1
|
Rajangam SL, Leela KV, Jayaraman M, Sabarathinam S, Narasimhan MK. Effect of amikacin-humic acid combination on Acinetobacter baumannii biofilm: an in vitro and in silico study. Future Microbiol 2024:1-13. [PMID: 39429208 DOI: 10.1080/17460913.2024.2412431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Aim: Acinetobacter baumannii (AB) is a clinically important bacterial pathogen responsible for nosocomial infections. The biofilm-forming capability of these pathogens reduces the antibiotic penetration and its efficacy, thereby complicating the treatment. The current work aims to isolate the most potent biofilm-forming Acinetobacter species from clinical isolates of the patient samples and to evaluate the efficacy of the amikacin-humic acid combination against it.Methods: The combination effect of Amikacin-Humic (AMK-HUM) acid against the highest biofilm-producing A. baumannii SLMK001 was studied via in-vitro (microscopic analysis) and in-silico (Network Pharmacology) analysis.Results: The amikacin-humic acid combination significantly inhibited both the biofilm formation and cell viability of A. baumannii SLMK001. The images observed via Scanning Electron Microscope (SEM) showed a significant decrease in the biofilm matrix. Confocal Laser Scanning Microscope (CLSM) confirmed a reduction of the Z value of its three-dimensional structure. Further, the Network Pharmacology approach supported these experimental findings by identifying the key targets of the amikacin-humic acid combination against the biofilm pathways of A. baumannii.Conclusion: The in-vitro results aligned with the in-silico findings, indicating that the AMK-HUM combination is a promising treatment that significantly activates the key proteins against A. baumannii biofilm formation and pathogenesis.
Collapse
Affiliation(s)
- Seetha Lakshmi Rajangam
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Kakithakara Vajravelu Leela
- Department of Microbiology, SRM Medical College Hospital & Research Centre, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Manonmoney Jayaraman
- Department of Microbiology, SRM Medical College Hospital & Research Centre, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| | - Sarvesh Sabarathinam
- Pharmaco-Netinformatics Lab, Center for Global Health Research, Saveetha Medical College & Hospitals, Saveetha Institute of Medical & Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602105, India
| | - Manoj Kumar Narasimhan
- Department of Genetic Engineering, School of Bioengineering, College of Engineering & Technology, SRM Institute of Science & Technology, Kattankulathur, Chennai, Tamil Nadu, 603203, India
| |
Collapse
|
2
|
Abera D, Negash AA, Fentaw S, Mekonnen Y, Cataldo RJ, Wami AA, Mihret A, Abegaz WE. High prevalence of colonization with extended-spectrum β-lactamase-producing and multidrug-resistant Enterobacterales in the community in Addis Ababa Ethiopia: risk factors, carbapenem resistance, and molecular characterization. BMC Microbiol 2024; 24:402. [PMID: 39390409 PMCID: PMC11465526 DOI: 10.1186/s12866-024-03552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 09/26/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Globally, extended-spectrum beta-lactamase-producing and carbapenem-resistant Enterobacterales are major causes of hospital-acquired infections and there are increasing concerns about their role in community-acquired infections. OBJECTIVE We aimed to investigate the prevalence of extended-spectrum beta-lactamase-producing Enterobacterales (ESBL-PE) and Carbapenemase-producing-Carbapenemresistant-Enterobacterales (CP-CRE) and associated factors in community settings in Gulele sub city, Addis Ababa, Ethiopia. METHODS A cross-sectional study was conducted among 261 healthy individuals. Stool samples were collected and processed using standard microbiological methods. Antimicrobial susceptibility and phenotypic ESBL and carbapenemase tests were performed. Antibiotic resistance genes were detected by Polymerase Chain Reaction (PCR). RESULTS The colonization rate of ESBL-PE and CP-CRE were 31.4% (82/261, 95% CI: 25.91-37.48) and 0.8% (2/261, 95% CI: 0.13-3.1), respectively by phenotypic method. Molecular detection of genes for ESBL-PE was 27.9% (73/261, 95% CI:22.7-33.9), and for CP-CRE was 0.8% (2/261, 95% CI: 0.13-3.1). The most prevalent genes were blaTEM [76.7% (56/73)] and blaCTX-M [45.2% (33/73)]. Previous antibiotic use (AOR:2.04, 95%CI: 1.35-4.41, P:0.041) and age between 42 and 53 years old (AOR:3.00, 95%CI:1.12-7.48, P:0.019) were significantly associated with ESBL-PE colonization. CONCLUSION Intestinal colonization by ESBL-PE harboring the associated antibiotic resistance genes was substantially high but with low CP-CRE. Continued surveillance of community-level carriage of antimicrobial resistance Enterobacterales is warranted.
Collapse
Affiliation(s)
- Dessie Abera
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia.
| | - Abel Abera Negash
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Surafel Fentaw
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | - Yonas Mekonnen
- Ethiopian Public Health Institute, Addis Ababa, Ethiopia
| | | | | | - Adane Mihret
- Armauer Hansen Research Institute, Addis Ababa, Ethiopia
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Woldaregay Erku Abegaz
- Department of Microbiology, Immunology and Parasitology, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
3
|
Ferdiana A, Mashuri YA, Wulandari LPL, Rahayu ID, Hasanah M, Ayuningsih Z, Batura N, Khan M, Liverani M, Guy R, Schierhout G, Kaldor J, Law M, Day R, Jan S, Wibawa T, Probandari A, Yeung S, Wiseman V. The impact of a multi-faceted intervention on non-prescription dispensing of antibiotics by urban community pharmacies in Indonesia: a mixed methods evaluation. BMJ Glob Health 2024; 9:e015620. [PMID: 39366709 PMCID: PMC11459306 DOI: 10.1136/bmjgh-2024-015620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 08/22/2024] [Indexed: 10/06/2024] Open
Abstract
INTRODUCTION Non-prescription antibiotic dispensing is prevalent among community pharmacies in several low- and middle-income countries. We evaluated the impact of a multi-faceted intervention to address this challenge in urban community pharmacies in Indonesia. METHODS A pre-post quasi-experimental study was carried out in Semarang city from January to August 2022 to evaluate a 7-month long intervention comprising: (1) online educational sessions for pharmacists; (2) awareness campaign targeting customers; (3) peer visits; and (4) pharmacy branding and pharmacist certification. All community pharmacies were invited to take part with consenting pharmacies assigned to the participating group and all remaining pharmacies to the non-participating group. The primary outcome (rate of non-prescription antibiotic dispensing) was measured by standardised patients displaying symptoms of upper respiratory tract infection, urinary tract infection (UTI) and seeking care for diarrhoea in a child. χ2 tests and multivariate random-effects logistic regression models were conducted. Thirty in-depth interviews were conducted with pharmacists, staff and owners as well as other relevant stakeholders to understand any persistent barriers to prescription-based dispensing of antibiotics. FINDINGS Eighty pharmacies participated in the study. Postintervention, non-prescription antibiotics were dispensed in 133/240 (55.4%) consultations in the participating group compared with 469/570 (82.3%) in the non-participating group (p value <0.001). The pre-post difference in the non-prescription antibiotic dispensing rate in the participating group was 20.9% (76.3%-55.4%) compared with 2.3% (84.6%-82.3%) in the non-participating group (p value <0.001).Non-prescription antibiotics were less likely to be dispensed in the participating group (OR=0.19 (95% CI 0.09 to 0.43)) and more likely to be dispensed for the UTI scenario (OR=3.29 (95% CI 1.56 to 6.94)). Barriers to prescription-based antibiotic dispensing included fear of losing customers, customer demand, and no supervising pharmacist present. INTERPRETATION Multifaceted interventions targeting community pharmacies can substantially reduce non-prescription antibiotic dispensing. Future studies to evaluate the implementation and sustainability of this intervention on a larger scale are needed.
Collapse
Affiliation(s)
- Astri Ferdiana
- Faculty of Medicine and Health Sciences, University of Mataram, Mataram, Indonesia
- Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Yusuf Ari Mashuri
- Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Medicine, Universitas Sebelas Maret, Surakarta, Indonesia
| | | | | | - Miratul Hasanah
- Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Zulfa Ayuningsih
- Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Neha Batura
- Institute of Global Health, University College London, London, UK
| | - Mishal Khan
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, London, UK
- The Aga Khan University, Karachi, Pakistan
| | - Marco Liverani
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, London, UK
- Faculty of Public Health, Mahidol University, Salaya, Thailand
| | - Rebecca Guy
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Gill Schierhout
- George Institute for Global Health, University of New South Wales, Sydney, New South Wales, Australia
| | - John Kaldor
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Matthew Law
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
| | - Richard Day
- St Vincent’s Clinical Campus, University of New South Wales, Sydney, New South Wales, Australia
| | - Stephen Jan
- Health Economics and Process Evaluation Program, The George Institute for Global Health, Sydney, New South Wales, Australia
| | - Tri Wibawa
- Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Microbiology, Facuty of Medicine, Public Health and Nursing Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Ari Probandari
- Center for Tropical Medicine, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Department of Public Health, Faculty of Medicine Universitas Sebelas Maret, Surakarta, Indonesia
| | - Shunmay Yeung
- Department of Clinical Research, London School of Hygiene & Tropical Medicine, London, UK
| | - Virginia Wiseman
- The Kirby Institute, University of New South Wales, Sydney, New South Wales, Australia
- Department of Global Health and Development, London School of Hygiene & Tropical Medicine, London, UK
| |
Collapse
|
4
|
Kapoor A, Mudaliar SB, Bhat VG, Chakraborty I, Prasad ASB, Mazumder N. Phage therapy: A novel approach against multidrug-resistant pathogens. 3 Biotech 2024; 14:256. [PMID: 39355200 PMCID: PMC11442959 DOI: 10.1007/s13205-024-04101-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
The rapid rise of multidrug-resistant (MDR) organisms has created a critical need for alternative treatment options. Phage therapy is gaining attention as an effective way to fight bacterial infections by using lytic bacteriophages to specifically target and kill harmful bacteria. This review discusses several phage therapeutic options and emphasizes new developments in phage biology. Phage treatment has proven to be successful against MDR bacteria, as evidenced by multiple human clinical trials that indicate favorable results in treating a range of diseases caused by these pathogens. Despite these promising results, challenges such as phage resistance, regulatory hurdles, and the need for standardized treatment protocols remain. To effectively combat MDR bacterial infections, future research must focus on enhancing phage effectiveness, guaranteeing safety for human usage and incorporating phage therapy into clinical practice.
Collapse
Affiliation(s)
- Arushi Kapoor
- Robert R Mcormick School of Engineering and Applied Science, Northwestern University, Illinois, USA
| | - Samriti Balaji Mudaliar
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Vyasraj G. Bhat
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Ishita Chakraborty
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Alevoor Srinivas Bharath Prasad
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka 576104 India
| |
Collapse
|
5
|
Tartari E, Tomczyk S, Twyman A, Rehse APC, Gomaa M, Talaat M, Shah AS, Sobel H, Toledo JP, Allegranzi B. Evaluating national infection prevention and control minimum requirements: evidence from global cross-sectional surveys, 2017-22. Lancet Glob Health 2024; 12:e1620-e1628. [PMID: 39304235 PMCID: PMC11420467 DOI: 10.1016/s2214-109x(24)00277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 06/07/2024] [Accepted: 06/21/2024] [Indexed: 09/22/2024]
Abstract
BACKGROUND WHO infection prevention and control (IPC) minimum requirements provide standards to reduce the risk of infection during health-care delivery. We aimed to investigate the global implementation of these requirements at national levels and the progress of doing so across 2021-22 compared with 2017-18 to identify future directions for interventions. METHODS National IPC focal points were invited to complete an online survey measuring IPC minimum requirements from July 19, 2021, to Jan 31, 2022. The primary outcome was the proportion of countries meeting IPC minimum requirements. Country characteristics associated with this outcome were assessed with beta regression. Subset analyses were conducted to compare the 2021-22 indicators with a WHO IPC survey conducted in 2017-18 and to assess the correlation of the proportion of IPC minimum requirements met with the results of other WHO metrics. FINDINGS 106 countries (ie, 13 low income, 27 lower-middle income, 33 upper-middle income, and 33 high income) participated in the survey (56% response rate). Four (4%) of 106 met all IPC minimum requirements. The highest scoring IPC core component was multimodal improvement strategies and the lowest was IPC education and training. The odds of meeting IPC minimum requirements was higher among high-income countries compared with low-income countries (adjusted odds ratio 2·7, 95% CI 1·3-5·8; p=0·020). Compared with the 2017-18 survey, there was a significant increase in the proportion of countries reporting an active national IPC programme (65% to 82%, p=0·037) and a dedicated budget (26% to 44%, p=0·037). Evaluation of the IPC minimum requirements compared with other survey instruments revealed a low positive correlation. INTERPRETATION To build resilient health systems capable of withstanding future health threats, urgently scaling up adherence to WHO IPC minimum requirements is essential. FUNDING WHO. TRANSLATIONS For the French and Spanish translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Ermira Tartari
- Infection Prevention and Control Hub and Task Force, Department of Integrated Health Services, WHO, Geneva, Switzerland; Faculty of Health Sciences, University of Malta, Msida, Malta
| | - Sara Tomczyk
- Department for Infectious Disease Epidemiology, Robert Koch Institute, Berlin, Germany
| | - Anthony Twyman
- Infection Prevention and Control Hub and Task Force, Department of Integrated Health Services, WHO, Geneva, Switzerland
| | - Ana Paula Coutinho Rehse
- Infectious Hazard Management Programme, Health Emergencies Programme, WHO Regional Office for Europe, Copenhagen, Denmark
| | - Mohamed Gomaa
- WHO Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | - Maha Talaat
- WHO Regional Office for the Eastern Mediterranean, Cairo, Egypt
| | - Aparna Singh Shah
- Health Surveillance, Disease Prevention and Control, WHO Regional Office for South-East Asia, New Delhi, India
| | - Howard Sobel
- Ministry of Health, WHO, Honiara, Solomon Islands
| | - Joao Paulo Toledo
- Infection Prevention and Control Hub and Task Force, Department of Integrated Health Services, WHO, Geneva, Switzerland; High Impact Epidemics, WHO Health Emergencies Programme, WHO, Geneva, Switzerland
| | - Benedetta Allegranzi
- Infection Prevention and Control Hub and Task Force, Department of Integrated Health Services, WHO, Geneva, Switzerland.
| |
Collapse
|
6
|
Hanrahan J, Schouten N, Fyffe SH, Jencson A, Stroever S. Invasion of superbugs: Cockroach-driven outbreak of multidrug-resistant Enterobacter in an ICU. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2024; 4:e155. [PMID: 39371436 PMCID: PMC11450660 DOI: 10.1017/ash.2024.425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 10/08/2024]
Abstract
Objective To describe factors in an outbreak of multidrug-resistant Enterobacter cloacae (MRE) in an intensive care unit (ICU) over a 20-month period including the likely contribution of cockroaches to the outbreak. Design This is a retrospective descriptive study. Setting ICU in an urban hospital. Patients All patients admitted to the ICU during the 20-month outbreak period were included in the study. Interventions Infection prevention interventions included contact isolation, hand hygiene, dedicated patient equipment, environmental cultures, and pest control. Results 25 patients were identified as being colonized or infected with MRE. Relatedness of the outbreak strain and strains found in cockroaches was demonstrated by pulse field gel electrophoresis. Standard IP interventions did not have an impact on the outbreak until pest control was added. Once additional pest control measures were put in place, the outbreak ended. Conclusions Insects have a potential role in transmission of pathogens in hospitals and their role should be considered when outbreaks are being investigated.
Collapse
Affiliation(s)
| | - Nicholas Schouten
- Macon and Joan Brock Virginia Health Sciences, EVMS Medical School at Old Dominion University, Norfolk, VA, USA
| | | | | | | |
Collapse
|
7
|
Hameed P S, Kotakonda H, Sharma S, Nandishaiah R, Katagihallimath N, Rao R, Sadler C, Slater I, Morton M, Chandrasekaran A, Griffen E, Pillai D, Reddy S, Bharatham N, Venkatesan S, Jonnalagadda V, Jayaraman R, Nanjundappa M, Sharma M, Raveendran S, Rajagopal S, Tumma H, Watters A, Becker H, Lindley J, Flamm R, Huband M, Sahm D, Hackel M, Mathur T, Kolamunnage-Dona R, Unsworth J, Mcentee L, Farrington N, Manickam D, Chandrashekara N, Jayachandiran S, Reddy H, Shanker S, Richard V, Thomas T, Nagaraj S, Datta S, Sambandamurthy V, Ramachandran V, Clay R, Tomayko J, Das S, V B. BWC0977, a broad-spectrum antibacterial clinical candidate to treat multidrug resistant infections. Nat Commun 2024; 15:8202. [PMID: 39294149 PMCID: PMC11410943 DOI: 10.1038/s41467-024-52557-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
The global crisis of antimicrobial resistance (AMR) necessitates the development of broad-spectrum antibacterial drugs effective against multi-drug resistant (MDR) pathogens. BWC0977, a Novel Bacterial Topoisomerase Inhibitor (NBTI) selectively inhibits bacterial DNA replication via inhibition of DNA gyrase and topoisomerase IV. BWC0977 exhibited a minimum inhibitory concentration (MIC90) of 0.03-2 µg/mL against a global panel of MDR Gram-negative bacteria including Enterobacterales and non-fermenters, Gram-positive bacteria, anaerobes and biothreat pathogens. BWC0977 retains activity against isolates resistant to fluoroquinolones (FQs), carbapenems and colistin and demonstrates efficacy against multiple pathogens in two rodent species with significantly higher drug levels in the epithelial lining fluid of infected lungs. In healthy volunteers, single-ascending doses of BWC0977 administered intravenously ( https://clinicaltrials.gov/study/NCT05088421 ) was found to be safe, well tolerated (primary endpoint) and achieved dose-proportional exposures (secondary endpoint) consistent with modelled data from preclinical studies. Here, we show that BWC0977 has the potential to treat a range of critical-care infections including MDR bacterial pneumonias.
Collapse
Affiliation(s)
- Shahul Hameed P
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Harish Kotakonda
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Sreevalli Sharma
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Radha Nandishaiah
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Nainesh Katagihallimath
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Ranga Rao
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Claire Sadler
- Apconix Ltd. Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Ian Slater
- Apconix Ltd. Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | - Michael Morton
- Apconix Ltd. Alderley Park, Alderley Edge, Cheshire, SK10 4TG, UK
| | | | - Ed Griffen
- Medchemica Ltd., No. 8162245, Ebenezer House, Newcastle-under-Lyme, Staffordshire, ST5 2BE, England
| | - Dhanashree Pillai
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Sambasiva Reddy
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Nagakumar Bharatham
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Suryanarayanan Venkatesan
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Venugopal Jonnalagadda
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Ramesh Jayaraman
- TheraIndx Lifesciences Pvt. Ltd., Sy No. 27, Deganahalli, Bangalore, 562123, India
| | - Mahesh Nanjundappa
- TheraIndx Lifesciences Pvt. Ltd., Sy No. 27, Deganahalli, Bangalore, 562123, India
| | - Maitrayee Sharma
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Savitha Raveendran
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Sreenath Rajagopal
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Harikrishna Tumma
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Amy Watters
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Holly Becker
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Jill Lindley
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Robert Flamm
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Michael Huband
- JMI Laboratories, 345 Beaver Kreek Center, North Liberty, IA, 52317, USA
| | - Dan Sahm
- IHMA USA, 2122 Palmer Drive, Schaumburg, IL, 60173-3817, USA
| | - Meredith Hackel
- IHMA USA, 2122 Palmer Drive, Schaumburg, IL, 60173-3817, USA
| | | | - Ruwanthi Kolamunnage-Dona
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Jennifer Unsworth
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Laura Mcentee
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Nikki Farrington
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Dhanasekaran Manickam
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Narayana Chandrashekara
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Sivakandan Jayachandiran
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Hrushikesava Reddy
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Sathya Shanker
- Syngene International Ltd., Biocon Park, Plot No. 2 & 3, Bommasandra Jigani Link Road, Bangalore, 560 099, India
| | - Vijay Richard
- Narayana Health, Mazumdar Shaw Medical Center, 258/A, Bommasandra Industrial Area, Hosur Road, Bangalore, 560 099, India
| | - Teby Thomas
- Microbiology laboratory, St. John's Hospital, Sarjapur Road, Bangalore, 560 034, India
| | - Savitha Nagaraj
- Microbiology laboratory, St. John's Hospital, Sarjapur Road, Bangalore, 560 034, India
| | - Santanu Datta
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Vasan Sambandamurthy
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Vasanthi Ramachandran
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Robert Clay
- Highbury Regulatory Science Limited, SK10 4TG, Nether Alderley, Cheshire, SK10 4TG, UK
| | - John Tomayko
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India
| | - Shampa Das
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, L69 7BE, UK
| | - Balasubramanian V
- Bugworks Research India Pvt. Ltd. Center for Cellular & Molecular Platforms, National Center for Biological Sciences, GKVK Campus, Bellary Road, Bangalore, 560 065, India.
| |
Collapse
|
8
|
Santos MPMC, de Oliveira LS, Lima-Neto RG, Andrade CAS, Oliveira MDL. New bioelectrode based on graphene quantum dots-polypyrrole film and Concanavalin A for pathogenic microorganism detection. J Pharm Biomed Anal 2024; 248:116299. [PMID: 38865928 DOI: 10.1016/j.jpba.2024.116299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 06/07/2024] [Accepted: 06/07/2024] [Indexed: 06/14/2024]
Abstract
Infections caused by microorganisms are a public health problem worldwide. New biodetection systems are essential to diagnose with accuracy resulting in more effective treatment. In this work, we propose a ConA-conjugated graphene quantum dots and polypyrrole film-based biosensor for label-free detection of Candida albicans, Candida glabrata, Candida tropicalis, E. coli, B. subitilis, and S. aureus. We modified polypyrrole and graphene quantum dots (PPY-QDGs) with Concanavalin A (Con A) lectin. ConA is a glucose/mannose-specific lectin. The results showed that ConA lectin has the highest binding affinity for C. tropicalis and S. subtilis. PPY-GQDs-ConA binding profile revealed differential response for Candida spp (C. tropicalis > C. albicans > C. glabrata) and bacterial (B. subtilis > S. aureus > E. coli). The limits of detection (LOD) obtained were 1.42 CFU/mL for C. albicans, and 3.72 CFU/mL for C. glabrata. C. tropicalis yielded a LOD of 0.18 CFU/mL. The respective LODs for the evaluated bacteria were 0.39 CFU/mL for S. aureus, 0.72 CFU/mL for S. subtilis, and 2.63 CFU/mL for E. coli. The differential response obtained for the sensor can be attributed to the heterogeneous distribution of carbohydrates on the microorganism's surfaces. The proposed system based on a flexible substrate is effective for microbiological diagnosis.
Collapse
Affiliation(s)
- Maria P M C Santos
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Léony S de Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Reginaldo G Lima-Neto
- Departamento de Medicina Tropical, Universidade Federal de Pernambuco (UFPE), Recife, Pernambuco, Brazil
| | - César A S Andrade
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil; Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil
| | - Maria D L Oliveira
- Programa de Pós-Graduação em Inovação Terapêutica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil; Departamento de Bioquímica, Universidade Federal de Pernambuco, Recife, Pernambuco 50670-901, Brazil.
| |
Collapse
|
9
|
So B, Kim J, Jo JK, So H. Recent developments in preventing catheter-related infections based on biofilms: A comprehensive review. BIOMICROFLUIDICS 2024; 18:051506. [PMID: 39397894 PMCID: PMC11470810 DOI: 10.1063/5.0195165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 09/09/2024] [Indexed: 10/15/2024]
Abstract
Urinary and vascular catheters are among the most commonly used medical devices. However, infections caused by biofilm formation on the surface of catheters are a major cause of healthcare-associated infections. Traditional methods, such as using antimicrobials to prevent such infections, generally have short-term effects, and treatment is challenging owing to the emergence of antimicrobial-resistant bacteria. This review aims to evaluate the limitations of conventional catheter-related infection prevention efficacy, such as currently used antimicrobials, and analyze the efficacy and limitations of potential alternatives to prevent catheter-related infections that have not yet been commercialized, classified by the transition stages of biofilm formation. We intend to provide profound insights into the ideal technologies for preventing catheter-associated tract infections and present perspectives on future directions in this field.
Collapse
Affiliation(s)
- Byeongchan So
- Department of Medical and Digital Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jongwon Kim
- Department of Medical and Digital Engineering, Hanyang University, Seoul 04763, South Korea
| | - Jung Ki Jo
- Department of Urology, College of Medicine, Hanyang University, Seoul 04763, South Korea
| | - Hongyun So
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
10
|
Maier L, Stein-Thoeringer C, Ley RE, Brötz-Oesterhelt H, Link H, Ziemert N, Wagner S, Peschel A. Integrating research on bacterial pathogens and commensals to fight infections-an ecological perspective. THE LANCET. MICROBE 2024; 5:100843. [PMID: 38608681 DOI: 10.1016/s2666-5247(24)00049-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Abstract
The incidence of antibiotic-resistant bacterial infections is increasing, and development of new antibiotics has been deprioritised by the pharmaceutical industry. Interdisciplinary research approaches, based on the ecological principles of bacterial fitness, competition, and transmission, could open new avenues to combat antibiotic-resistant infections. Many facultative bacterial pathogens use human mucosal surfaces as their major reservoirs and induce infectious diseases to aid their lateral transmission to new host organisms under some pathological states of the microbiome and host. Beneficial bacterial commensals can outcompete specific pathogens, thereby lowering the capacity of the pathogens to spread and cause serious infections. Despite the clinical relevance, however, the understanding of commensal-pathogen interactions in their natural habitats remains poor. In this Personal View, we highlight directions to intensify research on the interactions between bacterial pathogens and commensals in the context of human microbiomes and host biology that can lead to the development of innovative and sustainable ways of preventing and treating infectious diseases.
Collapse
Affiliation(s)
- Lisa Maier
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Christoph Stein-Thoeringer
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany; Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Ruth E Ley
- Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; Max Planck Institute for Biology, Tübingen, Germany
| | - Heike Brötz-Oesterhelt
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Hannes Link
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany
| | - Nadine Ziemert
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Samuel Wagner
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany
| | - Andreas Peschel
- Interfaculty Institute of Microbiology and Infection Medicine Tübingen, University of Tübingen, Tübingen, Germany; Cluster of Excellence "Controlling Microbes to Fight Infections" (CMFI), Tübingen, Germany; German Center for Infection Research, partner site, Tübingen, Germany.
| |
Collapse
|
11
|
Hasso-Agopsowicz M, Sparrow E, Cameron AM, Sati H, Srikantiah P, Gottlieb S, Bentsi-Enchill A, Le Doare K, Hamel M, Giersing BK, Hausdorff WP. The role of vaccines in reducing antimicrobial resistance: A review of potential impact of vaccines on AMR and insights across 16 vaccines and pathogens. Vaccine 2024; 42:S1-S8. [PMID: 38876836 DOI: 10.1016/j.vaccine.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/01/2024] [Accepted: 06/04/2024] [Indexed: 06/16/2024]
Abstract
In 2019, an estimated 4.95 million deaths were linked to antimicrobial resistance (AMR). Vaccines can prevent many of these deaths by averting both drug-sensitive and resistant infections, reducing antibiotic usage, and lowering the likelihood of developing resistance genes. However, their role in mitigating AMR is currently underutilized. This article builds upon previous research that utilizes Vaccine Value Profiles-tools that assess the health, socioeconomic, and societal impact of pathogens-to inform vaccine development. We analyze the effects of 16 pathogens, covered by Vaccine Value Profiles, on AMR, and explore how vaccines could reduce AMR. The article also provides insights into vaccine development and usage. Vaccines are crucial in lessening the impact of infectious diseases and curbing the development of AMR. To fully realize their potential, vaccines must be more prominently featured in the overall strategy to combat AMR. This requires ongoing investment in research and development of new vaccines and the implementation of additional prevention and control measures to address this global threat effectively.
Collapse
Affiliation(s)
- Mateusz Hasso-Agopsowicz
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland.
| | - Erin Sparrow
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - Alexandra Meagan Cameron
- Global Coordination and Partnership (GCP), Antimicrobial Resistance Division, World Health Organization, Geneva, Switzerland
| | - Hatim Sati
- Global Coordination and Partnership (GCP), Antimicrobial Resistance Division, World Health Organization, Geneva, Switzerland
| | | | - Sami Gottlieb
- Department of Sexual and Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Adwoa Bentsi-Enchill
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | | | - Mary Hamel
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - Birgitte K Giersing
- Vaccine Product & Delivery Research, Department of Immunization, Vaccines & Biologicals, World Health Organization, Geneva, Switzerland
| | - William P Hausdorff
- Center for Vaccine Access and Innovation, PATH, WA DC, USA; Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
12
|
Kilpatrick C, Tartari E, Storr J, Pittet D, Allegranzi B. Why is sharing knowledge about hand hygiene and infection prevention and control still so important? Int J Infect Dis 2024; 144:107063. [PMID: 38657759 DOI: 10.1016/j.ijid.2024.107063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024] Open
Affiliation(s)
- Claire Kilpatrick
- Infection Prevention and Control Unit and Hub, Department of Integrated Health Services, World Health Organization, Geneva, Switzerland
| | - Ermira Tartari
- Infection Prevention and Control Unit and Hub, Department of Integrated Health Services, World Health Organization, Geneva, Switzerland; Faculty of Health Sciences, University of Malta, Msida, Malta.
| | - Julie Storr
- Infection Prevention and Control Unit and Hub, Department of Integrated Health Services, World Health Organization, Geneva, Switzerland
| | - Didier Pittet
- Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Benedetta Allegranzi
- Infection Prevention and Control Unit and Hub, Department of Integrated Health Services, World Health Organization, Geneva, Switzerland
| |
Collapse
|
13
|
Gong L, Lin Y. Microfluidics in smart food safety. ADVANCES IN FOOD AND NUTRITION RESEARCH 2024; 111:305-354. [PMID: 39103216 DOI: 10.1016/bs.afnr.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
The evolution of food safety practices is crucial in addressing the challenges posed by a growing global population and increasingly complex food supply chains. Traditional methods are often labor-intensive, time-consuming, and susceptible to human error. This chapter explores the transformative potential of integrating microfluidics into smart food safety protocols. Microfluidics, involving the manipulation of small fluid volumes within microscale channels, offers a sophisticated platform for developing miniaturized devices capable of complex tasks. Combined with sensors, actuators, big data analytics, artificial intelligence, and the Internet of Things, smart microfluidic systems enable real-time data acquisition, analysis, and decision-making. These systems enhance control, automation, and adaptability, making them ideal for detecting contaminants, pathogens, and chemical residues in food products. The chapter covers the fundamentals of microfluidics, its integration with smart technologies, and its applications in food safety, addressing the challenges and future directions in this field.
Collapse
Affiliation(s)
- Liyuan Gong
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, United States
| | - Yang Lin
- Department of Mechanical, Industrial and Systems Engineering, University of Rhode Island, Kingston, RI, United States.
| |
Collapse
|
14
|
Yao L, Guan J, Xie P, Chung C, Deng J, Huang Y, Chiang Y, Lee T. AMPActiPred: A three-stage framework for predicting antibacterial peptides and activity levels with deep forest. Protein Sci 2024; 33:e5006. [PMID: 38723168 PMCID: PMC11081525 DOI: 10.1002/pro.5006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/13/2024]
Abstract
The emergence and spread of antibiotic-resistant bacteria pose a significant public health threat, necessitating the exploration of alternative antibacterial strategies. Antibacterial peptide (ABP) is a kind of antimicrobial peptide (AMP) that has the potential ability to fight against bacteria infection, offering a promising avenue for developing novel therapeutic interventions. This study introduces AMPActiPred, a three-stage computational framework designed to identify ABPs, characterize their activity against diverse bacterial species, and predict their activity levels. AMPActiPred employed multiple effective peptide descriptors to effectively capture the compositional features and physicochemical properties of peptides. AMPActiPred utilized deep forest architecture, a cascading architecture similar to deep neural networks, capable of effectively processing and exploring original features to enhance predictive performance. In the first stage, AMPActiPred focuses on ABP identification, achieving an Accuracy of 87.6% and an MCC of 0.742 on an elaborate dataset, demonstrating state-of-the-art performance. In the second stage, AMPActiPred achieved an average GMean at 82.8% in identifying ABPs targeting 10 bacterial species, indicating AMPActiPred can achieve balanced predictions regarding the functional activity of ABP across this set of species. In the third stage, AMPActiPred demonstrates robust predictive capabilities for ABP activity levels with an average PCC of 0.722. Furthermore, AMPActiPred exhibits excellent interpretability, elucidating crucial features associated with antibacterial activity. AMPActiPred is the first computational framework capable of predicting targets and activity levels of ABPs. Finally, to facilitate the utilization of AMPActiPred, we have established a user-friendly web interface deployed at https://awi.cuhk.edu.cn/∼AMPActiPred/.
Collapse
Affiliation(s)
- Lantian Yao
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- School of Science and EngineeringThe Chinese University of Hong KongShenzhenChina
| | - Jiahui Guan
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Peilin Xie
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Chia‐Ru Chung
- Department of Computer Science and Information EngineeringNational Central UniversityTaoyuanTaiwan
| | - Junyang Deng
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Yixian Huang
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Ying‐Chih Chiang
- Kobilka Institute of Innovative Drug Discovery, School of MedicineThe Chinese University of Hong KongShenzhenChina
- School of MedicineThe Chinese University of Hong KongShenzhenChina
| | - Tzong‐Yi Lee
- Institute of Bioinformatics and Systems BiologyNational Yang Ming Chiao Tung UniversityHsinchuTaiwan
- Center for Intelligent Drug Systems and Smart Bio‐devices (IDS2B)National Yang Ming Chiao Tung UniversityHsinchuTaiwan
| |
Collapse
|
15
|
Mauritz MD, Claus B, Forster J, Petzold M, Schneitler S, Halfmann A, Hauswaldt S, Nurjadi D, Toepfner N. The EC-COMPASS: Long-term, multi-centre surveillance of Enterobacter cloacae complex - a clinical perspective. J Hosp Infect 2024; 148:11-19. [PMID: 38554809 DOI: 10.1016/j.jhin.2024.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/02/2024] [Accepted: 03/13/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Enterobacter cloacae complex (ECCO) comprises closely related Enterobacterales, causing a variety of infections ranging from mild urinary tract infections to severe bloodstream infections. ECCO has emerged as a significant cause of healthcare-associated infections, particularly in neonatal and adult intensive care. AIM The Enterobacter Cloacae COMplex PASsive Surveillance (EC-COMPASS) aims to provide a detailed multi-centre overview of ECCO epidemiology and resistance patterns detected in routine microbiological diagnostics in four German tertiary-care hospitals. METHODS In a sentinel cluster of four German tertiary-care hospitals, all culture-positive ECCO results between 1st January 2020 and 31st December 2022, were analysed based on Hybase® laboratory data. FINDINGS Analysis of 31,193 ECCO datasets from 14,311 patients revealed a higher incidence in male patients (P<0.05), although no significant differences were observed in ECCO infection phenotypes. The most common sources of ECCO were swabs (42.7%), urine (17.5%), respiratory secretions (16.1%), blood cultures (8.9%) and tissue samples (5.6%). The annual bacteraemia rate remained steady at approximately 33 cases per hospital. Invasive ECCO infections were predominantly found in oncology and intensive care units. Incidences of nosocomial outbreaks were infrequent and limited in scope. Notably, resistance to carbapenems was consistently low. CONCLUSION EC-COMPASS offers a profound clinical perspective on ECCO infections in German tertiary-healthcare settings, highlighting elderly men in oncology and intensive care units as especially vulnerable to ECCO infections. Early detection strategies targeting at-risk patients could improve ECCO infection management.
Collapse
Affiliation(s)
- M D Mauritz
- Department of General Pediatrics and Adolescent Medicine, Children's and Adolescents' Hospital, Datteln, Germany; Department of Children's Pain Therapy and Pediatric Palliative Care, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany.
| | - B Claus
- Department of Children's Pain Therapy and Pediatric Palliative Care, Faculty of Health, School of Medicine, Witten/Herdecke University, Witten, Germany; PedScience Research Institute, Datteln, Germany
| | - J Forster
- Institute for Hygiene and Microbiology, University of Wuerzburg, Wuerzburg, Germany
| | - M Petzold
- Institute for Medical Microbiology and Virology, University Hospital Carl Gustav Carus Dresden, Technical University Dresden, Dresden, Germany
| | - S Schneitler
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - A Halfmann
- Institute of Medical Microbiology and Hygiene, Saarland University, Homburg, Germany
| | - S Hauswaldt
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
| | - D Nurjadi
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
| | - N Toepfner
- Department of Pediatrics, Faculty of Medicine and University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| |
Collapse
|
16
|
Dahdouh E, Gómez-Marcos L, Cañada-García JE, de Arellano ER, Sánchez-García A, Sánchez-Romero I, López-Urrutia L, de la Iglesia P, Gonzalez-Praetorius A, Sotelo J, Valle-Millares D, Alonso-González I, Bautista V, Lara N, García-Cobos S, Cercenado E, Aracil B, Oteo-Iglesias J, Pérez-Vázquez M. Characterizing carbapenemase-producing Escherichia coli isolates from Spain: high genetic heterogeneity and wide geographical spread. Front Cell Infect Microbiol 2024; 14:1390966. [PMID: 38817448 PMCID: PMC11137265 DOI: 10.3389/fcimb.2024.1390966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 05/03/2024] [Indexed: 06/01/2024] Open
Abstract
Introduction Carbapenemase-Producing Escherichia coli (CP-Eco) isolates, though less prevalent than other CP-Enterobacterales, have the capacity to rapidly disseminate antibiotic resistance genes (ARGs) and cause serious difficult-to-treat infections. The aim of this study is phenotypically and genotypically characterizing CP-Eco isolates collected from Spain to better understand their resistance mechanisms and population structure. Methods Ninety representative isolates received from 2015 to 2020 from 25 provinces and 59 hospitals Spanish hospitals were included. Antibiotic susceptibility was determined according to EUCAST guidelines and whole-genome sequencing was performed. Antibiotic resistance and virulence-associated genes, phylogeny and population structure, and carbapenemase genes-carrying plasmids were analyzed. Results and discussion The 90 CP-Eco isolates were highly polyclonal, where the most prevalent was ST131, detected in 14 (15.6%) of the isolates. The carbapenemase genes detected were bla OXA-48 (45.6%), bla VIM-1 (23.3%), bla NDM-1 (7.8%), bla KPC-3 (6.7%), and bla NDM-5 (6.7%). Forty (44.4%) were resistant to 6 or more antibiotic groups and the most active antibiotics were colistin (98.9%), plazomicin (92.2%) and cefiderocol (92.2%). Four of the seven cefiderocol-resistant isolates belonged to ST167 and six harbored bla NDM. Five of the plazomicin-resistant isolates harbored rmt. IncL plasmids were the most frequent (45.7%) and eight of these harbored bla VIM-1. bla OXA-48 was found in IncF plasmids in eight isolates. Metallo-β-lactamases were more frequent in isolates with resistance to six or more antibiotic groups, with their genes often present on the same plasmid/integron. ST131 isolates were associated with sat and pap virulence genes. This study highlights the genetic versatility of CP-Eco and its potential to disseminate ARGs and cause community and nosocomial infections.
Collapse
Affiliation(s)
- Elias Dahdouh
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Laro Gómez-Marcos
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Javier E. Cañada-García
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Eva Ramírez de Arellano
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Aida Sánchez-García
- Servicio de Microbiología, URSalud UTE, Hospital Infanta Sofía, San Sebastián de los Reyes, Madrid, Spain
| | | | | | | | | | - Jared Sotelo
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Daniel Valle-Millares
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Isabela Alonso-González
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Verónica Bautista
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Noelia Lara
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
| | - Silvia García-Cobos
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Emilia Cercenado
- Servicio de Microbiología, Hospital Universitario Gregorio Marañón, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red (CIBER) de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III, Madrid, Spain
| | - Belén Aracil
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Jesús Oteo-Iglesias
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Pérez-Vázquez
- Laboratorio de Referencia e Investigación en Resistencia a Antibióticos e Infecciones relacionadas con la Asistencia Sanitaria, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigacíon Biomédica en En Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
17
|
Tartari E, Garlasco J, Mezerville MHD, Ling ML, Márquez-Villarreal H, Seto WH, Simon A, Hennig TJ, Pittet D. Ten years of hand hygiene excellence: a summary of outcomes, and a comparison of indicators, from award-winning hospitals worldwide. Antimicrob Resist Infect Control 2024; 13:45. [PMID: 38637873 PMCID: PMC11027265 DOI: 10.1186/s13756-024-01399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/07/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Hand hygiene is a crucial measure for the prevention of healthcare-associated infections (HAIs). The Hand Hygiene Excellence Award (HHEA) is an international programme acknowledging healthcare facilities for their leadership in implementing hand hygiene improvement programmes, including the World Health Organisation's Multimodal Improvement Strategy. This study aimed at summarising the results of the HHEA campaign between 2010 and 2021 and investigating the relationship between different hand hygiene parameters based on data from participating healthcare facilities. METHODS A retrospective analysis was performed on datasets from HHEA forms, including data on hand hygiene compliance, alcohol-based handrub (ABHR) consumption, and Hand Hygiene Self-Assessment Framework (HHSAF) scores. Descriptive statistics were reported for each variable. The correlation between variables was inspected through Kendall's test, while possible non-linear relationships between hand hygiene compliance, ABHR consumption and HHSAF scores were sought through the Locally Estimated Scatterplot Smoothing or logistic regression models. A tree-structured partitioning model was developed to further confirm the obtained findings. RESULTS Ninety-seven healthcare facilities from 28 countries in three world regions (Asia-Pacific, Europe, Latin America) were awarded the HHEA and thus included in the analysis. HHSAF scores indicated an advanced hand hygiene promotion level (median 445 points, IQR 395-480). System change (100 [95-100] points) and institutional safety climate (85 [70-95] points) showed the highest and lowest score, respectively. In most cases, hand hygiene compliance was above 70%, with heterogeneity between countries. ABHR consumption above 20 millilitres per patient-day (ml/PD) was widely reported, with overall increasing trends. HHSAF scores were positively correlated with hand hygiene compliance (τ = 0.211, p = 0.007). We observed a positive correlation between compliance rates and ABHR consumption (τ = 0.193, p < 0.001), although the average predicted consumption was stable around 55-60 ml/PD for compliance rates above 80-85%. Logistic regression and partitioning tree analyses revealed that higher HHSAF scores were more likely in the high-ABHR consumption group at cut-offs around 57-59 ml/PD. CONCLUSION Ten years after its inception, the HHEA proves to be a valuable hand hygiene improvement programme in healthcare facilities worldwide. Consistent results were provided by the different hand hygiene indicators and the HHSAF score represents a valuable proxy measure of hand hygiene compliance.
Collapse
Affiliation(s)
- Ermira Tartari
- Faculty of Health Sciences, University of Malta, 2080, Msida, Malta.
- Infection Prevention and Control Unit, Department of Integrated Health Services, WHO Headquarters, Geneva, Switzerland.
| | - Jacopo Garlasco
- Infectious Diseases Unit, Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | | | - Moi Lin Ling
- Infection Prevention and Epidemiology, Singapore General HospitalSingapore, 169608, Singapore, Singapore
| | | | - Wing-Hong Seto
- School of Public Health, WHO Collaborating Centre, The University of Hong Kong, Hong Kong, China
| | - Anne Simon
- Infection Control and Prevention, CHU Helora, Haine-Saint-Paul, Belgium
| | | | - Didier Pittet
- Faculty of Medicine & Clean Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
18
|
Husain L, Hu Y, Huang Y. Towards mission-driven investment in new antimicrobials? What role for Chinese strategic industrial financing vehicles in responding to the challenge of antimicrobial resistance? Global Health 2024; 20:26. [PMID: 38532478 DOI: 10.1186/s12992-024-01030-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/13/2024] [Indexed: 03/28/2024] Open
Abstract
BACKGROUND Antimicrobial resistance (AMR) causes high levels of global mortality. There is a global need to develop new antimicrobials to replace those whose efficacy is being eroded, but limited incentive for companies to engage in R&D, and a limited pipeline of new drugs. There is a recognised need for policies in the form of 'push' and 'pull' incentives to support this R&D. This article discusses China, a country with a rapidly emerging pharmaceuticals and biotech (P&B) sector, and a history of using coordinated innovation and industrial policy for strategic and developmental ends. We investigate the extent to which 'government guidance funds' (GGFs), strategic industrial financing vehicles (a 'push' mechanism), support the development of antimicrobials as part of China's 'mission-driven' approach to innovation and industrial policy. GGFs are potentially globally significant, having raised approximately US$ 872 billion to 2020. RESULTS GGFs have a substantial role in P&B, but almost no role in developing new antimicrobials, despite this being a priority in the country's AMR National Action Plan. There are multiple constraints on GGFs' ability to function as part of a mission-driven approach to innovation at present, linked to their business model and the absence of standard markets for antimicrobials (or other effective 'pull' mechanisms), their unclear 'social' mandate, and limited technical capacity. However, GGFs are highly responsive to changing policy demands and can be used strategically by government in response to changing needs. CONCLUSIONS Despite the very limited role of GGFs in developing new antimicrobials, their responsiveness to policy means they are likely to play a larger role as P&B becomes an increasingly important component of China's innovation and industrial strategy. However, for GGFs to effectively play that role, there is a need for reforms to their governance model, an increase in technical and managerial capacity, and supporting ('pull') incentives, particularly for pharmaceuticals such as antimicrobials for which there is strong social need, but a limited market. Given GGFs' scale and strategic importance, they deserve further research as China's P&B sector becomes increasingly globally important, and as the Chinese government commits to a larger role in global health.
Collapse
Affiliation(s)
| | - Yajing Hu
- Independent consultant, Beijing, China
| | - Yangmu Huang
- School of Public Health, Peking University, Beijing, China
| |
Collapse
|
19
|
Abejew AA, Wubetu GY, Fenta TG. Relationship between Antibiotic Consumption and Resistance: A Systematic Review. THE CANADIAN JOURNAL OF INFECTIOUS DISEASES & MEDICAL MICROBIOLOGY = JOURNAL CANADIEN DES MALADIES INFECTIEUSES ET DE LA MICROBIOLOGIE MEDICALE 2024; 2024:9958678. [PMID: 38476862 PMCID: PMC10932619 DOI: 10.1155/2024/9958678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/20/2023] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Background Unreserved use of antibiotics exerted selective pressure on susceptible bacteria, resulting in the survival of resistant strains. Despite this, the relationship between antibiotic resistance (ABR) and antibiotic consumption (ABC) is rarely studied. This systematic review aims to review the relationship between ABC and ABR from 2016 to 2022. Methods Articles published over 7 years (2016-2022) were searched from December 23 to 31, 2022. The search strategy was developed by using keywords for ABC and ABR. From 3367 articles, 58 eligible articles were included in the final review. Results The pooled ABC was 948017.9 DPDs and 4108.6 DIDs where over 70% of antibiotics were from the Watch and Reserve category based on the WHO AWaRe classification. The average pooled prevalence of ABR was 38.4%. Enterococcus faecium (59.4%), A. baumannii (52.6%), and P. aeruginosa (48.6%) were the most common antibiotic-resistant bacteria. Cephalosporins (76.8%), penicillin (58.3%), and aminoglycosides (52%) were commonly involved antibiotics in ABR. The positive correlation between ABR and consumption accounted for 311 (81%). The correlation between ABR P. aeruginosa and ABC accounted for 87 (22.7%), followed by 78 (20.3%) and 77 (20.1%) for ABR E. coli and K. pneumoniae with ABCs, respectively. Consumption of carbapenems and fluoroquinolones was most commonly correlated with resistance rates of P. aeruginosa, K. pneumoniae, E. coli, and A. baumannii. Conclusion There is a positive correlation between ABC and the rate of ABR. The review also revealed a cross-resistance between the consumption of different antibiotics and ABR. Optimizing antibiotic therapy and reducing unnecessary ABC will prevent the emergence and spread of ABR. Thus, advocating the implementation of stewardship programs plays a pivotal role in containing ABR.
Collapse
Affiliation(s)
- Asrat Agalu Abejew
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
- Department of Pharmacy, College of Medicine and Health Sciences, Bahir Dar University, Bahir Dar, Ethiopia
| | | | - Teferi Gedif Fenta
- Department of Pharmaceutics and Social Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
20
|
Berner-Rodoreda A, Cobelens F, Vandamme AM, Froeschl G, Skordis J, Renganathan E, t'Hoen E, Raviglione M, Jahn A, Bärnighausen T. Transferable data exclusivity vouchers are not the solution to the antimicrobial drug development crisis: a commentary on the proposed EU pharma regulation. BMJ Glob Health 2024; 9:e014605. [PMID: 38423550 PMCID: PMC10910522 DOI: 10.1136/bmjgh-2023-014605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024] Open
Affiliation(s)
- Astrid Berner-Rodoreda
- Heidelberg Institute of Global Health (HIGH), University Hospital, Heidelberg University, Heidelberg, Germany
| | - Frank Cobelens
- Amsterdam Institute for Global Health & Development (AIGHD) and Department of Global Health, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Anne-Mieke Vandamme
- Clinical and Epidemiological Virology, Institute for the Future, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Center for Global Health and Tropical Medicine, Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Günter Froeschl
- Division of Infectious Diseases and Tropical Medicine, University Hospital, LMU Munich, Munich, Germany
| | - Jolene Skordis
- Institute for Global Health, University College London (UCL), London, UK
| | - Elil Renganathan
- School of Medical and Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Ellen t'Hoen
- Medicines Law & Policy, Amsterdam, The Netherlands
| | - Mario Raviglione
- Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milano, Italy
| | - Albrecht Jahn
- Heidelberg Institute of Global Health (HIGH), University Hospital, Heidelberg University, Heidelberg, Germany
| | - Till Bärnighausen
- Heidelberg Institute of Global Health (HIGH), University Hospital, Heidelberg University, Heidelberg, Germany
- Africa Health Research Institute (AHRI), Somkhele and Durban, South Africa
| |
Collapse
|
21
|
Mustafa AS. Whole Genome Sequencing: Applications in Clinical Bacteriology. Med Princ Pract 2024; 33:185-197. [PMID: 38402870 PMCID: PMC11221363 DOI: 10.1159/000538002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Accepted: 02/22/2024] [Indexed: 02/27/2024] Open
Abstract
The success in determining the whole genome sequence of a bacterial pathogen was first achieved in 1995 by determining the complete nucleotide sequence of Haemophilus influenzae Rd using the chain-termination method established by Sanger et al. in 1977 and automated by Hood et al. in 1987. However, this technology was laborious, costly, and time-consuming. Since 2004, high-throughput next-generation sequencing technologies have been developed, which are highly efficient, require less time, and are cost-effective for whole genome sequencing (WGS) of all organisms, including bacterial pathogens. In recent years, the data obtained using WGS technologies coupled with bioinformatics analyses of the sequenced genomes have been projected to revolutionize clinical bacteriology. WGS technologies have been used in the identification of bacterial species, strains, and genotypes from cultured organisms and directly from clinical specimens. WGS has also helped in determining resistance to antibiotics by the detection of antimicrobial resistance genes and point mutations. Furthermore, WGS data have helped in the epidemiological tracking and surveillance of pathogenic bacteria in healthcare settings as well as in communities. This review focuses on the applications of WGS in clinical bacteriology.
Collapse
Affiliation(s)
- Abu Salim Mustafa
- Department of Microbiology, College of Medicine, Kuwait University, Kuwait City, Kuwait
| |
Collapse
|
22
|
Shields KE, Ranava D, Tan Y, Zhang D, Yap MNF. Epitranscriptional m6A modification of rRNA negatively impacts translation and host colonization in Staphylococcus aureus. PLoS Pathog 2024; 20:e1011968. [PMID: 38252661 PMCID: PMC10833563 DOI: 10.1371/journal.ppat.1011968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 02/01/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Macrolides, lincosamides, and streptogramin B (MLS) are structurally distinct molecules that are among the safest antibiotics for prophylactic use and for the treatment of bacterial infections. The family of erythromycin resistance methyltransferases (Erm) invariantly install either one or two methyl groups onto the N6,6-adenosine of 2058 nucleotide (m6A2058) of the bacterial 23S rRNA, leading to bacterial cross-resistance to all MLS antibiotics. Despite extensive structural studies on the mechanism of Erm-mediated MLS resistance, how the m6A epitranscriptomic mark affects ribosome function and bacterial physiology is not well understood. Here, we show that Staphylococcus aureus cells harboring m6A2058 ribosomes are outcompeted by cells carrying unmodified ribosomes during infections and are severely impaired in colonization in the absence of an unmodified counterpart. The competitive advantage of m6A2058 ribosomes is manifested only upon antibiotic challenge. Using ribosome profiling (Ribo-Seq) and a dual-fluorescence reporter to measure ribosome occupancy and translational fidelity, we found that specific genes involved in host interactions, metabolism, and information processing are disproportionally deregulated in mRNA translation. This dysregulation is linked to a substantial reduction in translational capacity and fidelity in m6A2058 ribosomes. These findings point to a general "inefficient translation" mechanism of trade-offs associated with multidrug-resistant ribosomes.
Collapse
Affiliation(s)
- Kathryn E. Shields
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - David Ranava
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| | - Yongjun Tan
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
| | - Dapeng Zhang
- Department of Biology, College of Arts and Sciences, Saint Louis University, St. Louis, Missouri, United States of America
- Program of Bioinformatics and Computational Biology, College of Arts and Sciences, St. Louis, Missouri, United States of America
| | - Mee-Ngan F. Yap
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, United States of America
| |
Collapse
|
23
|
Ng XY, Fong KW, Kiew LV, Chung PY, Liew YK, Delsuc N, Zulkefeli M, Low ML. Ruthenium(II) polypyridyl complexes as emerging photosensitisers for antibacterial photodynamic therapy. J Inorg Biochem 2024; 250:112425. [PMID: 37977020 DOI: 10.1016/j.jinorgbio.2023.112425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/19/2023]
Abstract
Photodynamic therapy (PDT) has recently emerged as a potential valuable alternative to treat microbial infections. In PDT, singlet oxygen is generated in the presence of photosensitisers and oxygen under light irradiation of a specific wavelength, causing cytotoxic damage to bacteria. This review highlights different generations of photosensitisers and the common characteristics of ideal photosensitisers. It also focuses on the emergence of ruthenium and more specifically on Ru(II) polypyridyl complexes as metal-based photosensitisers used in antimicrobial photodynamic therapy (aPDT). Their photochemical and photophysical properties as well as structures are discussed while relating them to their phototoxicity. The use of Ru(II) complexes with recent advancements such as nanoformulations, combinatory therapy and photothermal therapy to improve on previous shortcomings of the complexes are outlined. Future perspectives of these complexes used in two-photon PDT, photoacoustic imaging and sonotherapy are also discussed. This review covers the literature published from 2017 to 2023.
Collapse
Affiliation(s)
- Xiao Ying Ng
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Kar Wai Fong
- School of Postgraduate Studies, International Medical University, Kuala Lumpur, Malaysia
| | - Lik Voon Kiew
- Department of Pharmacology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30068, Taiwan, Republic of China
| | - Pooi Yin Chung
- Department of Microbiology, School of Medicine, International Medical University, Kuala Lumpur, Malaysia
| | - Yun Khoon Liew
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Nicolas Delsuc
- Laboratoire des Biomolécules, LBM, Département de Chimie, École Normale Supérieur, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Mohd Zulkefeli
- Department of Pharmaceutical Chemistry, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia.
| | - May Lee Low
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, Malaysia.
| |
Collapse
|
24
|
Mustafa ZU, Khan AH, Salman M, Harun SN, Meyer JC, Godman B, Seaton RA. Healthcare-associated infections among neonates and children in Pakistan: findings and the implications from a point prevalence survey. J Hosp Infect 2023; 141:142-151. [PMID: 37774930 DOI: 10.1016/j.jhin.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 10/01/2023]
Abstract
BACKGROUND Healthcare-associated infections (HAIs) increase morbidity, mortality and costs. The overall prevalence of HAIs is greater in low- and middle-income countries due to poor resources and infrastructure, with the incidence of HAIs greater among neonates and children. There is a need to understand the current situation in Pakistan including key drivers to improve future care. METHODS Point prevalence survey (PPS) of HAIs in the children's wards of 19 public sector secondary- and tertiary-care hospitals of Pakistan and associated key drivers. RESULTS A total of 1147 children were included in the PPS. 35.7% were neonates with 32.8% aged >1-5 years. 35.2% were admitted to the intensive care units (ICUs). Peripheral, central venous and urinary catheters were present in 48%, 2.9% and 5.6% of the patients, respectively. A total of 161 HAIs from various pathogens were observed in 153 cases, giving a prevalence of 13.3%. The majority of HAIs were caused by Staphylococcus aureus (31.7%) followed by Klebsiella pneumoniae (22.9%) and Escherichia coli (17.4%). Bloodstream infections were identified in 42 cases followed by lower-respiratory-tract infections in 35. Increased length of hospital stays and being admitted to the ICU, 'rapidly fatal' patients under the McCabe and Jackson criteria, central and peripheral catheterization, and invasive mechanical ventilation were, associated with higher HAIs (P<0.001). 99.7% of HAI patients fully recovered and were discharged from the hospital. CONCLUSION There is a high prevalence of HAIs among neonates and children admitted to health facilities in Pakistan. Infection prevention and control measures should be implemented to help prevent future HAIs.
Collapse
Affiliation(s)
- Z U Mustafa
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia; Department of Pharmacy Services, District Headquarter (DHQ) Hospital, Pakpattan, Pakistan.
| | - A H Khan
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - M Salman
- Institute of Pharmacy, Faculty of Pharmaceutical and Allied Health Sciences, Lahore College for Women University, Lahore, Pakistan
| | - S N Harun
- Discipline of Clinical Pharmacy, School of Pharmaceutical Sciences, Universiti Sains Malaysia, Penang, Malaysia
| | - J C Meyer
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa
| | - B Godman
- Department of Public Health Pharmacy and Management, School of Pharmacy, Sefako Makgatho Health Sciences University, Pretoria 0208, South Africa; Strathclyde Institute of Pharmacy and Biomedical Science (SIPBS), University of Strathclyde, Glasgow, UK
| | - R A Seaton
- Queen Elizabeth University Hospital, Glasgow, UK; Scottish Antimicrobial Prescribing Group, Healthcare Improvement Scotland, Glasgow, UK
| |
Collapse
|
25
|
Badger-Emeka L, Al Rashed AS, Aljindan RY, Emeka PM, Quadri SA, Almutairi HH. Incidence of Drug-Resistant Hospital-Associated Gram-Negative Bacterial Infections, the Accompanying Risk Factors, and Clinical Outcomes with Treatment. Antibiotics (Basel) 2023; 12:1425. [PMID: 37760721 PMCID: PMC10525819 DOI: 10.3390/antibiotics12091425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/31/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Extensive drug resistance to bacterial infections in hospitalised patients is accompanied by high morbidity and mortality rates due to limited treatment options. This study investigated the clinical outcomes of single and combined antibiotic therapies in extensive (XDR), multidrug-resistant (MDR) and susceptible strains (SS) of hospital-acquired infections (HAIs). Cases of hospital-associated drug-resistant infections (HADRIs) and a few susceptible strains from hospital wards were selected for this study. Bacteria identifications (IDs) and antimicrobial susceptibility tests (ASTs) were performed with a Vitek 2 Compact Automated System. Patients' treatment types and clinical outcomes were classified as alive improved (AI), alive not improved (ANI), or died. The length of hospital stay (LOHS) was acquired from hospital records. The HAI pathogens were Acinetobacter baumannii (28%), Escherichia coli (26%), Klebsiella pneumoniae (22%), Klebsiella (2%) species, Pseudomonas aeruginosa (12%), Proteus mirabilis (4%), and other Enterobacteriaceae. They were MDR (40.59%), XDR (24.75%), carbapenem-resistant Enterobacteriaceae (CRE, 21.78%) and susceptible (12%) strains. The treatments were either monotherapy or combined therapy with different outcomes. Monotherapy produced positive significant outcomes with E. coli infections, while for P. aeruginosa, there were no differences between the number of infections treated with either mono/combined therapies (50% each). Nonetheless, combined therapy had significant effects (p < 0.05) as a treatment for A. baumannii and K. pneumoniae infections. Clinical outcomes and LOHS varied with infecting bacteria. The prevalence of XDR and MDR HAIs was found to be significantly high, with no association with treatment type, LOHS, or outcome.
Collapse
Affiliation(s)
- Lorina Badger-Emeka
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Abdullatif S. Al Rashed
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.A.R.)
| | - Reem Y. Aljindan
- Department of Microbiology, College of Medicine, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.A.R.)
| | - Promise Madu Emeka
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Sayed A. Quadri
- Department of Biomedical Sciences, College of Medicine, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| | - Hayfa Habes Almutairi
- Department of Chemistry, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
| |
Collapse
|
26
|
Walsh TR, Gales AC, Laxminarayan R, Dodd PC. Antimicrobial Resistance: Addressing a Global Threat to Humanity. PLoS Med 2023; 20:e1004264. [PMID: 37399216 DOI: 10.1371/journal.pmed.1004264] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/05/2023] Open
Affiliation(s)
- Timothy R Walsh
- Ineos Oxford Institute for Antimicrobial Resistance, Department of Zoology, Oxford, United Kingdom
| | - Ana C Gales
- Division of Infectious Diseases, Escola Paulista de Medicina, Universidade Federal de São Paulo (EPM-UNIFESP), São Paulo, Brazil
| | - Ramanan Laxminarayan
- Princeton University, Princeton, New Jersey, United States of America; One Health Trust, Bengaluru, India
| | - Philippa C Dodd
- Public Library of Science, San Francisco, United States of America and Cambridge, United Kingdom
| |
Collapse
|