1
|
Wu D, Kong X, Zhang W, Di W. Reconstruction of the TGF-β signaling pathway of Fasciola gigantica. Parasitol Res 2023; 123:51. [PMID: 38095703 DOI: 10.1007/s00436-023-08064-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/24/2023] [Indexed: 12/18/2023]
Abstract
In the present study, we reconstructed the transforming growth factor beta (TGF-β) signaling pathway for Fasciola gigantica, which is a neglected tropical pathogen. We defined the components involved in the TGF-β signaling pathway and investigated the transcription profiles of these genes for all developmental stages of F. gigantica. In addition, the presence of these components in excretory and secretory products (FgESP) was predicted via signal peptide annotation. The core components of the TGF-β signaling pathway have been detected in F. gigantica; classical and nonclassical single transduction pathways were constructed. Four ligands have been detected, which may mediate the TGF-β signaling pathway and BMP signaling pathway. Two ligand-binding type II receptors were detected, and inhibitory Smad7 was not detected. TLP, BMP-3, BMP-1, and ActRIb showed higher transcription in 42-day juvenile and 70-day juvenile, while ActRIIa, Smad1, ActRIIb, Smad8, KAT2B, and PP2A showed higher transcription in egg. TLM, Ski, Smad6, BMPRI, p70S6K, Smad2, Smad3, TgfβRI, Smad4, and p300 showed higher transcription in metacercariae. Four ligands, 2 receptors and 3 Smads are predicted to be present in the FgESP, suggesting their potential extrinsic function. This study should help to understand signal transduction in the TGF-β signaling pathway in F. gigantica. In addition, this study helps to illustrate the complex mechanisms involved in developmental processes and F. gigantica - host interaction and paves the way for further characterization of the signaling pathway in trematodes.
Collapse
Affiliation(s)
- Dongqi Wu
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China
| | - Xinping Kong
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China
| | - Weiyu Zhang
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China
| | - Wenda Di
- College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, China.
- Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, Guangxi University, Nanning, Guangxi, China.
| |
Collapse
|
2
|
Li X, Weth O, Haeberlein S, Grevelding CG. Molecular characterization of Sm tdc-1 and Sm ddc-1 discloses roles as male-competence factors for the sexual maturation of Schistosoma mansoni females. Front Cell Infect Microbiol 2023; 13:1173557. [PMID: 37305409 PMCID: PMC10252128 DOI: 10.3389/fcimb.2023.1173557] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 03/27/2023] [Indexed: 06/13/2023] Open
Abstract
Introduction Schistosomes are the only mammalian flatworms that have evolved separate sexes. A key question of schistosome research is the male-dependent sexual maturation of the female since a constant pairing contact with a male is required for the onset of gonad development in the female. Although this phenomenon is long known, only recently a first peptide-based pheromone of males was identified that contributes to the control of female sexual development. Beyond this, our understanding of the molecular principles inducing the substantial developmental changes in a paired female is still rudimentary. Objectives Previous transcriptomic studies have consistently pointed to neuronal genes being differentially expressed and upregulated in paired males. These genes included Smp_135230 and Smp_171580, both annotated as aromatic-L-amino-acid decarboxylases (DOPA decarboxylases). Here, we characterized both genes and investigated their roles in male-female interaction of S. mansoni. Methodologies/findings Sequence analyses indicated that Smp_135230 represents an L-tyrosine decarboxylase (Smtdc-1), whereas Smp_171580 represents a DOPA decarboxylase (Smddc-1). By qRT-PCR, we confirmed the male-specific and pairing-dependent expression of both genes with a significant bias toward paired males. RNA-interference experiments showed a strong influence of each gene on gonad differentiation in paired females, which was enhanced by double knockdown. Accordingly, egg production was significantly reduced. By confocal laser scanning microscopy, a failure of oocyte maturation was found in paired knockdown females. Whole-mount in situ hybridization patterns exhibited the tissue-specific occurrence of both genes in particular cells at the ventral surface of the male, the gynecophoral canal, which represents the physical interface of both genders. These cells probably belong to the predicted neuronal cluster 2 of S. mansoni. Conclusion Our results suggest that Smtdc-1 and Smddc-2 are male-competence factors that are expressed in neuronal cells at the contact zone between the genders as a response of pairing to subsequently control processes of female sexual maturation.
Collapse
Affiliation(s)
| | | | | | - Christoph G. Grevelding
- Institute for Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University, Giessen, Germany
| |
Collapse
|
3
|
Comparative proteomic profiles of Schistosoma japonicum male worms derived from single-sex and bisexual infections. Int J Parasitol 2022; 52:815-828. [PMID: 36265673 DOI: 10.1016/j.ijpara.2022.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 11/05/2022]
Abstract
Schistosomiasis, which is caused by parasitic schistosomes, remains the second most prevalent parasitic disease of mammals worldwide. To successfully maintain fecundity, schistosomes have evolved a lifecycle that involves the cooperation of morphologically distinct male and female forms. Eggs produced by worm pairs are vital to the lifecycle of the parasite and are responsible for pathogenesis. Understanding the reproductive mechanism of schistosomes will help to control infection. In this study, the proteomic profiles of single-sex infected male (SM) worms and bisexual infected mated male (MM) worms of Schistosoma japonicum at 18, 21, 23, and 25 days p.i. were identified through data-independent acquisition. In total, 674 differentially expressed proteins (DEPs) were identified for the SM and MM worms at all four timepoints. Bioinformatic analysis demonstrated that most of the DEPs were involved in biosynthetic processes including locomotion, cell growth and death, cell motility, and metabolic processes such as protein metabolism and glucose metabolism. Schistosoma japonicum glycosyltransferase (SjGT) and S. japonicum nicastrin protein (SjNCSTN) were selected for quantitative real‑time PCR analysis and long-term interference with small interfering RNA (siRNA) to further explore the functions of the DEPs. Sjgt mRNA expression was mainly enriched in male worms, while Sjncstn was enriched in both sexes. siRNA against SjGT and SjNCSTN resulted in minor morphological changes in the testes of male worms and significant decreased vitality and fertility. The present study provides comprehensive proteomic profiles of S. japonicum SM and MM worms at 18, 21, 23, and 25 days p.i. and offers insights into the mechanisms underlying the growth and maturation of schistosomes.
Collapse
|
4
|
Comparative proteome analysis of the tegument of male and female adult Schistosoma mansoni. Sci Rep 2022; 12:7569. [PMID: 35534617 PMCID: PMC9085856 DOI: 10.1038/s41598-022-11645-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 04/12/2022] [Indexed: 12/11/2022] Open
Abstract
The tegument, as the surface layer of adult male and female Schistosoma spp. represents the protective barrier of the worms to the hostile environment of the host bloodstream. Here we present the first comparative analysis of sex-specific tegument proteins of paired or virgin Schistosoma mansoni. We applied a new and highly sensitive workflow, allowing detection of even low abundance proteins. Therefore, a streptavidin–biotin affinity purification technique in combination with single pot solid-phase enhanced sample preparation was established for subsequent LC–MS/MS analysis. We were able to identify 1519 tegument proteins for male and female virgin and paired worms and categorized them by sex. Bioinformatic analysis revealed an involvement of female-specific tegument proteins in signaling pathways of cellular processes and antioxidant mechanisms. Male-specific proteins were found to be enriched in processes linked to phosphorylation and signal transduction. This suggests a task sharing between the sexes that might be necessary for survival in the host. Our datasets provide a basis for further studies to understand and ultimately decipher the strategies of the two worm sexes to evade the immune system.
Collapse
|
5
|
Cheng S, Zhu B, Luo F, Lin X, Sun C, You Y, Yi C, Xu B, Wang J, Lu Y, Hu W. Comparative transcriptome profiles of Schistosoma japonicum larval stages: Implications for parasite biology and host invasion. PLoS Negl Trop Dis 2022; 16:e0009889. [PMID: 35025881 PMCID: PMC8791509 DOI: 10.1371/journal.pntd.0009889] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 01/26/2022] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Schistosoma japonicum is prevalent in Asia with a wide mammalian host range, which leads to highly harmful zoonotic parasitic diseases. Most previous transcriptomic studies have been performed on this parasite, but mainly focus on stages inside the mammalian host. Moreover, few larval transcriptomic data are available in public databases. Here we mapped the detailed transcriptome profiles of four S. japonicum larval stages including eggs, miracidia, sporocysts and cercariae, providing a comprehensive development picture outside of the mammalian host. By analyzing the stage-specific/enriched genes, we identified functional genes associated with the biological characteristic at each stage: e.g. we observed enrichment of genes necessary for DNA replication only in sporocysts, while those involved in proteolysis were upregulated in sporocysts and/or cercariae. This data indicated that miracidia might use leishmanolysin and neprilysin to penetrate the snail, while elastase (SjCE2b) and leishmanolysin might contribute to the cercariae invasion. The expression profile of stem cell markers revealed potential germinal cell conversion during larval development. Additionally, our analysis indicated that tandem duplications had driven the expansion of the papain family in S. japonicum. Notably, all the duplicated cathepsin B-like proteases were highly expressed in cercariae. Utilizing our 3rd version of S. japonicum genome, we further characterized the alternative splicing profiles throughout these four stages. Taken together, the present study provides compressive gene expression profiles of S. japonicum larval stages and identifies a set of genes that might be involved in intermediate and definitive host invasion.
Collapse
Affiliation(s)
- Shaoyun Cheng
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Bingkuan Zhu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Fang Luo
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Xiying Lin
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Chengsong Sun
- Anhui Provincial Institute of Parasitic Diseases, Hefei, China
| | - Yanmin You
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Cun Yi
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
| | - Jipeng Wang
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Yan Lu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
| | - Wei Hu
- Department of infectious diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Key Laboratory of Parasite and Vector Biology of China Ministry of Health, WHO Collaborating Centre for Tropical Diseases, Joint Research Laboratory of Genetics and Ecology on Parasite-host Interaction, Chinese Center for Disease Control and Prevention & Fudan University, Shanghai, China
- * E-mail:
| |
Collapse
|
6
|
Assessment of reference genes at six different developmental stages of Schistosoma mansoni for quantitative RT-PCR. Sci Rep 2021; 11:16816. [PMID: 34413342 PMCID: PMC8376997 DOI: 10.1038/s41598-021-96055-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 07/31/2021] [Indexed: 12/13/2022] Open
Abstract
Reverse-transcription quantitative real-time polymerase chain reaction (RT-qPCR) is the most used, fast, and reproducible method to confirm large-scale gene expression data. The use of stable reference genes for the normalization of RT-qPCR assays is recognized worldwide. No systematic study for selecting appropriate reference genes for usage in RT-qPCR experiments comparing gene expression levels at different Schistosoma mansoni life-cycle stages has been performed. Most studies rely on genes commonly used in other organisms, such as actin, tubulin, and GAPDH. Therefore, the present study focused on identifying reference genes suitable for RT-qPCR assays across six S. mansoni developmental stages. The expression levels of 25 novel candidates that we selected based on the analysis of public RNA-Seq datasets, along with eight commonly used reference genes, were systematically tested by RT-qPCR across six developmental stages of S. mansoni (eggs, miracidia, cercariae, schistosomula, adult males and adult females). The stability of genes was evaluated with geNorm, NormFinder and RefFinder algorithms. The least stable candidate reference genes tested were actin, tubulin and GAPDH. The two most stable reference genes suitable for RT-qPCR normalization were Smp_101310 (Histone H4 transcription factor) and Smp_196510 (Ubiquitin recognition factor in ER-associated degradation protein 1). Performance of these two genes as normalizers was successfully evaluated with females maintained unpaired or paired to males in culture for 8 days, or with worm pairs exposed for 16 days to double-stranded RNAs to silence a protein-coding gene. This study provides reliable reference genes for RT-qPCR analysis using samples from six different S. mansoni life-cycle stages.
Collapse
|
7
|
Kincaid-Smith J, Mathieu-Bégné E, Chaparro C, Reguera-Gomez M, Mulero S, Allienne JF, Toulza E, Boissier J. No pre-zygotic isolation mechanisms between Schistosoma haematobium and Schistosoma bovis parasites: From mating interactions to differential gene expression. PLoS Negl Trop Dis 2021; 15:e0009363. [PMID: 33945524 PMCID: PMC8127863 DOI: 10.1371/journal.pntd.0009363] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 05/14/2021] [Accepted: 04/06/2021] [Indexed: 01/21/2023] Open
Abstract
Species usually develop reproductive isolation mechanisms allowing them to avoid interbreeding. These preventive barriers can act before reproduction, "pre-zygotic barriers", or after reproduction, "post-zygotic barriers". Pre-zygotic barriers prevent unfavourable mating, while post-zygotic barriers determine the viability and selective success of the hybrid offspring. Hybridization in parasites and the underlying reproductive isolation mechanisms maintaining their genetic integrity have been overlooked. Using an integrated approach this work aims to quantify the relative importance of pre-zygotic barriers in Schistosoma haematobium x S. bovis crosses. These two co-endemic species cause schistosomiasis, one of the major debilitating parasitic diseases worldwide, and can hybridize naturally. Using mate choice experiments we first tested if a specific mate recognition system exists between both species. Second, using RNA-sequencing we analysed differential gene expression between homo- and hetero-specific pairing in male and female adult parasites. We show that homo- and hetero-specific pairing occurs randomly between these two species, and few genes in both sexes are affected by hetero-specific pairing. This suggests that i) mate choice is not a reproductive isolating factor, and that ii) no pre-zygotic barrier except spatial isolation "by the final vertebrate host" seems to limit interbreeding between these two species. Interestingly, among the few genes affected by the pairing status of the worms, some can be related to pathways affected during male and female interactions and may also present interesting candidates for species isolation mechanisms and hybridization in schistosome parasites.
Collapse
Affiliation(s)
- Julien Kincaid-Smith
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of
Pathobiology and Population Sciences (PPS), Royal Veterinary College, University
of London, Hawkshead Campus, Herts, United Kingdom
| | | | | | - Marta Reguera-Gomez
- Departamento de Parasitología, Facultad de Farmacia, Universidad de
Valencia, Burjassot, Valencia, Spain
| | - Stephen Mulero
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| | | | - Eve Toulza
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| | - Jérôme Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, Perpignan,
France
| |
Collapse
|
8
|
Mughal MN, Grevelding CG, Haeberlein S. First insights into the autophagy machinery of adult Schistosoma mansoni. Int J Parasitol 2021; 51:571-585. [PMID: 33713647 DOI: 10.1016/j.ijpara.2020.11.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/29/2020] [Accepted: 11/30/2020] [Indexed: 11/17/2022]
Abstract
Schistosomiasis is a disease of global importance caused by parasitic flatworms, schistosomes, which cause pathogenicity through eggs laid by the female worm inside the host's blood vessels. Maintenance of cellular homeostasis is crucial for parasites, as for other organisms, and is quite likely important for schistosome reproduction and vitality. We hypothesize a role for autophagy in these processes, an evolutionarily conserved and essential cellular degradation pathway. Here, for the first known time, we shed light on the autophagy machinery and its involvement in pairing-dependent processes, vitality and reproduction of Schistosoma mansoni. We identified autophagy genes by in silico analyses and determined the influence of in vitro culture on the transcriptional expression in male and female worms using quantitative real-time PCR. Among the identified autophagy genes were Beclin, Ambra1, Vps34, DRAM, DAP1, and LC3B, of which some showed a sex-dependent expression. Specifically, the death-associated protein DAP1 was significantly more highly expressed in females compared with males, while for the damage-regulated autophagy modulator DRAM it was the opposite. Furthermore, in-vitro culture significantly changed the transcript expression level of DAP1 in female worms. Next, worms were treated with an autophagy inducer (rapamycin) or inhibitors (bafilomycin A1, wortmannin and spautin-1) to evaluate effects on autophagy protein expression, worm vitality, and reproduction. The conversion of the key autophagy protein LC3B, a marker for autophagic activity, was increased by rapamycin and blocked by bafilomycin. All inhibitors affected worm fitness, egg production, and negatively affected the morphology of gonads and intestine. In summary, autophagy genes in S. mansoni show an interesting sex-dependent expression pattern and manipulation of autophagy in S. mansoni by inhibitors induced detrimental effects, which encourages subsequent studies to identify antischistosomal targets within the autophagy machinery.
Collapse
Affiliation(s)
- Mudassar N Mughal
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Christoph G Grevelding
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany
| | - Simone Haeberlein
- Institute of Parasitology, Biomedical Research Center Seltersberg (BFS), Justus Liebig University Giessen, Schubertstr. 81, D-35392 Giessen, Germany.
| |
Collapse
|
9
|
Rey O, Webster BL, Huyse T, Rollinson D, Van den Broeck F, Kincaid-Smith J, Onyekwere A, Boissier J. Population genetics of African Schistosoma species. INFECTION GENETICS AND EVOLUTION 2021; 89:104727. [PMID: 33486128 DOI: 10.1016/j.meegid.2021.104727] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/09/2021] [Accepted: 01/13/2021] [Indexed: 02/06/2023]
Abstract
Blood flukes within the genus Schistosoma (schistosomes) are responsible for the major disease, schistosomiasis, in tropical and sub-tropical areas. This disease is predominantly present on the African continent with more than 85% of the human cases. Schistosomes are also parasites of veterinary importance infecting livestock and wildlife. Schistosoma population genetic structure and diversity are important characteristics that may reflect variations in selection pressures such as those induced by host (mammalian and snail) environments, habitat change, migration and also treatment/control interventions, all of which also shape speciation and evolution of the whole Schistosoma genus. Investigations into schistosome population genetic structure, diversity and evolution has been an area of important debate and research. Supported by advances in molecular techniques with capabilities for multi-locus genetic analyses for single larvae schistosome genetic investigations have greatly progressed in the last decade. This paper aims to review the genetic studies of both animal and human infecting schistosome. Population genetic structures are reviewed at different spatial scales: local, regional or continental (i.e. phylogeography). Within species genetic diversities are discussed compared and the compounding factors discussed, including the effect of mass drug administration. Finally, the ability for intra-species hybridisation questions species integrities and poses many questions in relation to the natural epidemiology of co-endemic species. Here we review molecularly confirmed hybridisation events (in relation to human disease) and discuss the possible impact for ongoing and future control and elimination.
Collapse
Affiliation(s)
- O Rey
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - B L Webster
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - T Huyse
- Department of Biology, Royal Museum for Central Africa, Leuvensesteenweg 13, B-3080 Tervuren, Belgium; Laboratory of Biodiversity and Evolutionary Genomics, Department of Biology, KU Leuven, Ch. Deberiotstraat 32, B-3000 Leuven, Belgium
| | - D Rollinson
- Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, Natural History Museum, London SW7 5BD, United Kingdom; London Centre for Neglected Tropical Disease Research, Imperial College London School of Public Health, London W2 1PG, United Kingdom
| | - F Van den Broeck
- Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, University of Leuven, Leuven, Belgium; Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - J Kincaid-Smith
- Centre for Emerging, Endemic and Exotic Diseases (CEEED), Department of Pathobiology and Population Sciences (PPS), Royal Veterinary College, University of London, Hawkshead Campus, Herts AL9 7TA, United Kingdom
| | - A Onyekwere
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France
| | - J Boissier
- Univ. Montpellier, CNRS, IFREMER, UPVD, IHPE, F-66000 Perpignan, France.
| |
Collapse
|
10
|
Liu R, Cheng WJ, Ye F, Zhang YD, Zhong QP, Dong HF, Tang HB, Jiang H. Comparative Transcriptome Analyses of Schistosoma japonicum Derived From SCID Mice and BALB/c Mice: Clues to the Abnormality in Parasite Growth and Development. Front Microbiol 2020; 11:274. [PMID: 32218772 PMCID: PMC7078119 DOI: 10.3389/fmicb.2020.00274] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 02/06/2020] [Indexed: 12/13/2022] Open
Abstract
Schistosomiasis, caused by the parasitic flatworms called schistosomes, remains one of the most prevailing parasitic diseases in the world. The prodigious oviposition of female worms after maturity is the main driver of pathology due to infection, yet our understanding about the regulation of development and reproduction of schistosomes is limited. Here, we comparatively profiled the transcriptome of Schistosoma japonicum recovered from SCID and BALB/c mice, which were collected 35 days post-infection, when prominent morphological abnormalities could be observed in schistosomes from SCID mice, by performing RNA-seq analysis. Of the 11,183 identified genes, 62 differentially expressed genes (DEGs) with 39 upregulated and 23 downregulated messenger RNAs (mRNAs) were found in male worms from SCID mice (S_M) vs. male worms from BALB/c mice (B_M), and 240 DEGs with 152 upregulated and 88 downregulated mRNAs were found in female worms from SCID mice (S_F) vs. female worms from BALB/c mice (B_F). We also tested nine DEGs with a relatively higher expression abundance in the gonads of the worms (ovary, vitellaria, or testis), suggesting their potential biological significance in the development and reproduction of the parasites. Gene ontology (GO) enrichment analysis revealed that GO terms such as “microtubule-based process,” “multicellular organismal development,” and “Rho protein signal transduction” were significantly enriched in the DEGs in S_F vs. B_F, whereas GO terms such as “oxidation–reduction process,” “response to stress,” and “response to DNA damage stimulus” were significantly enriched in the DEGs in S_M vs. B_M. These results revealed that the differential expression of some important genes might contribute to the morphological abnormalities of worms in SCID mice. Furthermore, we selected one DEG, the mitochondrial prohibitin complex protein 1 (Phb1), to perform double-stranded RNA (dsRNA)-mediated RNA interference (RNAi) in vivo targeting the worms in BALB/c mice, and we found that it was essential for the growth and reproductive development of both male and female S. japonicum worms. Taken together, these results provided a wealth of information on the differential gene expression profiles of schistosomes from SCID mice when compared with those from BALB/c mice, which were potentially involved in regulating the growth and development of schistosomes. These findings contributed to an understanding of parasite biology and provided a rich resource for the exploitation of antischistosomal intervention targets.
Collapse
Affiliation(s)
- Rong Liu
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Wen-Jun Cheng
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Feng Ye
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Yao-Dan Zhang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Qin-Ping Zhong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hui-Fen Dong
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Hong-Bin Tang
- Laboratory Animal Center, School of Medicine, Wuhan University, Wuhan, China
| | - Hong Jiang
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
11
|
Reference gene analysis and its use for kinase expression profiling in Fasciola hepatica. Sci Rep 2019; 9:15867. [PMID: 31676853 PMCID: PMC6825121 DOI: 10.1038/s41598-019-52416-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 10/17/2019] [Indexed: 01/19/2023] Open
Abstract
The liver fluke Fasciola hepatica causes fasciolosis, a foodborne zoonosis affecting humans and livestock worldwide. A reliable quantification of gene expression in all parasite life stages relevant for targeting by anthelmintics in the mammalian host is fundamental. The aim of this study was to define a set of stably expressed reference genes for qRT-PCR in Fasciola studies. We determined the expression stabilities of eight candidate reference genes by the algorithms NormFinder, geNorm, BestKeeper, and comparative ΔCT method. The most stably expressed reference genes for the comparison of intra-mammalian life stages were glutamyl-prolyl-tRNA synthetase (Fheprs) and tubulin-specific chaperone D (Fhtbcd). The two best reference genes for analysis of in vitro-cultured juveniles were Fhtbcd and proteasome subunit beta type-7 (Fhpsmb7). These genes should replace the housekeeping gene gapdh which is used in most Fasciola studies to date, but in fact was differentially expressed in our analysis. Based on the new reference genes, we quantified expression of five kinases (Abl1, Abl2, PKC, Akt1, Plk1) discussed as targets in other parasitic flatworms. Distinct expression patterns throughout development were revealed and point to interesting biological functions. We like to motivate using this set of validated reference genes for future F. hepatica research, such as studies on drug targets or parasite development.
Collapse
|
12
|
Lu Z, Spänig S, Weth O, Grevelding CG. Males, the Wrongly Neglected Partners of the Biologically Unprecedented Male-Female Interaction of Schistosomes. Front Genet 2019; 10:796. [PMID: 31552097 PMCID: PMC6743411 DOI: 10.3389/fgene.2019.00796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/30/2019] [Indexed: 01/18/2023] Open
Abstract
Schistosomes are the only platyhelminths that have evolved separate sexes, and they exhibit a unique reproductive biology because the female's sexual maturation depends on a constant pairing contact with the male. In the female, pairing leads to gonad differentiation, which is associated with substantial morphological changes, and controls among others the expression of gonad-associated genes. In the male, no morphological changes have been observed after pairing, although first data indicated an effect of pairing on gene transcription. Comprehensive transcriptomic approaches have revealed an unexpected high number of genes that are differentially transcribed in the male after pairing. Their identities suggest roles for the male that are not restricted to feeding and enhanced muscular power to transport paired female and, as assumed before, to induce its sexual maturation by one "magic" factor. Instead, a more complex picture emerges in which both partners live in a reciprocal sender-recipient relationship that not only affects the gonads of both genders but may also involve tactile stimuli, transforming growth factor β signaling, nutritional parts, and neuronal processes, including neuropeptides and G protein-coupled receptor signaling. This review provides a summary of transcriptomics including an overview of genes expressed in a pairing-dependent manner in schistosome males. This may stimulate further research in understanding the role of the male as the recipient of the female's signals upon pairing, the male's "capacitation," and its subsequent competence as a sender of information. The latter process finally transforms a sexually immature, autonomous female without completely developed gonads into a sexually mature, partially non-autonomous female with fully differentiated gonads and enormous egg production capacity.
Collapse
Affiliation(s)
- Zhigang Lu
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
- Insitute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | - Sebastian Spänig
- Department of Mathematics & Computer Science, University of Marburg, Marburg, Germany
| | - Oliver Weth
- Insitute for Parasitology, BFS, Justus Liebig University Giessen, Giessen, Germany
| | | |
Collapse
|
13
|
Liu F, Ding H, Tian J, Zhou C, Yang F, Shao W, Du Y, Hou X, Ren C, Shen J, Liu M. Differential gene expression, including Sjfs800, in Schistosoma japonicum females at pre-pairing, initial pairing and oviposition. Parasit Vectors 2019; 12:414. [PMID: 31443730 PMCID: PMC6708146 DOI: 10.1186/s13071-019-3672-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2018] [Accepted: 08/17/2019] [Indexed: 01/14/2023] Open
Abstract
Background Schistosomiasis is a prevalent but neglected tropical disease caused by parasitic trematodes of the genus Schistosoma, with the primary disease-causing species being S. haematobium, S. mansoni and S. japonicum. Male–female pairing of schistosomes is necessary for sexual maturity and the production of a large number of eggs, which are primarily responsible for schistosomiasis dissemination and pathology. Methods Here, we used microarray hybridization, bioinformatics, quantitative PCR, in situ hybridization and gene silencing assays to identify genes that play critical roles in S. japonicum reproduction biology, particularly in vitellarium development, a process that affects male–female pairing, sexual maturation and subsequent egg production. Results Microarray hybridization analyses generated a comprehensive set of genes differentially transcribed before and after male–female pairing. Although the transcript profiles of females were similar 16 and 18 days after host infection, marked gene expression changes were observed at 24 days. The 30 most abundantly transcribed genes on day 24 included those associated with vitellarium development. Among these, the gene for female-specific 800 (fs800) was substantially upregulated. Our in situ hybridization results in female S. japonicum indicated that Sjfs800 mRNA was observed only in the vitellarium, localized in mature vitelline cells. Knocking down the Sjfs800 gene in female S. japonicum by approximately 60% reduced the number of mature vitelline cells, decreased rates of pairing and oviposition, and decreased the number of eggs produced in each male–female pairing by about 50%. Conclusions These results indicate that Sjfs800 may play a role in vitellarium development and egg production in S. japonicum and suggest that Sjfs800 regulation may provide a novel approach for the prevention or treatment of schistosomiasis.
Collapse
Affiliation(s)
- Fengchun Liu
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Han Ding
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Jiaming Tian
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Congyu Zhou
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Fei Yang
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Wei Shao
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Yinan Du
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Xin Hou
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Cuiping Ren
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Jijia Shen
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China.,Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China
| | - Miao Liu
- Department of Microbiology and Parasitology, School of Basic Medical Sciences, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China. .,Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, 81# Meishan Road, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
14
|
Doenhoff MJ, Modha J, Walker AJ. Failure of in vitro-cultured schistosomes to produce eggs: how does the parasite meet its needs for host-derived cytokines such as TGF-β? Int J Parasitol 2019; 49:747-757. [PMID: 31348959 DOI: 10.1016/j.ijpara.2019.05.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 05/03/2019] [Accepted: 05/09/2019] [Indexed: 12/20/2022]
Abstract
When adult schistosome worm pairs are transferred from experimental hosts to in vitro culture they cease producing viable eggs within a few days. Female worms in unisexual infections fail to mature, and when mature adult females are separated from male partners they regress sexually. Worms cultured from the larval stage are also permanently reproductively defective. The cytokine transforming growth factor beta derived from the mammalian host is considered important in stimulating schistosome female worm maturation and maintenance of fecundity. The means by which schistosomes acquire TGF-β have not been elucidated, but direct uptake in vivo seems unlikely as the concentration of free, biologically active cytokine in host blood is very low. Here we review the complexities of schistosome development and male-female interactions, and we speculate about two possibilities on how worms obtain the TGF-β they are assumed to need: (i) worms may have mechanisms to free active cytokine from the latency-inducing complex of proteins in which it is associated, and/or (ii) they may obtain the cytokine from alpha 2-macroglobulin, a blood-borne protease inhibitor to which TGF-β can bind. These ideas are experimentally testable.
Collapse
Affiliation(s)
- Michael J Doenhoff
- School of Life Sciences, University of Nottingham, University Park, Nottingham NG7 2RD, UK.
| | - Jay Modha
- Modha Biomedical Ltd, 9B St Cuthberts Avenue, Great Glen, Leicester LE8 9EJ, UK
| | - Anthony J Walker
- Molecular Parasitology Laboratory, School of Life Sciences Pharmacy and Chemistry, Kingston University, Kingston University, Penrhyn Road, Kingston upon Thames, Surrey KT1 2EE, UK
| |
Collapse
|
15
|
Haeberlein S, Angrisano A, Quack T, Lu Z, Kellershohn J, Blohm A, Grevelding CG, Hahnel SR. Identification of a new panel of reference genes to study pairing-dependent gene expression in Schistosoma mansoni. Int J Parasitol 2019; 49:615-624. [PMID: 31136746 DOI: 10.1016/j.ijpara.2019.01.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/09/2019] [Accepted: 01/15/2019] [Indexed: 12/18/2022]
Abstract
Facilitated by the Schistosoma mansoni genome project, multiple transcriptomic studies were performed over the last decade to elucidate gene expression patterns among different developmental stages of the complex schistosome life cycle. While these analyses enable the identification of candidate genes with key functions in schistosome biology, a diverse molecular tool set is needed that allows comprehensive functional characterization at the single gene level. This includes the availability of reliable reference genes to confirm changes in the transcription of genes of interest over different biological samples and experimental conditions. In particular, the investigation of one key aspect of schistosome biology, the pairing-dependent gene expression in females and males, requires knowledge on reference genes that are expressed independently of both pairing and of in vitro culture effects. Therefore, the present study focused on the identification of quantitative reverse transcription (qRT)-PCR reference genes suitable for the investigation of pairing-dependent gene expression in the S. mansoni male. The "pipeline" we present here is based on qRT-PCR analyses of high biological replication combined with three different statistical analysis tools, BestKeeper, geNorm, and NormFinder. Our approach resulted in a statistically robust ranking of 15 selected reference genes with respect to their transcription stability between pairing-unexperienced and -experienced males. We further tested the top seven candidate genes for their transcription stability during invitro culture of adult S. mansoni. Of these, the two most suitable reference genes were used to investigate the influence of the pairing contact on the transcription of genes of interest, comprising a tyrosine decarboxylase gene Smtdc1, an ebony ortholog Smebony, and the follistatin ortholog Smfst in S. mansoni males. Performing pairing, separation and re-pairing experiments with adult S. mansoni in vitro, our results indicate for the first time that pairing can act as a molecular on/off-switch of specific genes to strictly control their expression in schistosome males.
Collapse
Affiliation(s)
- Simone Haeberlein
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | | | - Thomas Quack
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Josina Kellershohn
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | - Ariane Blohm
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany
| | | | - Steffen R Hahnel
- Institute of Parasitology, BFS, Justus-Liebig-University, Giessen, Germany.
| |
Collapse
|
16
|
Hahnel S, Wheeler N, Lu Z, Wangwiwatsin A, McVeigh P, Maule A, Berriman M, Day T, Ribeiro P, Grevelding CG. Tissue-specific transcriptome analyses provide new insights into GPCR signalling in adult Schistosoma mansoni. PLoS Pathog 2018; 14:e1006718. [PMID: 29346437 PMCID: PMC5773224 DOI: 10.1371/journal.ppat.1006718] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Schistosomes are blood-dwelling trematodes with global impact on human and animal health. Because medical treatment is currently based on a single drug, praziquantel, there is urgent need for the development of alternative control strategies. The Schistosoma mansoni genome project provides a platform to study and connect the genetic repertoire of schistosomes to specific biological functions essential for successful parasitism. G protein-coupled receptors (GPCRs) form the largest superfamily of transmembrane receptors throughout the Eumetazoan phyla, including platyhelminths. Due to their involvement in diverse biological processes, their pharmacological importance, and proven druggability, GPCRs are promising targets for new anthelmintics. However, to identify candidate receptors, a more detailed understanding of the roles of GPCR signalling in schistosome biology is essential. An updated phylogenetic analysis of the S. mansoni GPCR genome (GPCRome) is presented, facilitated by updated genome data that allowed a more precise annotation of GPCRs. Additionally, we review the current knowledge on GPCR signalling in this parasite and provide new insights into the potential roles of GPCRs in schistosome reproduction based on the findings of a recent tissue-specific transcriptomic study in paired and unpaired S. mansoni. According to the current analysis, GPCRs contribute to gonad-specific functions but also to nongonad, pairing-dependent processes. The latter may regulate gonad-unrelated functions during the multifaceted male-female interaction. Finally, we compare the schistosome GPCRome to that of another parasitic trematode, Fasciola, and discuss the importance of GPCRs to basic and applied research. Phylogenetic analyses display GPCR diversity in free-living and parasitic platyhelminths and suggest diverse functions in schistosomes. Although their roles need to be substantiated by functional studies in the future, the data support the selection of GPCR candidates for basic and applied studies, invigorating the exploitation of this important receptor class for drug discovery against schistosomes but also other trematodes.
Collapse
Affiliation(s)
- Steffen Hahnel
- Institute of Parasitology, BFS, Justus Liebig University, Giessen, Germany
- Department of Molecular Biosciences, Northwestern University, Evanston, Illinois, United States of America
| | - Nic Wheeler
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Zhigang Lu
- Institute of Parasitology, BFS, Justus Liebig University, Giessen, Germany
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Arporn Wangwiwatsin
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Paul McVeigh
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast, United Kingdom
| | - Aaron Maule
- The Institute for Global Food Security, School of Biological Sciences, Queen’s University, Belfast, United Kingdom
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Timothy Day
- Department of Biomedical Sciences, Iowa State University, Ames, Iowa, United States of America
| | - Paula Ribeiro
- Institute of Parasitology, McGill University, Montreal, Canada
| | | |
Collapse
|
17
|
Signalling pathways in schistosomes: novel targets for control interventions against schistosomiasis. Emerg Top Life Sci 2017; 1:633-639. [PMID: 33525854 DOI: 10.1042/etls20170093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 10/24/2017] [Accepted: 10/31/2017] [Indexed: 11/17/2022]
Abstract
Over the last decade, there has been accumulating evidence showing that signalling pathways are involved in extensive biological and physiological processes in the human blood fluke schistosomes, playing essential roles in environmental sensing, host penetration, growth, development, maturation, embryogenesis, tissue self-renewal and survival. Owing to the likelihood of resistance developing against praziquantel, the only drug currently available that is effective against all the human schistosome species, there is an urgent requirement for an alternative treatment, arguing for continuing research into novel or repurposed anti-schistosomal drugs. An increasing number of anticancer drugs are being developed which block abnormal signalling pathways, a feature that has stimulated interest in developing novel interventions against human schistosomiasis by targeting key cell signalling components. In this review, we discuss the functional characterization of signal transduction pathways in schistosomes and consider current challenges and future perspectives in this important area of research.
Collapse
|
18
|
Kinases: Molecular Stage Directors for Schistosome Development and Differentiation. Trends Parasitol 2017; 34:246-260. [PMID: 29276074 DOI: 10.1016/j.pt.2017.12.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 12/01/2017] [Accepted: 12/01/2017] [Indexed: 01/03/2023]
Abstract
Understanding schistosome biology is still a challenging mission. The reproductive biology of this parasitic trematode is closely associated with the pathologic consequences of schistosomiasis, the devastating infectious disease caused by members of the family Schistosomatidae worldwide. Recent studies of signaling mechanisms confirmed the prominent roles of protein kinases (PKs) in directing schistosome biology, and first evidence was obtained for an additional contribution of kinases with substrates different from proteins (non-PKs). This review provides an overview of the Schistosoma mansoni kinome in the context of male-female interaction and summarizes recent studies of kinases controlling development and differentiation. Due to their importance for schistosome biology, kinases represent Achilles' heels and are therefore of high value also for translational research.
Collapse
|
19
|
Evolutionary epidemiology of schistosomiasis: linking parasite genetics with disease phenotype in humans. Int J Parasitol 2017; 48:107-115. [PMID: 29154994 DOI: 10.1016/j.ijpara.2017.07.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Revised: 06/15/2017] [Accepted: 07/05/2017] [Indexed: 12/21/2022]
Abstract
Here we assess the role of parasite genetic variation in host disease phenotype in human schistosomiasis by implementing concepts and techniques from environmental association analysis in evolutionary epidemiology. Schistosomiasis is a tropical disease that affects more than 200 million people worldwide and is caused by parasitic flatworms belonging to the genus Schistosoma. While the role of host genetics has been extensively studied and demonstrated, nothing is yet known on the contribution of parasite genetic variation to host disease phenotype in human schistosomiasis. In this study microsatellite genotypes of 1561 Schistosoma mansoni larvae collected from 44 human hosts in Senegal were linked to host characteristics such as age, gender, infection intensity, liver and bladder morbidity by means of multivariate regression methods (on each parasite locus separately). This revealed a highly significant association between allelic variation at the parasite locus L46951 and host infection intensity and bladder morbidity. Locus L46951 is located in the 3' untranslated region of the cGMP-dependent protein kinase gene that is expressed in reproductive organs of adult schistosome worms and appears to be linked to egg production. This putative link between parasite genetic variation and schistosomiasis disease phenotype sets the stage for further functional research.
Collapse
|
20
|
Morais ER, Oliveira KC, de Paula RG, Ornelas AMM, Moreira ÉBC, Badoco FR, Magalhães LG, Verjovski-Almeida S, Rodrigues V. Effects of proteasome inhibitor MG-132 on the parasite Schistosoma mansoni. PLoS One 2017; 12:e0184192. [PMID: 28898250 PMCID: PMC5595316 DOI: 10.1371/journal.pone.0184192] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2017] [Accepted: 08/18/2017] [Indexed: 12/26/2022] Open
Abstract
Proteasome is a proteolytic complex responsible for intracellular protein turnover in eukaryotes, archaea and in some actinobacteria species. Previous work has demonstrated that in Schistosoma mansoni parasites, the proteasome inhibitor MG-132 affects parasite development. However, the molecular targets affected by MG-132 in S. mansoni are not entirely known. Here, we used expression microarrays to measure the genome-wide changes in gene expression of S. mansoni adult worms exposed in vitro to MG-132, followed by in silico functional analyses of the affected genes using Ingenuity Pathway Analysis (IPA). Scanning electron microscopy was used to document changes in the parasites’ tegument. We identified 1,919 genes with a statistically significant (q-value ≤ 0.025) differential expression in parasites treated for 24 h with MG-132, when compared with control. Of these, a total of 1,130 genes were up-regulated and 790 genes were down-regulated. A functional gene interaction network comprised of MG-132 and its target genes, known from the literature to be affected by the compound in humans, was identified here as affected by MG-132. While MG-132 activated the expression of the 26S proteasome genes, it also decreased the expression of 19S chaperones assembly, 20S proteasome maturation, ubiquitin-like NEDD8 and its partner cullin-3 ubiquitin ligase genes. Interestingly, genes that encode proteins related to potassium ion binding, integral membrane component, ATPase and potassium channel activities were significantly down-regulated, whereas genes encoding proteins related to actin binding and microtubule motor activity were significantly up-regulated. MG-132 caused important changes in the worm tegument; peeling, outbreaks and swelling in the tegument tubercles could be observed, which is consistent with interference on the ionic homeostasis in S. mansoni. Finally, we showed the down-regulation of Bax pro-apoptotic gene, as well as up-regulation of two apoptosis inhibitor genes, IAP1 and BRE1, and in contrast, down-regulation of Apaf-1 apoptotic activator, thus suggesting that apoptosis is deregulated in S. mansoni exposed to MG-132. A considerable insight has been gained concerning the potential of MG-132 as a gene expression modulator, and overall the data suggest that the proteasome might be an important molecular target for the design of new drugs against schistosomiasis.
Collapse
Affiliation(s)
- Enyara R. Morais
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
- * E-mail:
| | - Katia C. Oliveira
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
- Centro de Parasitologia e Micologia, Núcleo de Enteroparasitas, Instituto Adolfo Lutz, São Paulo, SP, Brasil
| | - Renato G. de Paula
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Alice M. M. Ornelas
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Érika B. C. Moreira
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - Fernanda Rafacho Badoco
- Grupo de Pesquisa em Produtos Naturais, Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brasil
| | - Lizandra G. Magalhães
- Grupo de Pesquisa em Produtos Naturais, Núcleo de Pesquisa em Ciências Exatas e Tecnológicas, Universidade de Franca, Franca, SP, Brasil
| | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brasil
- Laboratório de Expressão Gênica em Eucariotos, Instituto Butantan, São Paulo, SP, Brasil
| | - Vanderlei Rodrigues
- Departamento de Bioquímica e Imunologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| |
Collapse
|
21
|
A gene expression atlas of adult Schistosoma mansoni and their gonads. Sci Data 2017; 4:170118. [PMID: 28829433 PMCID: PMC5566097 DOI: 10.1038/sdata.2017.118] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 07/11/2017] [Indexed: 12/12/2022] Open
Abstract
RNA-Seq has proven excellence in providing information about the regulation and transcript levels of genes. We used this method for profiling genes in the flatworm Schistosoma mansoni. This parasite causes schistosomiasis, an infectious disease of global importance for human and animals. The pathology of schistosomiasis is associated with the eggs, which are synthesized as a final consequence of male and female adults pairing. The male induces processes in the female that lead to the full development of its gonads as a prerequisite for egg production. Unpaired females remain sexually immature. Based on an organ-isolation method we obtained gonad tissue for RNA extraction from paired and unpaired schistosomes, with whole adults included as controls. From a total of 23 samples, we used high-throughput cDNA sequencing (RNA-Seq) on the Illumina platform to profile gene expression between genders and tissues, with and without pairing influence. The data obtained provide a wealth of information on the reproduction biology of schistosomes and a rich resource for exploitation through basic and applied research activities.
Collapse
|
22
|
Dynamic transcriptomes identify biogenic amines and insect-like hormonal regulation for mediating reproduction in Schistosoma japonicum. Nat Commun 2017; 8:14693. [PMID: 28287085 PMCID: PMC5355954 DOI: 10.1038/ncomms14693] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 01/23/2017] [Indexed: 12/28/2022] Open
Abstract
Eggs produced by the mature female parasite are responsible for the pathogenesis and transmission of schistosomiasis. Female schistosomes rely on a unique male-induced strategy to accomplish reproductive development, a process that is incompletely understood. Here we map detailed transcriptomic profiles of male and female Schistosoma japonicum across eight time points throughout the sexual developmental process from pairing to maturation. The dynamic gene expression pattern data reveal clear sex-related characteristics, indicative of an unambiguous functional division between males and females during their interplay. Cluster analysis, in situ hybridization and RNAi assays indicate that males likely use biogenic amine neurotransmitters through the nervous system to control and maintain pairing with females. In addition, the analyses indicate that reproductive development of females involves an insect-like hormonal regulation. These data sets and analyses serve as a foundation for deeper study of sexual development in this pathogen and identification of novel anti-schistosomal interventions.
Collapse
|
23
|
Howe KL, Bolt BJ, Shafie M, Kersey P, Berriman M. WormBase ParaSite - a comprehensive resource for helminth genomics. Mol Biochem Parasitol 2016; 215:2-10. [PMID: 27899279 PMCID: PMC5486357 DOI: 10.1016/j.molbiopara.2016.11.005] [Citation(s) in RCA: 422] [Impact Index Per Article: 46.9] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/24/2016] [Accepted: 11/25/2016] [Indexed: 12/02/2022]
Abstract
WormBase ParaSite is a new resource for helminth genomics. The resource provides access to over 100 nematode and platyhelminth genomes. The genomes are consistently annotated, organised and presented. A variety of views and tools for exploring and querying the data are provided.
The number of publicly available parasitic worm genome sequences has increased dramatically in the past three years, and research interest in helminth functional genomics is now quickly gathering pace in response to the foundation that has been laid by these collective efforts. A systematic approach to the organisation, curation, analysis and presentation of these data is clearly vital for maximising the utility of these data to researchers. We have developed a portal called WormBase ParaSite (http://parasite.wormbase.org) for interrogating helminth genomes on a large scale. Data from over 100 nematode and platyhelminth species are integrated, adding value by way of systematic and consistent functional annotation (e.g. protein domains and Gene Ontology terms), gene expression analysis (e.g. alignment of life-stage specific transcriptome data sets), and comparative analysis (e.g. orthologues and paralogues). We provide several ways of exploring the data, including genome browsers, genome and gene summary pages, text search, sequence search, a query wizard, bulk downloads, and programmatic interfaces. In this review, we provide an overview of the back-end infrastructure and analysis behind WormBase ParaSite, and the displays and tools available to users for interrogating helminth genomic data.
Collapse
Affiliation(s)
- Kevin L Howe
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| | - Bruce J Bolt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Myriam Shafie
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| | - Paul Kersey
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK
| |
Collapse
|
24
|
Picard MAL, Boissier J, Roquis D, Grunau C, Allienne JF, Duval D, Toulza E, Arancibia N, Caffrey CR, Long T, Nidelet S, Rohmer M, Cosseau C. Sex-Biased Transcriptome of Schistosoma mansoni: Host-Parasite Interaction, Genetic Determinants and Epigenetic Regulators Are Associated with Sexual Differentiation. PLoS Negl Trop Dis 2016; 10:e0004930. [PMID: 27677173 PMCID: PMC5038963 DOI: 10.1371/journal.pntd.0004930] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2016] [Accepted: 07/27/2016] [Indexed: 12/18/2022] Open
Abstract
Background Among more than 20,000 species of hermaphroditic trematodes, Schistosomatidae are unusual since they have evolved gonochorism. In schistosomes, sex is determined by a female heterogametic system, but phenotypic sexual dimorphism appears only after infection of the vertebrate definitive host. The completion of gonad maturation occurs even later, after pairing. To date, the molecular mechanisms that trigger the sexual differentiation in these species remain unknown, and in vivo studies on the developing schistosomulum stages are lacking. To study the molecular basis of sex determination and sexual differentiation in schistosomes, we investigated the whole transcriptome of the human parasite Schistosoma mansoni in a stage- and sex-comparative manner. Methodology/ Principal Findings We performed a RNA-seq on males and females for five developmental stages: cercariae larvae, three in vivo schistosomulum stages and adults. We detected 7,168 genes differentially expressed between sexes in at least one of the developmental stages, and 4,065 of them were functionally annotated. Transcriptome data were completed with H3K27me3 histone modification analysis using ChIP-Seq before (in cercariae) and after (in adults) the phenotypic sexual dimorphism appearance. In this paper we present (i) candidate determinants of the sexual differentiation, (ii) sex-biased players of the interaction with the vertebrate host, and (iii) different dynamic of the H3K27me3 histone mark between sexes as an illustration of sex-biased epigenetic landscapes. Conclusions/ Significance Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, genetic determinants and epigenetic regulators. Our results suggest that such combination could lead to the optimized sexual dimorphism of this parasitic species. As S. mansoni is pathogenic for humans, this study represents a promising source of therapeutic targets, providing not only data on the parasite development in interaction with its vertebrate host, but also new insights on its reproductive function. Parasitic flatworms include more than 20,000 species that are classically hermaphrodites. Among them, the roughly hundred species of Schistosomatidae are intriguing because they are gonochoric. Schistosomes are responsible of the second most important parasitic disease worldwide, and eggs are the main cause of the inflammatory symptoms. Thus, studying the sexual reproduction mechanisms of schistosomes is of particular interest for drug development. Schistosome’s sex is genetically determined by the presence of sex chromosomes: ZZ in males or ZW in females. There is, however, no phenotypic dimorphism in the larval stages: sexual dimorphism appears only in the vertebrate host. In order to understand the molecular mechanisms underlying phenotypic sexual dimorphism, we performed a transcriptome analysis (RNA-Seq) in five different stages of the parasite lifecycle as well as a chromatin status analysis (ChIP-Seq) in the non-differentiated stage cercariae and in the adult differentiated stage, for males and females separately. Our work presents evidence that sexual differentiation in S. mansoni is accompanied by distinct male and female transcriptional landscapes of known players of the host-parasite crosstalk, developmental pathways and epigenetic regulators. Our sex-comparative approach provides therefore new potential therapeutic targets to affect development and sexual reproduction of parasite.
Collapse
Affiliation(s)
- Marion A. L. Picard
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Jérôme Boissier
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Roquis
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Christoph Grunau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Jean-François Allienne
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - David Duval
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Eve Toulza
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Nathalie Arancibia
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
| | - Conor R. Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Thavy Long
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | | | | | - Céline Cosseau
- Univ. Perpignan Via Domitia, IHPE UMR 5244, CNRS, IFREMER, Univ. Montpellier, Perpignan, France
- * E-mail:
| |
Collapse
|
25
|
Lu Z, Sessler F, Holroyd N, Hahnel S, Quack T, Berriman M, Grevelding CG. Schistosome sex matters: a deep view into gonad-specific and pairing-dependent transcriptomes reveals a complex gender interplay. Sci Rep 2016; 6:31150. [PMID: 27499125 PMCID: PMC4976352 DOI: 10.1038/srep31150] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 07/12/2016] [Indexed: 12/25/2022] Open
Abstract
As a key event for maintaining life cycles, reproduction is a central part of platyhelminth biology. In case of parasitic platyhelminths, reproductive processes can also contribute to pathology. One representative example is the trematode Schistosoma, which causes schistosomiasis, an infectious disease, whose pathology is associated with egg production. Among the outstanding features of schistosomes is their dioecious lifestyle and the pairing-dependent differentiation of the female gonads which finally leads to egg synthesis. To analyze the reproductive biology of Schistosoma mansoni in-depth we isolated complete ovaries and testes from paired and unpaired schistosomes for comparative RNA-seq analyses. Of >7,000 transcripts found in the gonads, 243 (testes) and 3,600 (ovaries) occurred pairing-dependently. Besides the detection of genes transcribed preferentially or specifically in the gonads of both genders, we uncovered pairing-induced processes within the gonads including stem cell-associated and neural functions. Comparisons to work on neuropeptidergic signaling in planarian showed interesting parallels but also remarkable differences and highlights the importance of the nervous system for flatworm gonad differentiation. Finally, we postulated first functional hints for 235 hypothetical genes. Together, these results elucidate key aspects of flatworm reproductive biology and will be relevant for basic as well as applied, exploitable research aspects.
Collapse
Affiliation(s)
- Zhigang Lu
- BFS, Institute of Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Florian Sessler
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Nancy Holroyd
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | - Steffen Hahnel
- BFS, Institute of Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Thomas Quack
- BFS, Institute of Parasitology, Justus-Liebig-University, Giessen, Germany
| | - Matthew Berriman
- Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, United Kingdom
| | | |
Collapse
|
26
|
Cai P, Liu S, Piao X, Hou N, Gobert GN, McManus DP, Chen Q. Comprehensive Transcriptome Analysis of Sex-Biased Expressed Genes Reveals Discrete Biological and Physiological Features of Male and Female Schistosoma japonicum. PLoS Negl Trop Dis 2016; 10:e0004684. [PMID: 27128440 PMCID: PMC4851400 DOI: 10.1371/journal.pntd.0004684] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 04/12/2016] [Indexed: 12/23/2022] Open
Abstract
Schistosomiasis is a chronic and debilitating disease caused by blood flukes (digenetic trematodes) of the genus Schistosoma. Schistosomes are sexually dimorphic and exhibit dramatic morphological changes during a complex lifecycle which requires subtle gene regulatory mechanisms to fulfil these complex biological processes. In the current study, a 41,982 features custom DNA microarray, which represents the most comprehensive probe coverage for any schistosome transcriptome study, was designed based on public domain and local databases to explore differential gene expression in S. japonicum. We found that approximately 1/10 of the total annotated genes in the S. japonicum genome are differentially expressed between adult males and females. In general, genes associated with the cytoskeleton, and motor and neuronal activities were readily expressed in male adult worms, whereas genes involved in amino acid metabolism, nucleotide biosynthesis, gluconeogenesis, glycosylation, cell cycle processes, DNA synthesis and genome fidelity and stability were enriched in females. Further, miRNAs target sites within these gene sets were predicted, which provides a scenario whereby the miRNAs potentially regulate these sex-biased expressed genes. The study significantly expands the expressional and regulatory characteristics of gender-biased expressed genes in schistosomes with high accuracy. The data provide a better appreciation of the biological and physiological features of male and female schistosome parasites, which may lead to novel vaccine targets and the development of new therapeutic interventions.
Collapse
Affiliation(s)
- Pengfei Cai
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Shuai Liu
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Xianyu Piao
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Nan Hou
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
| | - Geoffrey N. Gobert
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Donald P. McManus
- Molecular Parasitology Laboratory, QIMR Berghofer Medical Research Institute, Queensland, Australia
| | - Qijun Chen
- MOH Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, P.R. China
- Key Laboratory of Zoonosis, Shenyang Agriculture University, Shenyang, P.R. China
| |
Collapse
|
27
|
Zhu L, Zhao J, Wang J, Hu C, Peng J, Luo R, Zhou C, Liu J, Lin J, Jin Y, Davis RE, Cheng G. MicroRNAs Are Involved in the Regulation of Ovary Development in the Pathogenic Blood Fluke Schistosoma japonicum. PLoS Pathog 2016; 12:e1005423. [PMID: 26871705 PMCID: PMC4752461 DOI: 10.1371/journal.ppat.1005423] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 01/07/2016] [Indexed: 12/19/2022] Open
Abstract
Schistosomes, blood flukes, are an important global public health concern. Paired adult female schistosomes produce large numbers of eggs that are primarily responsible for the disease pathology and critical for dissemination. Consequently, understanding schistosome sexual maturation and egg production may open novel perspectives for intervening with these processes to prevent clinical symptoms and to interrupt the life-cycle of these blood-flukes. microRNAs (miRNAs) are key regulators of many biological processes including development, cell proliferation, metabolism, and signal transduction. Here, we report on the identification of Schistosoma japonicum miRNAs using small RNA deep sequencing in the key stages of male-female pairing, gametogenesis, and egg production. We identified 38 miRNAs, including 10 previously unknown miRNAs. Eighteen of the miRNAs were differentially expressed between male and female schistosomes and during different stages of sexual maturation. We identified 30 potential target genes for 16 of the S. japonicum miRNAs using antibody-based pull-down assays and bioinformatic analyses. We further validated some of these target genes using either in vitro luciferase assays or in vivo miRNA suppression experiments. Notably, suppression of the female enriched miRNAs bantam and miR-31 led to morphological alteration of ovaries in female schistosomes. These findings uncover key roles for specific miRNAs in schistosome sexual maturation and egg production.
Collapse
Affiliation(s)
- Lihui Zhu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Jiangping Zhao
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Jianbin Wang
- Departments of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Chao Hu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Jinbiao Peng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Rong Luo
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Chunjing Zhou
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Juntao Liu
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| | - Youxin Jin
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Richard E. Davis
- Departments of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Guofeng Cheng
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Beijing, China
| |
Collapse
|
28
|
Anderson L, Amaral MS, Beckedorff F, Silva LF, Dazzani B, Oliveira KC, Almeida GT, Gomes MR, Pires DS, Setubal JC, DeMarco R, Verjovski-Almeida S. Schistosoma mansoni Egg, Adult Male and Female Comparative Gene Expression Analysis and Identification of Novel Genes by RNA-Seq. PLoS Negl Trop Dis 2015; 9:e0004334. [PMID: 26719891 PMCID: PMC4699917 DOI: 10.1371/journal.pntd.0004334] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/06/2015] [Indexed: 12/28/2022] Open
Abstract
Background Schistosomiasis is one of the most prevalent parasitic diseases worldwide and is a public health problem. Schistosoma mansoni is the most widespread species responsible for schistosomiasis in the Americas, Middle East and Africa. Adult female worms (mated to males) release eggs in the hepatic portal vasculature and are the principal cause of morbidity. Comparative separate transcriptomes of female and male adult worms were previously assessed with using microarrays and Serial Analysis of Gene Expression (SAGE), thus limiting the possibility of finding novel genes. Moreover, the egg transcriptome was analyzed only once with limited bacterially cloned cDNA libraries. Methodology/Principal findings To compare the gene expression of S. mansoni eggs, females, and males, we performed RNA-Seq on these three parasite forms using 454/Roche technology and reconstructed the transcriptome using Trinity de novo assembly. The resulting contigs were mapped to the genome and were cross-referenced with predicted Smp genes and H3K4me3 ChIP-Seq public data. For the first time, we obtained separate, unbiased gene expression profiles for S. mansoni eggs and female and male adult worms, identifying enriched biological processes and specific enriched functions for each of the three parasite forms. Transcripts with no match to predicted genes were analyzed for their protein-coding potential and the presence of an encoded conserved protein domain. A set of 232 novel protein-coding genes with putative functions related to reproduction, metabolism, and cell biogenesis was detected, which contributes to the understanding of parasite biology. Conclusions/Significance Large-scale RNA-Seq analysis using de novo assembly associated with genome-wide information for histone marks in the vicinity of gene models constitutes a new approach to transcriptome analysis that has not yet been explored in schistosomes. Importantly, all data have been consolidated into a UCSC Genome Browser search- and download-tool (http://schistosoma.usp.br/). This database provides new ways to explore the schistosome genome and transcriptome and will facilitate molecular research on this important parasite. Schistosomiasis is a public health problem caused by parasites of the genus Schistosoma, of which S. mansoni is the primary causative agent. The parasite has a complex life cycle; their sexual reproductive stage is dependent on female and male adult worms mating inside the mesenteric circulation of the human host, with the female releasing hundreds of eggs daily. This phase of the life cycle is responsible for the development of pathology, which is proportional to the number of eggs accumulating in the liver and intestine of the human host. Genome and transcriptome sequencing of this parasite represent important advances in schistosome research, but there is still a need for integrated analyses to better understand the biology of this parasite. In this study, we describe the first large-scale transcriptomes of eggs, and female and male adult worms, the parasite forms that are mainly responsible for the pathology of schistosomiasis. We were able to cross-reference the gene transcription regions with promoter regions, thus improving the gene annotations. Moreover, we identified the expression of novel protein-coding genes not yet described in the current genome annotation, advancing the biological knowledge regarding this parasite.
Collapse
Affiliation(s)
- Letícia Anderson
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Murilo S. Amaral
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, SP, Brazil
| | - Felipe Beckedorff
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas F. Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Bianca Dazzani
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Katia C. Oliveira
- Núcleo de Enteroparasitas, Centro de Parasitologia e Micologia, Instituto Adolfo Lutz, São Paulo, SP, Brazil
| | - Giulliana T. Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Monete R. Gomes
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - David S. Pires
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, SP, Brazil
| | - João C. Setubal
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Virginia Bioinformatics Institute, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, United States of America
| | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Sergio Verjovski-Almeida
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
- Instituto Butantan, São Paulo, SP, Brazil
- * E-mail:
| |
Collapse
|
29
|
Tissue Transglutaminase-Regulated Transformed Growth Factor-β1 in the Parasite Links Schistosoma japonicum Infection with Liver Fibrosis. Mediators Inflamm 2015. [PMID: 26199461 PMCID: PMC4493306 DOI: 10.1155/2015/659378] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Transforming growth factor (TGF-β1) is among the strongest factors of liver fibrogenesis, but its association with Schistosoma-caused liver fibrosis is controversial. Tissue transglutaminase (tTG) is the principal enzyme controlling TGF-β1 maturation and contributes to Sj-infected liver fibrosis. Here we aim to explore the consistency between tTG and TGF-β1 and TGF-β1 source and its correlation with liver fibrosis after Sj-infection. TGF-β1 was upregulated at weeks 6 and 8 upon liver fibrosis induction. During tTG inhibition, TGF-β1 level decreased in sera and liver of infected mice. TGF-β1 showed positive staining in liver containing Sj adult worms and eggs. TGF-β1 was also detected in Sj adult worm sections, soluble egg antigen and Sj adult worm antigen, and adult worms' culture medium. The TGF-β1 mature peptide cDNA sequence and its extended sequence were amplified through RT-PCR and RACE-PCR using adult worms as template, and sequence is analyzed and loaded to NCBI GenBank (number GQ338152.1). TGF-β1 transcript in Sj eggs was higher than in adult worms. In Sj-infected liver, transcriptional level of TGF-β1 from Sj, but not mouse liver, correlated with liver fibrosis extent. This study provides evidence that tTG regulates TGF-β1 and illustrates the importance of targeting tTG in treating Sj infection-induced fibrosis.
Collapse
|
30
|
Diao Y, Hua M, Shao Y, Huang W, Liu M, Ren C, Ji Y, Chen J, Shen J. Preliminary characterization and expression of Vasa-like gene in Schistosoma japonicum. Parasitol Res 2015; 114:2679-87. [PMID: 25899325 DOI: 10.1007/s00436-015-4473-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 04/07/2015] [Indexed: 01/19/2023]
Abstract
The Vasa gene is a vital germline marker to study the origin and development of germ cells and gonads in many organisms. Until now, little information was available about the characteristics of the Vasa gene in Schistosoma japonicum (S. japonicum). In this study, we cloned the open reading frame (ORF) of the S. japonicum Vasa-like gene (Sj-Vasa). The expression pattern and tissue localization of Sj-Vasa were also analyzed. Our results showed that Sj-Vasa shared the general feature of DEAD-box family member proteins. Sj-Vasa was transcribed and expressed throughout the S. japonicum life cycle with transcription exhibiting high levels at day 24 in both male and female worms, and the expression level in the female was always higher than that in the male. Sj-Vasa protein was localized in a variety of tissues of adult schistosomes, including the gonads (ovary, vitellarium, and testes), the subtegument, and some cells of the parenchyma. To our knowledge, this is the first report of preliminary characterization and expression of the Vasa-like gene that may play an important role in the development of the worm, especially in reproductive organs of S. japonicum.
Collapse
Affiliation(s)
- Yujie Diao
- Department of Microbiology and Parasitology, Anhui Provincial Laboratory of Microbiology and Parasitology, Anhui Medical University, 81# Meishan Road, Hefei, Anhui, 230032, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Imatinib treatment causes substantial transcriptional changes in adult Schistosoma mansoni in vitro exhibiting pleiotropic effects. PLoS Negl Trop Dis 2014; 8:e2923. [PMID: 24921634 PMCID: PMC4055459 DOI: 10.1371/journal.pntd.0002923] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 04/17/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Schistosome parasites cause schistosomiasis, one of the most important infectious diseases worldwide. For decades Praziquantel (PZQ) is the only drug widely used for controlling schistosomiasis. The absence of a vaccine and fear of PZQ resistance have motivated the search for alternatives. Studies on protein kinases (PKs) demonstrated their importance for diverse physiological processes in schistosomes. Among others two Abl tyrosine kinases, SmAbl1 and SmAbl2, were identified in Schistosoma mansoni and shown to be transcribed in the gonads and the gastrodermis. SmAbl1 activity was blocked by Imatinib, a known Abl-TK inhibitor used in human cancer therapy (Gleevec/Glivec). Imatinib exhibited dramatic effects on the morphology and physiology of adult schistosomes in vitro causing the death of the parasites. METHODOLOGY/PRINCIPAL FINDINGS Here we show modeling data supporting the targeting of SmAbl1/2 by Imatinib. A biochemical assay confirmed that SmAbl2 activity is also inhibited by Imatinib. Microarray analyses and qRT-PCR experiments were done to unravel transcriptional processes influenced by Imatinib in adult schistosomes in vitro demonstrating a wide influence on worm physiology. Surface-, muscle-, gut and gonad-associated processes were affected as evidenced by the differential transcription of e.g. the gynecophoral canal protein gene GCP, paramyosin, titin, hemoglobinase, and cathepsins. Furthermore, transcript levels of VAL-7 and egg formation-associated genes such as tyrosinase 1, p14, and fs800-like were affected as well as those of signaling genes including a ribosomal protein S6 kinase and a glutamate receptor. Finally, a comparative in silico analysis of the obtained microarray data sets and previous data analyzing the effect of a TGFβR1 inhibitor on transcription provided first evidence for an association of TGFβ and Abl kinase signaling. Among others GCP and egg formation-associated genes were identified as common targets. CONCLUSIONS/SIGNIFICANCE The data affirm broad negative effects of Imatinib on worm physiology substantiating the role of PKs as interesting targets.
Collapse
|
32
|
Hahnel S, Quack T, Parker-Manuel SJ, Lu Z, Vanderstraete M, Morel M, Dissous C, Cailliau K, Grevelding CG. Gonad RNA-specific qRT-PCR analyses identify genes with potential functions in schistosome reproduction such as SmFz1 and SmFGFRs. Front Genet 2014; 5:170. [PMID: 24959172 PMCID: PMC4050651 DOI: 10.3389/fgene.2014.00170] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 05/21/2014] [Indexed: 01/15/2023] Open
Abstract
In the search for new strategies to fight schistosomiasis, the unique reproductive biology of Schistosoma mansoni has come into the focus of research. The development of the gonads and the ability of egg production are fundamental not only for continuing the life cycle but also for pathogenicity. Previous studies of schistosome biology demonstrated an influence of pairing on gonad development of the female and on gene expression profiles in both genders. Due to the limited access to specific tissues, however, most of these studies were done at the level of whole worms neglecting individual tissues that may be targets of pairing-dependent processes. Recently, we established a protocol allowing the isolation of testes and ovaries from adult S. mansoni. Here, we describe tissue-specific qRT-PCR analyses comparing transcript levels of selected genes on the basis of RNA from gonads and whole worms. Gene expression in ovary and testes was in some cases found to be significantly influenced by pairing, which was not traceable in whole worms. Among the candidate genes identified as regulated by pairing in gonads were the frizzled homolog SmFz1 and the two fibroblast growth factor receptor homologs SmFGFR-A and SmFGFR-B. First functional characterizations were done, including comparative qRT-PCR analyses, in situ-localization experiments, heterologous expression in Xenopus oocytes (SmFGFR-A/B), and inhibitor studies using the Fz/Dvl-pathway inhibitor 3289-8625, or BIBF1120 blocking FGFR-signaling. Besides confirming gonad localization and receptor functions, inhibitor-induced phenotypes were observed in vitro such as decreased egg production as well as drastic effects on gonad differentiation, morphology, embryogenesis, and survival of adult worms. In summary, these results emphasise the usefulness of tissue-specific qRT-PCRs for selection of candidate genes with important roles in reproduction, allowing subsequent studies to determine their suitability as drug targets.
Collapse
Affiliation(s)
- Steffen Hahnel
- Biologisch-Medizinisches Forschungszentrum Seltersberg, Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| | - Thomas Quack
- Biologisch-Medizinisches Forschungszentrum Seltersberg, Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| | - Sophia J Parker-Manuel
- Biologisch-Medizinisches Forschungszentrum Seltersberg, Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| | - Zhigang Lu
- Biologisch-Medizinisches Forschungszentrum Seltersberg, Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| | - Mathieu Vanderstraete
- CIIL - Center of Infection and Immunity of Lille, CNRS-UMR 8204, INSERM U1019, Institut Pasteur de Lille, Université Lille Nord de France Lille Cedex, France
| | - Marion Morel
- CIIL - Center of Infection and Immunity of Lille, CNRS-UMR 8204, INSERM U1019, Institut Pasteur de Lille, Université Lille Nord de France Lille Cedex, France
| | - Colette Dissous
- CIIL - Center of Infection and Immunity of Lille, CNRS-UMR 8204, INSERM U1019, Institut Pasteur de Lille, Université Lille Nord de France Lille Cedex, France
| | - Katia Cailliau
- Laboratoire de Régulation des Signaux de Division, EA 4479, IFR 147, Université Lille 1 Sciences et Technology, Villeneuve d'Ascq Cedex France
| | - Christoph G Grevelding
- Biologisch-Medizinisches Forschungszentrum Seltersberg, Institute of Parasitology, Justus-Liebig-University Giessen, Germany
| |
Collapse
|