1
|
Rivero MB, Alonso AM, Abdala ME, Luque ME, Carranza PG, Coceres VM, Rivero FD. Comparative membrane proteomic analysis of Tritrichomonas foetus isolates. Sci Rep 2024; 14:17033. [PMID: 39043862 PMCID: PMC11266394 DOI: 10.1038/s41598-024-67827-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 07/16/2024] [Indexed: 07/25/2024] Open
Abstract
Tritrichomonas foetus is a flagellated and anaerobic parasite able to infect cattle and felines. Despite its prevalence, there is no effective standardized or legal treatment for T. foetus-infected cattle; the vaccination still has limited success in mitigating infections and reducing abortion risk; and nowadays, the diagnosis of T. foetus presents important limitations in terms of sensitivity and specificity in bovines. Here, we characterize the plasma membrane proteome of T. foetus and identify proteins that are represented in different isolates of this protozoan. Additionally, we performed a bioinformatic analysis that revealed the antigenicity potential of some of those proteins. This analysis is the first study to identify common proteins at the plasma membrane of different T. foetus isolates that could be targets for alternative diagnostic or vaccine techniques in the future.
Collapse
Affiliation(s)
- Maria B Rivero
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
| | - Andrés M Alonso
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, B7130IWA, Chascomús, Argentina
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina
| | - Maria E Abdala
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
- Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - Melchor E Luque
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
- Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - Pedro G Carranza
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina
- Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina
| | - Veronica M Coceres
- Laboratorio de Parásitos Anaerobios, Instituto Tecnológico Chascomús (INTECH), CONICET-UNSAM, B7130IWA, Chascomús, Argentina.
- Escuela de Bio y Nanotecnologías (UNSAM), Buenos Aires, Argentina.
| | - Fernando D Rivero
- Laboratorio de Biología Molecular, Inmunología y Microbiología (LaBIM), Instituto Multidisciplinario de Salud, Tecnología y Desarrollo (IMSaTeD), CONICET-UNSE, Santiago del Estero, Argentina.
- Facultad de Ciencias Médicas (FCM-UNSE), Santiago del Estero, Argentina.
- Facultad de Agronomía y Agroindustrias (FAyA-UNSE), Santiago del Estero, Argentina.
| |
Collapse
|
2
|
Huang PJ, Huang CY, Li YX, Liu YC, Chu LJ, Yeh YM, Cheng WH, Chen RM, Lee CC, Chen LC, Lin HC, Chiu SF, Lin WN, Lyu PC, Tang P, Huang KY. Dissecting the Transcriptomes of Multiple Metronidazole-Resistant and Sensitive Trichomonas vaginalis Strains Identified Distinct Genes and Pathways Associated with Drug Resistance and Cell Death. Biomedicines 2021; 9:biomedicines9121817. [PMID: 34944632 PMCID: PMC8698965 DOI: 10.3390/biomedicines9121817] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 12/20/2022] Open
Abstract
Trichomonas vaginalis is the causative agent of trichomoniasis, the most prevalent non-viral sexually transmitted infection worldwide. Metronidazole (MTZ) is the mainstay of anti-trichomonal chemotherapy; however, drug resistance has become an increasingly worrying issue. Additionally, the molecular events of MTZ-induced cell death in T. vaginalis remain elusive. To gain insight into the differential expression of genes related to MTZ resistance and cell death, we conducted RNA-sequencing of three paired MTZ-resistant (MTZ-R) and MTZ-sensitive (MTZ-S) T. vaginalis strains treated with or without MTZ. Comparative transcriptomes analysis identified that several putative drug-resistant genes were exclusively upregulated in different MTZ-R strains, such as ATP-binding cassette (ABC) transporters and multidrug resistance pumps. Additionally, several shared upregulated genes among all the MTZ-R transcriptomes were not previously identified in T. vaginalis, such as 5′-nucleotidase surE and Na+-driven multidrug efflux pump, which are a potential stress response protein and a multidrug and toxic compound extrusion (MATE)-like protein, respectively. Functional enrichment analysis revealed that purine and pyrimidine metabolisms were suppressed in MTZ-S parasites upon drug treatment, whereas the endoplasmic reticulum-associated degradation (ERAD) pathway, proteasome, and ubiquitin-mediated proteolysis were strikingly activated, highlighting the novel pathways responsible for drug-induced stress. Our work presents the most detailed analysis of the transcriptional changes and the regulatory networks associated with MTZ resistance and MTZ-induced signaling, providing insights into MTZ resistance and cell death mechanisms in trichomonads.
Collapse
Affiliation(s)
- Po-Jung Huang
- Department of Biomedical Sciences, Chang Gung University, Taoyuan City 333, Taiwan;
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan; (Y.-M.Y.); (C.-C.L.)
| | - Ching-Yun Huang
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114, Taiwan; (C.-Y.H.); (S.-F.C.)
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei City 114, Taiwan
| | - Yu-Xuan Li
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-X.L.); (L.-J.C.); (P.T.)
| | - Yi-Chung Liu
- Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-C.L.); (P.-C.L.)
| | - Lichieh-Julie Chu
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-X.L.); (L.-J.C.); (P.T.)
- Molecular Medicine Research Center, Chang Gung University, Taoyuan City 333, Taiwan
- Liver Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan
| | - Yuan-Ming Yeh
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan; (Y.-M.Y.); (C.-C.L.)
| | - Wei-Hung Cheng
- Department of Medical Laboratory Science, College of Medicine, I-Shou University, Kaohsiung City 824, Taiwan;
| | - Ruei-Ming Chen
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan; (R.-M.C.); (H.-C.L.)
| | - Chi-Ching Lee
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taoyuan City 333, Taiwan; (Y.-M.Y.); (C.-C.L.)
- Department of Computer Science and Information Engineering, Chang Gung University, Taoyuan City 333, Taiwan
| | - Lih-Chyang Chen
- Department of Medicine, Mackay Medical College, New Taipei City 252, Taiwan;
| | - Hsin-Chung Lin
- Division of Clinical Pathology, Department of Pathology, Tri-Service General Hospital, National Defense Medical Center, Taipei City 114, Taiwan; (R.-M.C.); (H.-C.L.)
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City 114, Taiwan
| | - Shu-Fang Chiu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei City 114, Taiwan; (C.-Y.H.); (S.-F.C.)
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei City 114, Taiwan
- Department of Inspection, Taipei City Hospital, Renai Branch, Taipei City 114, Taiwan
| | - Wei-Ning Lin
- Graduate Institute of Biomedical and Pharmaceutical Science, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Ping-Chiang Lyu
- Institute of Bioinformatics and Structural Biology, Department of Life Science, National Tsing Hua University, Hsinchu 300, Taiwan; (Y.-C.L.); (P.-C.L.)
| | - Petrus Tang
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan City 333, Taiwan; (Y.-X.L.); (L.-J.C.); (P.T.)
| | - Kuo-Yang Huang
- Host-Parasite Interactions Laboratory, National Defense Medical Center, Taipei City 114, Taiwan
- Graduate Institute of Pathology and Parasitology, National Defense Medical Center, Taipei City 114, Taiwan
- Correspondence: ; Tel.: +886-2-87923100 (ext. 18564)
| |
Collapse
|
3
|
Sinkovics JG. The cell survival pathways of the primordial RNA-DNA complex remain conserved in the extant genomes and may function as proto-oncogenes. Eur J Microbiol Immunol (Bp) 2015; 5:25-43. [PMID: 25883792 PMCID: PMC4397846 DOI: 10.1556/eujmi-d-14-00034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 12/22/2014] [Indexed: 01/09/2023] Open
Abstract
Malignantly transformed (cancer) cells of multicellular hosts, including human cells, operate activated biochemical pathways that recognizably derived from unicellular ancestors. The descendant heat shock proteins of thermophile archaea now chaperon oncoproteins. The ABC cassettes of toxin-producer zooxantella Symbiodinia algae pump out the cytoplasmic toxin molecules; malignantly transformed cells utilize the derivatives of these cassettes to get rid of chemotherapeuticals. High mobility group helix-loop-helix proteins, protein arginine methyltransferases, proliferating cell nuclear antigens, and Ki-67 nuclear proteins, that protect and repair DNA in unicellular life forms, support oncogenes in transformed cells. The cell survival pathways of Wnt-β-catenin, Hedgehog, PI3K, MAPK-ERK, STAT, Ets, JAK, Pak, Myb, achaete scute, circadian rhythms, Bruton kinase and others, which are physiological in uni- and early multicellular eukaryotic life forms, are constitutively encoded in complex oncogenic pathways in selected single cells of advanced multicellular eukaryotic hosts. Oncogenes and oncoproteins in advanced multicellular hosts recreate selected independently living and immortalized unicellular life forms, which are similar to extinct and extant protists. These unicellular life forms are recognized at the clinics as autologous "cancer cells".
Collapse
Affiliation(s)
- J G Sinkovics
- St. Joseph's Hospital Cancer Institute Affiliated with the H. L. Moffitt Comprehensive Cancer Center, Morsani College of Medicine, Department of Molecular Medicine, The University of South Florida Tampa, FL USA
| |
Collapse
|
4
|
Woehle C, Kusdian G, Radine C, Graur D, Landan G, Gould SB. The parasite Trichomonas vaginalis expresses thousands of pseudogenes and long non-coding RNAs independently from functional neighbouring genes. BMC Genomics 2014; 15:906. [PMID: 25326207 PMCID: PMC4223856 DOI: 10.1186/1471-2164-15-906] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 10/09/2014] [Indexed: 12/11/2022] Open
Abstract
Background The human pathogen Trichomonas vaginalis is a parabasalian flagellate that is estimated to infect 3% of the world’s population annually. With a 160 megabase genome and up to 60,000 genes residing in six chromosomes, the parasite has the largest genome among sequenced protists. Although it is thought that the genome size and unusual large coding capacity is owed to genome duplication events, the exact reason and its consequences are less well studied. Results Among transcriptome data we found thousands of instances, in which reads mapped onto genomic loci not annotated as genes, some reaching up to several kilobases in length. At first sight these appear to represent long non-coding RNAs (lncRNAs), however, about half of these lncRNAs have significant sequence similarities to genomic loci annotated as protein-coding genes. This provides evidence for the transcription of hundreds of pseudogenes in the parasite. Conventional lncRNAs and pseudogenes are expressed in Trichomonas through their own transcription start sites and independently from flanking genes in Trichomonas. Expression of several representative lncRNAs was verified through reverse-transcriptase PCR in different T. vaginalis strains and case studies exclude the use of alternative start codons or stop codon suppression for the genes analysed. Conclusion Our results demonstrate that T. vaginalis expresses thousands of intergenic loci, including numerous transcribed pseudogenes. In contrast to yeast these are expressed independently from neighbouring genes. Our results furthermore illustrate the effect genome duplication events can have on the transcriptome of a protist. The parasite’s genome is in a steady state of changing and we hypothesize that the numerous lncRNAs could offer a large pool for potential innovation from which novel proteins or regulatory RNA units could evolve. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-906) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | - Sven B Gould
- Institute of Molecular Evolution, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
5
|
Dean P, Major P, Nakjang S, Hirt RP, Embley TM. Transport proteins of parasitic protists and their role in nutrient salvage. FRONTIERS IN PLANT SCIENCE 2014; 5:153. [PMID: 24808897 PMCID: PMC4010794 DOI: 10.3389/fpls.2014.00153] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Accepted: 04/01/2014] [Indexed: 05/02/2023]
Abstract
The loss of key biosynthetic pathways is a common feature of important parasitic protists, making them heavily dependent on scavenging nutrients from their hosts. This is often mediated by specialized transporter proteins that ensure the nutritional requirements of the parasite are met. Over the past decade, the completion of several parasite genome projects has facilitated the identification of parasite transporter proteins. This has been complemented by functional characterization of individual transporters along with investigations into their importance for parasite survival. In this review, we summarize the current knowledge on transporters from parasitic protists and highlight commonalities and differences in the transporter repertoires of different parasitic species, with particular focus on characterized transporters that act at the host-pathogen interface.
Collapse
Affiliation(s)
- Paul Dean
- *Correspondence: Paul Dean and T. Martin Embley, The Medical School, Institute for Cell and Molecular Biosciences, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK e-mail: ;
| | | | | | | | - T. Martin Embley
- *Correspondence: Paul Dean and T. Martin Embley, The Medical School, Institute for Cell and Molecular Biosciences, Newcastle University, Catherine Cookson Building, Framlington Place, Newcastle upon Tyne, NE2 4HH, UK e-mail: ;
| |
Collapse
|
6
|
Analysis of the Sam50 translocase of excavate organisms supports evolution of divergent organelles from a common endosymbiotic event. Biosci Rep 2013; 33:BSR20130049. [PMID: 24147756 PMCID: PMC3848468 DOI: 10.1042/bsr20130049] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
As free-living organisms the ancestors of mitochondria and plastids encoded complete genomes, proteomes and metabolomes. As these symbionts became organelles all these aspects were reduced – genomes have degenerated with the host nucleus now encoding the most of the remaining endosymbiont proteome, while the metabolic processes of the symbiont have been streamlined to the functions of the emerging organelle. By contrast, the topology of the endosymbiont membrane has been preserved, necessitating the development of complex pathways for membrane insertion and translocation. In this study, we examine the characteristics of the endosymbiont-derived β-barrel insertase Sam501 in the excavate super-group. A candidate is further characterized in Trichomonas vaginalis, an unusual eukaryote possessing degenerate hydrogen-producing mitochondria called hydrogenosomes. This information supports a mitochondriate eukaryotic common ancestor with a similarly evolved β-barrel insertase, which has continued to be conserved in degenerate mitochondria.
Collapse
|