1
|
Cavini IA, Fontes MG, Zeraik AE, Lopes JLS, Araujo APU. Novel lipid-interaction motifs within the C-terminal domain of Septin10 from Schistosoma mansoni. BIOCHIMICA ET BIOPHYSICA ACTA. BIOMEMBRANES 2024; 1866:184371. [PMID: 39025256 DOI: 10.1016/j.bbamem.2024.184371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/05/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
Septins are cytoskeletal proteins and their interaction with membranes is crucial for their role in various cellular processes. Septins have polybasic regions (PB1 and PB2) which are important for lipid interaction. Earlier, we and others have highlighted the role of the septin C-terminal domain (CTD) to membrane interaction. However, detailed information on residues/group of residues important for such feature is lacking. In this study, we investigate the lipid-binding profile of Schistosoma mansoni Septin10 (SmSEPT10) using PIP strip and Langmuir monolayer adsorption assays. Our findings highlight the CTD as the primary domain responsible for lipid interaction in SmSEPT10, showing binding to phosphatidylinositol phosphates. SmSEPT10 CTD contains a conserved polybasic region (PB3) present in both animals and fungi septins, and a Lys (K367) within its putative amphipathic helix (AH) that we demonstrate as important for lipid binding. PB3 deletion or mutation of this Lys (K367A) strongly impairs lipid interaction. Remarkably, we observe that the AH within a construct lacking the final 43 amino acid residues is insufficient for lipid binding. Furthermore, we investigate the homocomplex formed by SmSEPT10 CTD in solution by cross-linking experiments, CD spectroscopy, SEC-MALS and SEC-SAXS. Taken together, our studies define the lipid-binding region in SmSEPT10 and offer insights into the molecular basis of septin-membrane binding. This information is particularly relevant for less-studied non-human septins, such as SmSEPT10.
Collapse
Affiliation(s)
- Italo A Cavini
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil; School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Marina G Fontes
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil; Department of Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP 05508-000, Brazil
| | - Ana Eliza Zeraik
- Laboratory of Chemistry and Function of Proteins and Peptides, Center for Biosciences and Biotechnology, North Fluminense State University Darcy Ribeiro, Campos dos Goytacazes, RJ 28013-602, Brazil
| | - Jose L S Lopes
- Laboratory of Molecular Biophysics, Department of Physics, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Ana Paula U Araujo
- São Carlos Institute of Physics, University of São Paulo, São Carlos, SP 13560-970, Brazil.
| |
Collapse
|
2
|
Mendonça DC, Morais STB, Ciol H, Pinto APA, Leonardo DA, Pereira HD, Valadares NF, Portugal RV, Klaholz BP, Garratt RC, Araujo APU. Structural Insights into Ciona intestinalis Septins: Complexes Suggest a Mechanism for Nucleotide-dependent Interfacial Cross-talk. J Mol Biol 2024; 436:168693. [PMID: 38960133 DOI: 10.1016/j.jmb.2024.168693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 06/19/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Septins are filamentous nucleotide-binding proteins which can associate with membranes in a curvature-dependent manner leading to structural remodelling and barrier formation. Ciona intestinalis, a model for exploring the development and evolution of the chordate lineage, has only four septin-coding genes within its genome. These represent orthologues of the four classical mammalian subgroups, making it a minimalist non-redundant model for studying the modular assembly of septins into linear oligomers and thereby filamentous polymers. Here, we show that C. intestinalis septins present a similar biochemistry to their human orthologues and also provide the cryo-EM structures of an octamer, a hexamer and a tetrameric sub-complex. The octamer, which has the canonical arrangement (2-6-7-9-9-7-6-2) clearly shows an exposed NC-interface at its termini enabling copolymerization with hexamers into mixed filaments. Indeed, only combinations of septins which had CiSEPT2 occupying the terminal position were able to assemble into filaments via NC-interface association. The CiSEPT7-CiSEPT9 tetramer is the smallest septin particle to be solved by Cryo-EM to date and its good resolution (2.7 Å) provides a well-defined view of the central NC-interface. On the other hand, the CiSEPT7-CiSEPT9 G-interface shows signs of fragility permitting toggling between hexamers and octamers, similar to that seen in human septins but not in yeast. The new structures provide insights concerning the molecular mechanism for cross-talk between adjacent interfaces. This indicates that C. intestinalis may represent a valuable tool for future studies, fulfilling the requirements of a complete but simpler system to understand the mechanisms behind the assembly and dynamics of septin filaments.
Collapse
Affiliation(s)
| | | | - Heloísa Ciol
- São Carlos Institute of Physics, USP, São Carlos, SP, Brazil
| | | | | | | | | | - Rodrigo V Portugal
- Brazilian Nanotechnology National Laboratory, CNPEM, Campinas, SP, Brazil; Biotechnosciency Program, Federal University of ABC, Santo André, SP, Brazil
| | - Bruno P Klaholz
- Centre for Integrative Biology (CBI), Department of Integrated Structural Biology, IGBMC (Institute of Genetics and of Molecular and Cellular Biology), 67404 Illkirch, France; Centre National de la Recherche Scientifique (CNRS) UMR 7104, 67404 Illkirch, France; Institut National de la Santé et de la Recherche Médicale (INSERM) U964, 67404 Illkirch, France; Université de Strasbourg, 67081 Strasbourg, France
| | | | - Ana P U Araujo
- São Carlos Institute of Physics, USP, São Carlos, SP, Brazil.
| |
Collapse
|
3
|
Ríos-Valencia DG, Ambrosio J, Tirado-Mendoza R, Carrero JC, Laclette JP. What about the Cytoskeletal and Related Proteins of Tapeworms in the Host's Immune Response? An Integrative Overview. Pathogens 2023; 12:840. [PMID: 37375530 DOI: 10.3390/pathogens12060840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/09/2023] [Accepted: 06/11/2023] [Indexed: 06/29/2023] Open
Abstract
Recent advances have increased our understanding of the molecular machinery in the cytoskeleton of mammalian cells, in contrast to the case of tapeworm parasites, where cytoskeleton remains poorly characterized. The pertinence of a better knowledge of the tapeworm cytoskeleton is linked to the medical importance of these parasitic diseases in humans and animal stock. Moreover, its study could offer new possibilities for the development of more effective anti-parasitic drugs, as well as better strategies for their surveillance, prevention, and control. In the present review, we compile the results of recent experiments on the cytoskeleton of these parasites and analyze how these novel findings might trigger the development of new drugs or the redesign of those currently used in addition to supporting their use as biomarkers in cutting-edge diagnostic tests.
Collapse
Affiliation(s)
- Diana G Ríos-Valencia
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Javier Ambrosio
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Rocío Tirado-Mendoza
- Department of Microbiology and Parasitology, School of Medicine, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Julio César Carrero
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| | - Juan Pedro Laclette
- Department of Immunology, Biomedical Research Institute, Universidad Nacional Autónoma de México, Coyoacán, Ciudad de México 04510, Mexico
| |
Collapse
|
4
|
Biophysical Analysis of Schistosoma mansoni Septins. Methods Mol Biol 2021; 2151:197-210. [PMID: 32452006 DOI: 10.1007/978-1-0716-0635-3_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Septins are dynamic filament-forming proteins that are recognized as important components of the cytoskeleton and are involved in numerous functions inside the cells, such as cytokinesis, exocytosis, and ciliogenesis and even in defense against pathogenic bacteria. Despite being highly conserved in eukaryotes, there is scarce literature on the role of septins in organisms other than humans and yeast. Therefore, septins from Schistosoma mansoni represent an interesting model to study an unexplored branch of this protein family. Here we described standard protocols for recombinant production and initial characterization of septins from S. mansoni. Septins are notably difficult to purify, mostly due to their tendency to assemble into filaments. Therefore, specific protocols to stabilize these proteins have been developed. In this chapter, we systematically describe protocols to clone, express, and purify schistosome septins. We also describe the use of circular dichroism to assess the folding and stability of septins and use of chromatography to characterize their oligomeric state, bound guanine nucleotide, and GTP hydrolysis. We expect that these protocols may help researchers involved in the study of schistosome septins as well as assist to establish protocols for septins from other organisms.
Collapse
|
5
|
In Vitro Analyses Reveal the Effect of Synthetic Cytokinin Forchlorfenuron (FCF) on a Septin-Like Protein of Taeniid Cysticerci. J Parasitol Res 2019; 2019:8578936. [PMID: 30941206 PMCID: PMC6420996 DOI: 10.1155/2019/8578936] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 11/18/2022] Open
Abstract
Cytokinin forchlorfenuron (FCF), a synthetic cytokinin, has been used specifically for the characterization of septins. In spite of genomic evidence of their existence, nothing is known about septin filaments in taeniid cestodes. The aim of this work was to determine the presence of a septin-like protein in cysticerci of Taenia crassiceps and Taenia solium using the deduced amino acid sequence of T. solium septin 4 (SEPT4_Tsm), to design and synthesize a derived immunogenic peptide (residues 88 to 103), to prepare a specific rabbit polyclonal antibody, and to examine the effects of FCF at different concentrations and exposure times on an in vitro culture of T. crassiceps cysticerci. In vitro, FCF altered the morphology and motility of T. crassiceps cysticerci, and its effects were reversible under specific concentrations. In addition, we observed by ultrastructural observation that FCF alters the cellular subunit of the protonephridial system of cestodes, where disruption of the axoneme pattern of flame cells was observed. The rabbit polyclonal antibody prepared against the synthetic peptide recognized a major band of 41 kDa in both parasites. Our results establish the importance of SEPT4_Tsm in the dynamics and survival of taeniid cysticerci, as well as their susceptibility to FCF. This is also the first report that a septin is present in the cytoskeleton of taeniids.
Collapse
|
6
|
Zeraik AE, Staykova M, Fontes MG, Nemuraitė I, Quinlan R, Araújo APU, DeMarco R. Biophysical dissection of schistosome septins: Insights into oligomerization and membrane binding. Biochimie 2016; 131:96-105. [PMID: 27687162 DOI: 10.1016/j.biochi.2016.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 09/24/2016] [Indexed: 01/22/2023]
Abstract
Septins are GTP-binding proteins that are highly conserved among eukaryotes and which are usually membrane-associated. They have been linked to several critical cellular functions such as exocytosis and ciliogenesis, but little mechanistic detail is known. Their assembly into filaments and membrane binding properties are incompletely understood and that is specially so for non-human septins where such information would offer therapeutic potential. In this study we use Schistosoma mansoni, exhibiting just four septin genes, as a simpler model for characterizing the septin structure and organization. We show that the biochemical and biophysical proprieties of its SmSEPT5 and SmSEPT10 septins are consistent with their human counterparts of subgroups SEPT2 and SEPT6, respectively. By succeeding to isolate stable constructs comprising distinct domains of SmSEPT5 and SmSEPT10 we were able to infer the influence of terminal interfaces in the oligomerization and membrane binding properties. For example, both proteins tended to form oligomers interacting by the N- and C-terminal interfaces in a nucleotide independent fashion but form heterodimers via the G interface, which are nucleotide dependent. Furthermore, we report for the first time that it is the C-terminus of SmSETP10, rather than the N-terminal polybasic region found in other septins, that mediates its binding to liposomes. Upon binding we observe formation of discrete lipo-protein clusters and higher order septin structures, making our system an exciting model to study interactions of septins with biological membranes.
Collapse
Affiliation(s)
- Ana Eliza Zeraik
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | - Marina Gabriel Fontes
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil
| | | | - Roy Quinlan
- School of Biological and Biomedical Sciences, University of Durham, UK
| | | | - Ricardo DeMarco
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
7
|
|
8
|
McMurray M. Lean forward: Genetic analysis of temperature-sensitive mutants unfolds the secrets of oligomeric protein complex assembly. Bioessays 2014; 36:836-46. [PMID: 25048147 DOI: 10.1002/bies.201400062] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Multisubunit protein complexes are essential for cellular function. Genetic analysis of essential processes requires special tools, among which temperature-sensitive (Ts) mutants have historically been crucial. Many researchers assume that the effect of temperature on such mutants is to drive their proteolytic destruction. In fact, degradation-mediated elimination of mutant proteins likely explains only a fraction of the phenotypes associated with Ts mutants. Here I discuss insights gained from analysis of Ts mutants in oligomeric proteins, with particular focus on the study of septins, GTP-binding subunits of cytoskeletal filaments whose structures and functions are the subject of current investigation in my and many other labs. I argue that the kinds of unbiased forward genetic approaches that generate Ts mutants provide information that is largely inaccessible to modern reverse genetic methodologies, and will continue to drive our understanding of higher-order assembly by septins and other oligomeric proteins.
Collapse
Affiliation(s)
- Michael McMurray
- Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
9
|
Reversible paralysis of Schistosoma mansoni by forchlorfenuron, a phenylurea cytokinin that affects septins. Int J Parasitol 2014; 44:523-31. [PMID: 24768753 DOI: 10.1016/j.ijpara.2014.03.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 03/21/2014] [Accepted: 03/23/2014] [Indexed: 02/06/2023]
Abstract
Septins are guanosine-5'-triphosphate-binding proteins involved in wide-ranging cellular processes including cytokinesis, vesicle trafficking, membrane remodelling and scaffolds, and with diverse binding partners. Precise roles for these structural proteins in most processes often remain elusive. Identification of small molecules that inhibit septins could aid in elucidating the functions of septins and has become increasingly important, including the description of roles for septins in pathogenic phenomena such as tumorigenesis. The plant growth regulator forchlorfenuron, a synthetic cytokinin known to inhibit septin dynamics, likely represents an informative probe for septin function. This report deals with septins of the human blood fluke Schistosoma mansoni and their interactions with forchlorfenuron. Recombinant forms of three schistosome septins, SmSEPT5, SmSEPT7.2 and SmSEPT10, interacted with forchlorfenuron, leading to rapid polymerization of filaments. Culturing developmental stages (miracidia, cercariae, adult males) of schistosomes in FCF at 50-500 μM rapidly led to paralysis, which was reversible upon removal of the cytokinin. The reversible paralysis was concentration-, time- and developmental stage-dependent. Effects of forchlorfenuron on the cultured schistosomes were monitored by video and/or by an xCELLigence-based assay of motility, which quantified the effect of forchlorfenuron on fluke motility. The findings implicated a mechanism targeting a molecular system controlling movement in these developmental stages: a direct effect on muscle contraction due to septin stabilization might be responsible for the reversible paralysis, since enrichment of septins has been described within the muscles of schistosomes. This study revealed the reversible effect of forchlorfenuron on both schistosome motility and its striking impact in hastening polymerization of septins. These novel findings suggested routes to elucidate roles for septins in this pathogen, and exploitation of derivatives of forchlorfenuron for anti-schistosomal drugs.
Collapse
|
10
|
Zeraik AE, Pereira HM, Santos YV, Brandão-Neto J, Spoerner M, Santos MS, Colnago LA, Garratt RC, Araújo APU, DeMarco R. Crystal structure of a Schistosoma mansoni septin reveals the phenomenon of strand slippage in septins dependent on the nature of the bound nucleotide. J Biol Chem 2014; 289:7799-811. [PMID: 24464615 DOI: 10.1074/jbc.m113.525352] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Septins are filament-forming GTP-binding proteins involved in important cellular events, such as cytokinesis, barrier formation, and membrane remodeling. Here, we present two crystal structures of the GTPase domain of a Schistosoma mansoni septin (SmSEPT10), one bound to GDP and the other to GTP. The structures have been solved at an unprecedented resolution for septins (1.93 and 2.1 Å, respectively), which has allowed for unambiguous structural assignment of regions previously poorly defined. Consequently, we provide a reliable model for functional interpretation and a solid foundation for future structural studies. Upon comparing the two complexes, we observe for the first time the phenomenon of a strand slippage in septins. Such slippage generates a front-back communication mechanism between the G and NC interfaces. These data provide a novel mechanistic framework for the influence of nucleotide binding to the GTPase domain, opening new possibilities for the study of the dynamics of septin filaments.
Collapse
Affiliation(s)
- Ana E Zeraik
- From the Instituto de Física de São Carlos, Universidade de São Paulo, 13563-120 São Carlos, São Paulo, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|