, 25 mg of zinc, both 2,500 IU of vitamin A and 25 mg of zinc, or a placebo until delivery. A total of 625 participants were allocated to each treatment group. Our primary outcome, placental malaria infection (past or current), was assessed in all randomized participants for whom placental samples were obtained at delivery (N = 1,404), which represents 56% of total participants and 62% of all pregnancies lasting 28 weeks or longer (N = 2,266). Birth outcomes were obtained for 2,434 of the 2,500 randomized participants. Secondary outcomes included small for gestational age (SGA) births and prematurity. All analyses were intent to treat. Those who received zinc had a lower risk of histopathology-positive placental malaria compared with those who did not receive zinc (risk ratio = 0.64, 95% confidence interval = 0.44, 0.91), but neither nutrient had an effect on polymerase chain reaction-positive malaria, SGA, or prematurity. No safety concerns were identified. We recommend additional studies in other geographic locations to confirm these findings.
Collapse
Affiliation(s)
- Anne Marie Darling
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Ferdinand M Mugusi
- Department of Internal Medicine, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Analee J Etheredge
- Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Nilupa S Gunaratna
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Ajibola Ibraheem Abioye
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Said Aboud
- Department of Microbiology and Immunology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Christopher Duggan
- Department of Nutrition, Harvard TH Chan School of Public Health, Boston, Massachusetts.,Division of Gastroenterology, Hepatology and Nutrition, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts.,Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Robert Mongi
- Department of Parasitology/Medical Entomology, School of Public Health and Social Sciences, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Donna Spiegelman
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts.,Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard TH Chan School of Public Health, Boston, Massachusetts.,Department of Biostatistics, Harvard TH Chan School of Public Health, Boston, Massachusetts
| | - Drucilla Roberts
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Davidson H Hamer
- Department of Global Health, Boston University School of Public Health, Boston, Massachusetts.,Center for Global Health and Development, Boston University School of Public Health, Boston, Massachusetts
| | - Kevin C Kain
- Tropical Disease Unit, Division of Infectious Diseases, Department of Medicine, University of Toronto, Toronto, Canada.,Sandra A. Rotman Laboratories, Sandra Rotman Centre for Global Health, University Health Network-Toronto General Hospital, University of Toronto, Toronto, Canada.,Depatment of Medicine, University of Toronto, Toronto, Canada
| | - Wafaie W Fawzi
- Department of Global Health and Population, Harvard TH Chan School of Public Health, Boston, Massachusetts.,Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, Massachusetts.,Department of Nutrition, Harvard TH Chan School of Public Health, Boston, Massachusetts
| |
Collapse
|
36
|
Prentice AM, Mendoza YA, Pereira D, Cerami C, Wegmuller R, Constable A, Spieldenner J. Dietary strategies for improving iron status: balancing safety and efficacy. Nutr Rev 2017; 75:49-60. [PMID: 27974599 PMCID: PMC5155616 DOI: 10.1093/nutrit/nuw055] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In light of evidence that high-dose iron supplements lead to a range of adverse events in low-income settings, the safety and efficacy of lower doses of iron provided through biological or industrial fortification of foodstuffs is reviewed. First, strategies for point-of-manufacture chemical fortification are compared with biofortification achieved through plant breeding. Recent insights into the mechanisms of human iron absorption and regulation, the mechanisms by which iron can promote malaria and bacterial infections, and the role of iron in modifying the gut microbiota are summarized. There is strong evidence that supplemental iron given in nonphysiological amounts can increase the risk of bacterial and protozoal infections (especially malaria), but the use of lower quantities of iron provided within a food matrix, ie, fortified food, should be safer in most cases and represents a more logical strategy for a sustained reduction of the risk of deficiency by providing the best balance of risk and benefits. Further research into iron compounds that would minimize the availability of unabsorbed iron to the gut microbiota is warranted.
Collapse
Affiliation(s)
- Andrew M Prentice
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| | - Yery A Mendoza
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Dora Pereira
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Carla Cerami
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Rita Wegmuller
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Anne Constable
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| | - Jörg Spieldenner
- A.M. Prentice, D. Pereira, C. Cerami, and R. Wegmuller are with the Medical Research Council (MRC) Unit The Gambia, Fajara, Banjul, The Gambia. A.M. Prentice and R. Wegmuller are with the MRC International Nutrition Group, London School of Hygiene & Tropical Medicine, London, United Kingdom. Y.A. Mendoza, A. Constable, and J. Spieldenner are with the Nestlé Research Centre, Lausanne, Switzerland. D. Pereira is with the Department of Pathology, University of Cambridge, Cambridge, United Kingdom. C. Cerami is with the Division of Infectious Diseases, Institute for Global Health & Infectious Diseases, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA
| |
Collapse
|
37
|
Andrew A, Attanasio O, Fitzsimons E, Rubio-Codina M. Why is multiple micronutrient powder ineffective at reducing anaemia among 12-24 month olds in Colombia? Evidence from a randomised controlled trial. SSM Popul Health 2016; 2:95-104. [PMID: 29349132 PMCID: PMC5757801 DOI: 10.1016/j.ssmph.2016.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/08/2016] [Accepted: 02/08/2016] [Indexed: 11/17/2022] Open
Abstract
In Colombia's bottom socio-economic strata, 46.6% of children under two are anaemic. A prevalence of above 20% falls within the WHO guidelines for daily supplementation with multiple micronutrient powder (MNP). To evaluate the effect of daily MNP supplementation on anaemia amongst Colombian children aged 12-24 months we ran a cluster RCT (n=1440). In previous work, we found the intervention had no impact on haemoglobin or anaemia in this population. In this current paper, we investigate this null result and find it cannot be explained by an underpowered study design, inaccurate measurements, low adoption of and compliance with the intervention, or crowding out through dietary substitution. We conclude that our intervention was ineffective at reducing rates of childhood anaemia because MNP itself was inefficacious in our population, rather than poor implementation of or adherence to the planned intervention. Further analysis of our data and secondary data suggests that the evolution with age of childhood anaemia in Colombia, and its causes, appear different from those in settings where MNP has been effective. Firstly, rates of anaemia peak at much earlier ages and then fall rapidly. Secondly, anaemia that remains after the first year of life is relatively, and increasingly as children get older, unrelated to iron deficiency. We suggest that factors during gestation, birth, breastfeeding and early weaning may be important in explaining very high rates of anaemia in early infancy. However, the adverse effects of these factors appear to be largely mitigated by the introduction of solid foods that often include meat. This renders population wide MNP supplementation, provided after a diet of solid foods has become established, an ineffective instrument with which to target Colombia's childhood anaemia problem.
Collapse
Affiliation(s)
- Alison Andrew
- Institute for Fiscal Studies, 7 Ridgmount Street, London WC1E 7AE, UK
| | - Orazio Attanasio
- Institute for Fiscal Studies, 7 Ridgmount Street, London WC1E 7AE, UK
- University College London, London, UK
| | - Emla Fitzsimons
- Institute for Fiscal Studies, 7 Ridgmount Street, London WC1E 7AE, UK
- UCL Institute of Education, London, UK
| | - Marta Rubio-Codina
- Institute for Fiscal Studies, 7 Ridgmount Street, London WC1E 7AE, UK
- Inter-American Development Bank, Washington DC, USA
| |
Collapse
|
38
|
Goheen MM, Wegmüller R, Bah A, Darboe B, Danso E, Affara M, Gardner D, Patel JC, Prentice AM, Cerami C. Anemia Offers Stronger Protection Than Sickle Cell Trait Against the Erythrocytic Stage of Falciparum Malaria and This Protection Is Reversed by Iron Supplementation. EBioMedicine 2016; 14:123-130. [PMID: 27852523 PMCID: PMC5161422 DOI: 10.1016/j.ebiom.2016.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 11/05/2016] [Accepted: 11/07/2016] [Indexed: 11/28/2022] Open
Abstract
Background Iron deficiency causes long-term adverse consequences for children and is the most common nutritional deficiency worldwide. Observational studies suggest that iron deficiency anemia protects against Plasmodium falciparum malaria and several intervention trials have indicated that iron supplementation increases malaria risk through unknown mechanism(s). This poses a major challenge for health policy. We investigated how anemia inhibits blood stage malaria infection and how iron supplementation abrogates this protection. Methods This observational cohort study occurred in a malaria-endemic region where sickle-cell trait is also common. We studied fresh RBCs from anemic children (135 children; age 6–24 months; hemoglobin < 11 g/dl) participating in an iron supplementation trial (ISRCTN registry, number ISRCTN07210906) in which they received iron (12 mg/day) as part of a micronutrient powder for 84 days. Children donated RBCs at baseline, Day 49, and Day 84 for use in flow cytometry-based in vitro growth and invasion assays with P. falciparum laboratory and field strains. In vitro parasite growth in subject RBCs was the primary endpoint. Findings Anemia substantially reduced the invasion and growth of both laboratory and field strains of P. falciparum in vitro (~ 10% growth reduction per standard deviation shift in hemoglobin). The population level impact against erythrocytic stage malaria was 15.9% from anemia compared to 3.5% for sickle-cell trait. Parasite growth was 2.4 fold higher after 49 days of iron supplementation relative to baseline (p < 0.001), paralleling increases in erythropoiesis. Interpretation These results confirm and quantify a plausible mechanism by which anemia protects African children against falciparum malaria, an effect that is substantially greater than the protection offered by sickle-cell trait. Iron supplementation completely reversed the observed protection and hence should be accompanied by malaria prophylaxis. Lower hemoglobin levels typically seen in populations of African descent may reflect past genetic selection by malaria. Funding National Institute of Child Health and Development, Bill and Melinda Gates Foundation, UK Medical Research Council (MRC) and Department for International Development (DFID) under the MRC/DFID Concordat.
P. falciparum laboratory and field strains invade and grow less efficiently in RBCs from anemic children. Deficits in invasion and growth for erythrocytic stage P. falciparum are reversed when RBCs are used from anemic children receiving iron supplementation for 49 and 84 days. The population level impact of protection against malaria from anemia was greater than that for sickle-cell trait. The long-term consequences of anemia are severe, and it is easily treatable. However, concerns remain about the safety of iron supplements, particularly for children in malaria-endemic countries lacking adequate access to health services. We used RBCs from Gambian children before, during, and after 12 weeks of daily iron supplementation for in vitro P. falciparum assays. P. falciparum invasion and growth was decreased in anemic RBCs and increased after 49 days of iron supplementation relative to baseline (p < 0.001), paralleling increases in young RBCs, which the parasite prefers. The parasite growth protection from anemia was substantial, providing greater population level impact than sickle-cell trait.
Collapse
Affiliation(s)
- M M Goheen
- Department of Microbiology and Immunology, University of North Carolina School of Medicine, CB# 7435, Chapel Hill, NC 27599-7435, USA.
| | - R Wegmüller
- MRC Unit The Gambia, MRC International Nutrition Group, Keneba, P.O. Box 273, Banjul, Gambia
| | - A Bah
- MRC Unit The Gambia, MRC International Nutrition Group, Keneba, P.O. Box 273, Banjul, Gambia
| | - B Darboe
- MRC Unit The Gambia, MRC International Nutrition Group, Keneba, P.O. Box 273, Banjul, Gambia
| | - E Danso
- MRC Unit The Gambia, MRC International Nutrition Group, Keneba, P.O. Box 273, Banjul, Gambia
| | - M Affara
- MRC Unit The Gambia, MRC International Nutrition Group, Keneba, P.O. Box 273, Banjul, Gambia
| | - D Gardner
- University of North Carolina School of Medicine, CB# 9535, Chapel Hill, NC 27599-9535, USA
| | - J C Patel
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, CB# 7435, Chapel Hill, NC 27599-7435, USA
| | - A M Prentice
- MRC Unit The Gambia, MRC International Nutrition Group, Keneba, P.O. Box 273, Banjul, Gambia; London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT London, UK
| | - C Cerami
- MRC Unit The Gambia, MRC International Nutrition Group, Keneba, P.O. Box 273, Banjul, Gambia
| |
Collapse
|
39
|
Becquey E, Ouédraogo CT, Hess SY, Rouamba N, Prince L, Ouédraogo JB, Vosti SA, Brown KH. Comparison of Preventive and Therapeutic Zinc Supplementation in Young Children in Burkina Faso: A Cluster-Randomized, Community-Based Trial. J Nutr 2016; 146:2058-2066. [PMID: 27489011 DOI: 10.3945/jn.116.230128] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The WHO and UNICEF recommend therapeutic zinc supplementation (TZS) for the treatment of diarrhea. In zinc-deficient populations, preventive zinc supplementation might provide greater benefits for reducing diarrhea and malaria incidence and increasing growth and plasma zinc (pZn) concentration. If effective, intermittent preventive zinc supplementation (IPZS) would cost less than daily preventive zinc supplementation (DPZS). OBJECTIVE We assessed the effects of IPZS, DPZS, and TZS in children on the primary outcomes of diarrhea incidence, malaria incidence, growth, and pZn concentration compared with nonsupplemented control groups. METHODS Rural Burkinabe children (n = 7641; 6-30 mo old) in 36 clusters were randomly assigned to 1 of 5 treatment groups for 16, 32, or 48 wk: 1) IPZS (10 mg Zn/d for 10 d every 16 wk); 2) DPZS (7 mg Zn/d); 3) TZS (20 mg Zn/d for 10 d for diarrhea); 4) morbidity surveillance control (MSC); or 5) nonintervention control (NIC). Supplemented groups remained masked until completion of primary analyses with mixed models. RESULTS At baseline, stunting (28.6%) and low pZn concentration (<65 μg/dL; 43.5%) were common. After 48 wk, mean ± SE pZn increased more (P = 0.008) in the DPZS group (3.9 ± 1.3 μg/dL) than in the TZS (-0.5 ± 1.2 μg/dL) and NIC (-1.2 ± 0.9 μg/dL) groups. All supplemented groups had a moderately lower incidence of reported diarrhea (0.48-0.49 compared with 0.57 episodes/100 d, P = 0.001) and reported fever (1.1-1.2 compared with 1.5 episodes/100d, P < 0.001) and gained slightly less length (3.15-3.20 compared with 3.36 cm/16 wk, P < 0.001) than the MSC group, but did not differ from each other. Prevalence of diarrhea and incidences of confirmed fever and malaria were not different across study groups. CONCLUSIONS The preventive and TZS groups had reduced diarrhea incidence, but it is uncertain whether this resulted from a functional response to zinc or reporting bias. The comparison should be re-examined in populations known to respond to zinc supplementation. This trial was registered at www.clinicaltrials.gov as NCT00944359.
Collapse
Affiliation(s)
- Elodie Becquey
- Helen Keller International, New York, NY; Department of Nutrition and Poverty, Health, and Nutrition Division, International Food Policy Research Institute, Washington, DC; and
| | - Cesaire T Ouédraogo
- Regional directorate for the West, National Research Institute in Health Sciences, Bobo-Dioulasso, Burkina Faso
| | | | - Noel Rouamba
- Regional directorate for the West, National Research Institute in Health Sciences, Bobo-Dioulasso, Burkina Faso
| | - Lea Prince
- Department of Agricultural and Resource Economics, University of California, Davis, Davis, CA
| | - Jean-Bosco Ouédraogo
- Regional directorate for the West, National Research Institute in Health Sciences, Bobo-Dioulasso, Burkina Faso
| | - Stephen A Vosti
- Department of Agricultural and Resource Economics, University of California, Davis, Davis, CA
| | - Kenneth H Brown
- Helen Keller International, New York, NY; Department of Nutrition and
| |
Collapse
|
40
|
Wegmüller R, Bah A, Kendall L, Goheen MM, Mulwa S, Cerami C, Moretti D, Prentice AM. Efficacy and safety of hepcidin-based screen-and-treat approaches using two different doses versus a standard universal approach of iron supplementation in young children in rural Gambia: a double-blind randomised controlled trial. BMC Pediatr 2016; 16:149. [PMID: 27585745 PMCID: PMC5009643 DOI: 10.1186/s12887-016-0689-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 08/27/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Iron deficiency prevalence rates frequently exceed 50 % in young children in low-income countries. The World Health Organization (WHO) recommended universal supplementation of young children where anaemia rates are >40 %. However, large randomized trials have revealed that provision of iron to young children caused serious adverse effects because iron powerfully promotes microbial growth. Hepcidin - the master regulator of iron metabolism that integrates signals of infection and iron deficiency - offers the possibility of new solutions to diagnose and combat global iron deficiency. We aim to evaluate a hepcidin-screening-based iron supplementation intervention using hepcidin cut-offs designed to indicate that an individual requires iron, is safe to receive it and will absorb it. METHODS The study is a proof-of-concept, three-arm, double blind, randomised controlled, prospective, parallel-group non-inferiority trial. Children will be randomised to receive, for a duration of 12 weeks, one of three multiple micronutrient powders (MNP) containing: A) 12 mg iron daily; B) 12 mg or 0 mg iron daily based on a weekly hepcidin screening indicating if iron can be given for the next seven days or not; C) 6 mg or 0 mg iron daily based on a weekly hepcidin screening indicating if iron can be given for the next seven days or not. The inclusion criteria are age 6-23 months, haemoglobin (Hb) concentration between 7 and 11 g/dL, z-scores for Height-for-Age, Weight-for-Age and Weight-for-Height > -3 SD and free of malaria. Hb concentration at 12 weeks will be used to test whether the screen-and-treat approaches are non-inferior to universal supplementation. Safety will be assessed using caregiver reports of infections, in vitro bacterial and P. falciparum growth assays and by determining the changes in the gut microbiota during the study period. DISCUSSION A screen-and-treat approach using hepcidin has the potential to make iron administration safer in areas with widespread infections. If this proof-of-concept study shows promising results the development of a point-of-care diagnostic test will be the next step. TRIAL REGISTRATION ISRCTN07210906 , 07/16/2014.
Collapse
Affiliation(s)
- Rita Wegmüller
- MRC Unit The Gambia/MRC International Nutrition Group, Keneba, The Gambia.
| | - Amat Bah
- MRC Unit The Gambia/MRC International Nutrition Group, Keneba, The Gambia
| | | | - Morgan M Goheen
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | | | - Carla Cerami
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Diego Moretti
- Laboratory of Human Nutrition, Institute of Food, Nutrition and Health, ETH Zurich, 8092, Zurich, Switzerland
| | - Andrew M Prentice
- MRC Unit The Gambia/MRC International Nutrition Group, Keneba, The Gambia
| |
Collapse
|
41
|
Abstract
Malaria increases the burden of anemia in low-income countries, where, according to 2012 data from the World Health Organization, 40% of children are anemic. Moreover, iron is a cofactor for Plasmodium falciparum development, raising fears that iron supplementation might be harmful in patients with P. falciparum infection. The primary objective of this narrative review is to describe current knowledge on the iron-malaria association, including recent findings and substantive qualitative results. Between 2012 and 2016 the MEDLINE database was searched for literature published about malaria and iron levels. Observational studies reported some protection of iron supplementation against malaria among iron-deficient children, while older clinical trials reported increased susceptibility to malaria among iron-supplemented children. However, iron supplements were not significantly associated with increased malaria risk in recent clinical trials or in a 2016 Cochrane review. Evidence of an iron-malaria association is limited by the following factors: the protective effect of control interventions, the limited follow-up of children, and the lack of homogenous iron indicators. The effects of previous health status and possible thresholds in iron levels should be investigated using a gold-standard combination of iron markers. Moreover, the benefits of iron supplementation require further evaluation.
Collapse
Affiliation(s)
- Violeta Moya-Alvarez
- V. Moya-Alvarez is with the Institut de Recherche pour le Développement, Mère et enfant face aux infections tropicales, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; the Université Pierre et Marie Curie, Paris, France; and the Ecole des Hautes Etudes en Santé Publique, Rennes, France. F. Bodeau-Livinec is with the Département Épidémiologie et Biostatistiques, Ecole des Hautes Etudes en Santé Publique, Rennes, France; and the Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé), Center for Epidemiology and Statistics Sorbonne Paris Cité, DHU Risks in Pregnancy, Université Paris Descartes, Paris, France. M. Cot is with the Institut de Recherche pour le Développement, Mère et enfant face aux infections tropicales, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; the Centre Biomédical des Cordeliers, Université Pierre et Marie Curie, Paris, France; and PRES Paris Sorbonne Cité, Université Paris Descartes, Paris, France.
| | - Florence Bodeau-Livinec
- V. Moya-Alvarez is with the Institut de Recherche pour le Développement, Mère et enfant face aux infections tropicales, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; the Université Pierre et Marie Curie, Paris, France; and the Ecole des Hautes Etudes en Santé Publique, Rennes, France. F. Bodeau-Livinec is with the Département Épidémiologie et Biostatistiques, Ecole des Hautes Etudes en Santé Publique, Rennes, France; and the Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé), Center for Epidemiology and Statistics Sorbonne Paris Cité, DHU Risks in Pregnancy, Université Paris Descartes, Paris, France. M. Cot is with the Institut de Recherche pour le Développement, Mère et enfant face aux infections tropicales, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; the Centre Biomédical des Cordeliers, Université Pierre et Marie Curie, Paris, France; and PRES Paris Sorbonne Cité, Université Paris Descartes, Paris, France
| | - Michel Cot
- V. Moya-Alvarez is with the Institut de Recherche pour le Développement, Mère et enfant face aux infections tropicales, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; the Université Pierre et Marie Curie, Paris, France; and the Ecole des Hautes Etudes en Santé Publique, Rennes, France. F. Bodeau-Livinec is with the Département Épidémiologie et Biostatistiques, Ecole des Hautes Etudes en Santé Publique, Rennes, France; and the Obstetrical, Perinatal and Pediatric Epidemiology Research Team (EPOPé), Center for Epidemiology and Statistics Sorbonne Paris Cité, DHU Risks in Pregnancy, Université Paris Descartes, Paris, France. M. Cot is with the Institut de Recherche pour le Développement, Mère et enfant face aux infections tropicales, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France; the Centre Biomédical des Cordeliers, Université Pierre et Marie Curie, Paris, France; and PRES Paris Sorbonne Cité, Université Paris Descartes, Paris, France
| |
Collapse
|
42
|
Aimone AM, Brown PE, Zlotkin SH, Cole DC, Owusu-Agyei S. Geo-spatial factors associated with infection risk among young children in rural Ghana: a secondary spatial analysis. Malar J 2016; 15:349. [PMID: 27391972 PMCID: PMC4938940 DOI: 10.1186/s12936-016-1388-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/15/2016] [Indexed: 11/10/2022] Open
Abstract
Background Determining the spatial patterns
of infection among young children living in a malaria-endemic area may provide a means of locating high-risk populations who could benefit from additional resources for treatment and improved access to healthcare. The objective of this secondary analysis of baseline data from a cluster-randomized trial among 1943 young Ghanaian children (6–35 months of age) was to determine the geo-spatial factors associated with malaria and non-malaria infection status. Methods Spatial analyses were conducted using a generalized linear geostatistical model with a Matern spatial correlation function and four definitions of infection status using different combinations of inflammation (C-reactive protein, CRP > 5 mg/L) and malaria parasitaemia (with or without fever). Potentially informative variables were included in a final model through a series of modelling steps, including: individual-level variables (Model 1); household-level variables (Model 2); and, satellite-derived spatial variables (Model 3). A final (Model 4) and maximal model (Model 5) included a set of selected covariates from Models 1 to 3. Results The final models indicated that children with inflammation (CRP > 5 mg/L) and/or any evidence of malaria parasitaemia at baseline were more likely to be under 2 years of age, stunted, wasted, live further from a health facility, live at a lower elevation, have less educated mothers, and higher ferritin concentrations (corrected for inflammation) compared to children without inflammation or parasitaemia. Similar results were found when infection was defined as clinical malaria or parasitaemia with/without fever (definitions 3 and 4). Conversely, when infection was defined using CRP only, all covariates were non-significant with the exception of baseline ferritin concentration. In Model 5, all infection definitions that included parasitaemia demonstrated a significant interaction between normalized difference vegetation index and land cover type. Maps of the predicted infection probabilities and spatial random effect showed defined high- and low-risk areas that tended to coincide with elevation and cluster around villages. Conclusions The risk of infection among young children in a malaria-endemic area may have a predictable spatial pattern which is associated with geographical characteristics, such as elevation and distance to a health facility. Original trial registration clinicaltrials.gov (NCT01001871) Electronic supplementary material The online version of this article (doi:10.1186/s12936-016-1388-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashley M Aimone
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, ON, M5T 3M7, Canada
| | - Patrick E Brown
- Division of Biostatistics, Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, ON, M5T 3M7, Canada
| | - Stanley H Zlotkin
- Centre for Global Child Health, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, 686 Bay Street, Toronto, ON, M5G 0A4, Canada
| | - Donald C Cole
- Division of Epidemiology, Dalla Lana School of Public Health, University of Toronto, 155 College Street, Toronto, ON, M5T 3M7, Canada
| | | |
Collapse
|
43
|
Brickley EB, Spottiswoode N, Kabyemela E, Morrison R, Kurtis JD, Wood AM, Drakesmith H, Fried M, Duffy PE. Cord Blood Hepcidin: Cross-Sectional Correlates and Associations with Anemia, Malaria, and Mortality in a Tanzanian Birth Cohort Study. Am J Trop Med Hyg 2016; 95:817-826. [PMID: 27352871 DOI: 10.4269/ajtmh.16-0218] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/06/2016] [Indexed: 12/21/2022] Open
Abstract
Hepcidin, the master regulator of bioavailable iron, is a key mediator of anemia and also plays a central role in host defense against infection. We hypothesized that measuring hepcidin levels in cord blood could provide an early indication of interindividual differences in iron regulation with quantifiable implications for anemia, malaria, and mortality-related risk. Hepcidin concentrations were measured in cord plasma from a birth cohort (N = 710), which was followed for up to 4 years in a region of perennial malaria transmission in Muheza, Tanzania (2002-2006). At the time of delivery, cord hepcidin levels were correlated with inflammatory mediators, iron markers, and maternal health conditions. Hepcidin levels were 30% (95% confidence interval [CI]: 12%, 44%) lower in children born to anemic mothers and 48% (95% CI: 11%, 97%) higher in placental malaria-exposed children. Relative to children in the lowest third, children in the highest third of cord hepcidin had on average 2.5 g/L (95% CI: 0.1, 4.8) lower hemoglobin levels over the duration of follow-up, increased risk of anemia and severe anemia (adjusted hazard ratio [HR] [95% CI]: 1.18 [1.03, 1.36] and 1.34 [1.08, 1.66], respectively), and decreased risk of malaria and all-cause mortality (adjusted HR [95% CI]: 0.78 [0.67, 0.91] and 0.34 [0.14, 0.84], respectively). Although longitudinal measurements of hepcidin and iron stores are required to strengthen causal inference, these results suggest that hepcidin may have utility as a biomarker indicating children's susceptibility to anemia and infection in early life.
Collapse
Affiliation(s)
- Elizabeth B Brickley
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland. Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom. Department of Epidemiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Natasha Spottiswoode
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland. Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom. Department of Microbiology and Immunology, Columbia University College of Physicians and Surgeons, New York, New York
| | | | - Robert Morrison
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Jonathan D Kurtis
- Rhode Island Hospital, Department of Pathology and Laboratory Medicine, Brown University Medical School, Providence, Rhode Island
| | - Angela M Wood
- Department of Public Health and Primary Care, University of Cambridge, Cambridge, United Kingdom
| | - Hal Drakesmith
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Michal Fried
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland
| | - Patrick E Duffy
- Laboratory of Malaria Immunology and Vaccinology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland.
| |
Collapse
|
44
|
Gichohi-Wainaina WN, Tanaka T, Towers GW, Verhoef H, Veenemans J, Talsma EF, Harryvan J, Boekschoten MV, Feskens EJ, Melse-Boonstra A. Associations between Common Variants in Iron-Related Genes with Haematological Traits in Populations of African Ancestry. PLoS One 2016; 11:e0157996. [PMID: 27332551 PMCID: PMC4917107 DOI: 10.1371/journal.pone.0157996] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 06/08/2016] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Large genome-wide association (GWA) studies of European ancestry individuals have identified multiple genetic variants influencing iron status. Studies on the generalizability of these associations to African ancestry populations have been limited. These studies are important given interethnic differences in iron status and the disproportionate burden of iron deficiency among African ancestry populations. METHODS We tested the associations of 20 previously identified iron status-associated single nucleotide polymorphisms (SNPs) in 628 Kenyans, 609 Tanzanians, 608 South Africans and 228 African Americans. In each study, we examined the associations present between 20 SNPs with ferritin and haemoglobin, adjusting for age, sex and CRP levels. RESULTS In the meta analysis including all 4 African ancestry cohorts, we replicated previously reported associations with lowered haemoglobin concentrations for rs2413450 (β = -0.19, P = 0.02) and rs4820268 (β = -0.16, P = 0.04) in TMPRSS6. An association with increased ferritin concentrations was also confirmed for rs1867504 in TF (β = 1.04, P = <0.0001) in the meta analysis including the African cohorts only. CONCLUSIONS In all meta analyses, we only replicated 4 of the 20 single nucleotide polymorphisms reported to be associated with iron status in large GWA studies of European ancestry individuals. While there is now evidence for the associations of a number of genetic variants with iron status in both European and African ancestry populations, the considerable lack of concordance highlights the importance of continued ancestry-specific studies to elucidate the genetic underpinnings of iron status in ethnically diverse populations.
Collapse
Affiliation(s)
- Wanjiku N. Gichohi-Wainaina
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
- International institute of Tropical Agriculture (IITA), Dar es Salaam, Tanzania
| | - Toshiko Tanaka
- Translational Gerontology Branch, National Institute on Aging, Baltimore, MD, United States of America
| | - G. Wayne Towers
- Centre of Excellence for Nutrition, North-West University (Potchefstroom campus), Potchefstroom, South Africa
| | - Hans Verhoef
- Cell Biology and Immunology Group, Wageningen University, Wageningen, The Netherlands
- Medical Research Council (MRC) International Nutrition Group, London School of Hygiene and Tropical Medicine, London, United Kingdom
- Medical Research Council Banjul, The Gambia
| | - Jacobien Veenemans
- Laboratory for Microbiology and Infection Control, Amphia Hospital, Breda, The Netherlands
- Department of Medical Microbiology and Immunology, Admiraal De Ruyter Hospital, Goes The Netherlands
| | - Elise F. Talsma
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
- HarvestPlus, International Center for Tropical Agriculture (CIAT), Cali, Colombia
| | - Jan Harryvan
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | - Mark V. Boekschoten
- Nutrition, Metabolism and Genomics group, Division of Human Nutrition, Wageningen University, Wageningen, The Netherlands
| | - Edith J. Feskens
- Division of Human Nutrition, Wageningen University, Wageningen, the Netherlands
| | | |
Collapse
|
45
|
The effect of providing lipid-based nutrient supplements on morbidity in rural Malawian infants and young children: a randomized controlled trial. Public Health Nutr 2016; 19:1893-903. [DOI: 10.1017/s1368980016000331] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractObjectiveSafety of home fortificants in children is uncertain in areas where infections are common. We tested the hypothesis that provision of lipid-based nutrient supplements (LNS) containing Fe does not increase infectious morbidity in children.DesignRandomized controlled trial. Infants were randomised to receive 10, 20 or 40 g LNS/d; or no supplement until age 18 months. All LNS contained 6 mg Fe/d. Morbidity outcomes (serious adverse events, non-scheduled visits and guardian-reported morbidity episodes) were compared between control and intervention groups using a non-inferiority margin of 20 %.SettingNamwera and Mangochi catchment areas in rural Malawi.SubjectsInfants aged 6 months (n1932).ResultsThe enrolled 1932 infants contributed 1306 child-years of follow-up. Baseline characteristics were similar across groups. Compared with the control group, the relative risk (95 % CI) of serious adverse events was 0·71 (0·48, 1·07), 0·67 (0·48, 0·95) and 0·91 (0·66, 1·25) in 10, 20 and 40 g LNS/d groups, respectively. The incidence rate ratio (95 % CI) of non-scheduled visits due to malaria was 1·10 (0·88, 1·37), 1·08 (0·89, 1·31) and 1·21 (1·00, 1·46), and of guardian-reported morbidity episodes was 1·04 (0·96, 1·11), 1·03 (0·97, 1·10) and 1·04 (0·97, 1·10), in the respective LNS groups.ConclusionsProvision of 10 and 20 g LNS/d containing 6 mg Fe/d did not increase morbidity in the children. Provision of 40 g LNS/d did not affect guardian-reported illness episodes but may have increased malaria-related non-scheduled visits.
Collapse
|
46
|
van der Kam S, Roll S, Swarthout T, Edyegu-Otelu G, Matsumoto A, Kasujja FX, Casademont C, Shanks L, Salse-Ubach N. Effect of Short-Term Supplementation with Ready-to-Use Therapeutic Food or Micronutrients for Children after Illness for Prevention of Malnutrition: A Randomised Controlled Trial in Uganda. PLoS Med 2016; 13:e1001951. [PMID: 26859481 PMCID: PMC4747529 DOI: 10.1371/journal.pmed.1001951] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/21/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Globally, Médecins Sans Frontières (MSF) treats more than 300,000 severely malnourished children annually. Malnutrition is not only caused by lack of food but also by illnesses and by poor infant and child feeding practices. Breaking the vicious cycle of illness and malnutrition by providing ill children with nutritional supplementation is a potentially powerful strategy for preventing malnutrition that has not been adequately investigated. Therefore, MSF investigated whether incidence of malnutrition among ill children <5 y old could be reduced by providing a fortified food product or micronutrients during their 2-wk convalescence period. Two trials, one in Nigeria and one in Uganda, were conducted; here, we report on the trial that took place in Kaabong, a poor agropastoral region of Karamoja, in east Uganda. While the region of Karamoja shows an acute malnutrition rate between 8.4% and 11.5% of which 2% to 3% severe malnutrition, more than half (58%) of the population in the district of Kaabong is considered food insecure. METHODS AND FINDINGS We investigated the effect of two types of nutritional supplementation on the incidence of malnutrition in ill children presenting at outpatient clinics during March 2011 to April 2012 in Kaabong, Karamoja region, Uganda, a resource-poor region where malnutrition is a chronic problem for its seminomadic population. A three-armed, partially-blinded, randomised controlled trial was conducted in children diagnosed with malaria, diarrhoea, or lower respiratory tract infection. Non-malnourished children aged 6 to 59 mo were randomised to one of three arms: one sachet/d of ready-to-use therapeutic food (RUTF), two sachets/d of micronutrient powder (MNP), or no supplement (control) for 14 d for each illness over 6 mo. The primary outcome was the incidence of first negative nutritional outcome (NNO) during the 6 mo follow-up. NNO was a study-specific measure used to indicate progression to moderate or severe acute malnutrition; it was defined as weight-for-height z-score <-2, mid-upper arm circumference (MUAC) <115 mm, or oedema, whichever came first. Of the 2,202 randomised participants, 51.2% were girls, and the mean age was 25.2 (±13.8) mo; 148 (6.7%) participants were lost to follow-up, 9 (0.4%) died, and 14 (0.6%) were admitted to hospital. The incidence rates of NNO (first event/year) for the RUTF, MNP, and control groups were 0.143 (95% confidence interval [CI], 0.107-0.191), 0.185 (0.141-0.239), and 0.213 (0.167-0.272), respectively. The incidence rate ratio was 0.67 (95% CI, 0.46-0.98; p = 0.037) for RUTF versus control; a reduction of 33.3%. The incidence rate ratio was 0.86 (0.61-1.23; p = 0.413) for MNP versus control and 0.77 for RUTF versus MNP (95% CI 0.52-1.15; p = 0.200). The average numbers of study illnesses for the RUTF, MNP, and control groups were 2.3 (95% CI, 2.2-2.4), 2.1 (2.0-2.3), and 2.3 (2.2-2.5). The proportions of children who died in the RUTF, MNP, and control groups were 0%, 0.8%, and 0.4%. The findings apply to ill but not malnourished children and cannot be generalised to a general population including children who are not necessarily ill or who are already malnourished. CONCLUSIONS A 2-wk nutrition supplementation programme with RUTF as part of routine primary medical care to non-malnourished children with malaria, LRTI, or diarrhoea proved effective in preventing malnutrition in eastern Uganda. The low incidence of malnutrition in this population may warrant a more targeted intervention to improve cost effectiveness. TRIAL REGISTRATION clinicaltrials.gov NCT01497236.
Collapse
Affiliation(s)
- Saskia van der Kam
- Médecins Sans Frontières, Amsterdam, Netherlands
- Ecole de Santé Publique, Centre de Recherche en Politiques et Systèmes de Santé-Santé Internationale, Université Libre de Bruxelles, Brussels, Belgium
- * E-mail:
| | - Stephanie Roll
- Institute for Social Medicine, Epidemiology and Health Economics, Charité-Universitätsmedizin, Berlin, Germany
| | | | | | | | | | | | | | | |
Collapse
|
47
|
van der Kam S, Salse-Ubach N, Roll S, Swarthout T, Gayton-Toyoshima S, Jiya NM, Matsumoto A, Shanks L. Effect of Short-Term Supplementation with Ready-to-Use Therapeutic Food or Micronutrients for Children after Illness for Prevention of Malnutrition: A Randomised Controlled Trial in Nigeria. PLoS Med 2016; 13:e1001952. [PMID: 26859559 PMCID: PMC4747530 DOI: 10.1371/journal.pmed.1001952] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Accepted: 12/21/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Globally, Médecins Sans Frontières (MSF) treats more than 300,000 severely malnourished children annually. Malnutrition is not only caused by lack of food and poor infant and child feeding practices but also by illnesses. Breaking the vicious cycle of illness and malnutrition by providing ill children with nutritional supplementation is a potentially powerful strategy for preventing malnutrition that has not been adequately investigated. Therefore, MSF investigated whether incidence of malnutrition among ill children <5 y old could be reduced by providing a fortified food product or micronutrients during their 2-wk convalescence period. Two trials, one in Nigeria and one in Uganda, were conducted; here we report on the trial that took place in Goronyo, a rural region of northwest Nigeria with high morbidity and malnutrition rates. METHODS AND FINDINGS We investigated the effect of supplementation with ready-to-use therapeutic food (RUTF) and a micronutrient powder (MNP) on the incidence of malnutrition in ill children presenting at an outpatient clinic in Goronyo during February to September 2012. A three-armed, partially-blinded, randomised controlled trial was conducted in children diagnosed as having malaria, diarrhoea, or lower respiratory tract infection. Children aged 6 to 59 mo were randomised to one of three arms: one sachet/d of RUTF; two sachets/d of micronutrients or no supplement (control) for 14 d for each illness over 6 mo. The primary outcome was the incidence of first negative nutritional outcome (NNO) during the 6 mo follow-up. NNO was a study-specific measure used to indicate occurrence of malnutrition; it was defined as low weight-for-height z-score (<-2 for non-malnourished and <-3 for moderately malnourished children), mid-upper arm circumference <115 mm, or oedema, whichever came first. Of the 2,213 randomised participants, 50.0% were female and the mean age was 20.2 (standard deviation 11.2) months; 160 (7.2%) were lost to follow-up, 54 (2.4%) were admitted to hospital, and 29 (1.3%) died. The incidence rates of NNO for the RUTF, MNP, and control groups were 0.522 (95% confidence interval (95% CI), 0.442-0.617), 0.495 (0.415-0.589), and 0.566 (0.479-0.668) first events/y, respectively. The incidence rate ratio was 0.92 (95% CI, 0.74-1.15; p = 0.471) for RUTF versus control; 0.87 (0.70-1.10; p = 0.242) for MNP versus control and 1.06 (0.84-1.33, p = 0.642) for RUTF versus MNP. A subgroup analysis showed no interaction nor confounding, nor a different effectiveness of supplementation, among children who were moderately malnourished compared with non-malnourished at enrollment. The average number of study illnesses for the RUTF, MNP, and control groups were 4.2 (95% CI, 4.0-4.3), 3.4 (3.2-3.6), and 3.6 (3.4-3.7). The proportion of children who died in the RUTF, MNP, and control groups were 0.8% (95% CI, 0.3-1.8), 1.8% (1.0-3.3), and 1.4% (0.7-2.8). CONCLUSIONS A 2-wk supplementation with RUTF or MNP to ill children as part of routine primary medical care did not reduce the incidence of malnutrition. The lack of effect in Goronyo may be due to a high frequency of morbidity, which probably further affects a child's nutritional status and children's ability to escape from the illness-malnutrition cycle. The duration of the supplementation may have been too short or the doses of the supplements may have been too low to mitigate the effects of high morbidity and pre-existing malnutrition. An integrated approach combining prevention and treatment of diseases and treatment of moderate malnutrition, rather than prevention of malnutrition by nutritional supplementation alone, might be more effective in reducing the incidence of acute malnutrition in ill children. TRIAL REGISTRATION clinicaltrials.gov NCT01154803.
Collapse
Affiliation(s)
- Saskia van der Kam
- Médecins Sans Frontières, Amsterdam, Netherlands
- Ecole de Santé Publique, Centre de Recherche en Politiques et Systèmes de Santé-Santé Internationale, Université Libre de Bruxelles, Brussels, Belgium
| | | | - Stephanie Roll
- Institute for Social Medicine, Epidemiology and Health Economics, Charité- Universitätsmedizin, Berlin, Germany
| | | | | | - Nma Mohammed Jiya
- Department of Paediatrics, Usmanu Danfodiyo University Teaching Hospital, Sokoto, Nigeria
| | | | | |
Collapse
|
48
|
Kupka R. The role of folate in malaria - implications for home fortification programmes among children aged 6-59 months. MATERNAL & CHILD NUTRITION 2015; 11 Suppl 4:1-15. [PMID: 26756732 PMCID: PMC6860232 DOI: 10.1111/mcn.12102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Folic acid and iron supplementation has historically been recommended as the preferred anaemia control strategy among preschoolers in sub-Saharan Africa and other resource-poor settings, but home fortification of complementary foods with multiple micronutrient powders (MNPs) can now be considered the preferred approach. The World Health Organization endorses home fortification with MNPs containing at least iron, vitamin A and zinc to control childhood anaemia, and calls for concomitant malaria control strategies in malaria endemic regions. Among other micronutrients, current MNP formulations generally include 88 μg folic acid (corresponding to 100% of the Recommended Nutrient Intake). The risks and benefits of providing supplemental folic acid at these levels are unclear. The limited data available indicate that folate deficiency may not be a major public health problem among children living in sub-Saharan Africa and supplemental folic acid may therefore not have any benefits. Furthermore, supraphysiological, and possibly even physiological, folic acid dosages may favour Plasmodium falciparum growth, inhibit parasite clearance of sulphadoxine-pyrimethamine (SP)-treated malaria and increase subsequent recrudescence. Even though programmatic options to limit prophylactic SP use or to promote the use of insecticide treated bed nets may render the use of folic acid safer, programmatic barriers to these approaches are likely to persist. Research is needed to characterise the prevalence of folate deficiency among young children worldwide and to design safe MNP and other types of fortification approaches in sub-Sahara Africa. In parallel, updated global guidance is needed for MNP programmes in these regions.
Collapse
Affiliation(s)
- Roland Kupka
- UNICEF Regional Office for West and Central AfricaDakarSenegal
- Department of NutritionHarvard School of Public HealthBostonMassachusettesUSA
| |
Collapse
|
49
|
Oral iron acutely elevates bacterial growth in human serum. Sci Rep 2015; 5:16670. [PMID: 26593732 PMCID: PMC4655407 DOI: 10.1038/srep16670] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 10/01/2015] [Indexed: 12/20/2022] Open
Abstract
Iron deficiency is the most common nutrient deficiency worldwide and routine supplementation is standard policy for pregnant mothers and children in most low-income countries. However, iron lies at the center of host-pathogen competition for nutritional resources and recent trials of iron administration in African and Asian children have resulted in significant excesses of serious adverse events including hospitalizations and deaths. Increased rates of malaria, respiratory infections, severe diarrhea and febrile illnesses of unknown origin have all been reported, but the mechanisms are unclear. We here investigated the ex vivo growth characteristics of exemplar sentinel bacteria in adult sera collected before and 4 h after oral supplementation with 2 mg/kg iron as ferrous sulfate. Escherichia coli, Yersinia enterocolitica and Salmonella enterica serovar Typhimurium (all gram-negative bacteria) and Staphylococcus epidermidis (gram-positive) showed markedly elevated growth in serum collected after iron supplementation. Growth rates were very strongly correlated with transferrin saturation (p < 0.0001 in all cases). Growth of Staphylococcus aureus, which preferentially scavenges heme iron, was unaffected. These data suggest that even modest oral supplements with highly soluble (non-physiological) iron, as typically used in low-income settings, could promote bacteremia by accelerating early phase bacterial growth prior to the induction of immune defenses.
Collapse
|
50
|
Häfner S. Iron laden--A matter of life and death. Microbes Infect 2015; 18:159-62. [PMID: 26577271 DOI: 10.1016/j.micinf.2015.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Accepted: 10/29/2015] [Indexed: 11/19/2022]
Affiliation(s)
- Sophia Häfner
- University of Copenhagen, BRIC Biotech Research & Innovation Centre, Lund Group, 2200 Copenhagen, Denmark.
| |
Collapse
|