1
|
El Mazini S, Barhoumi M, Mhaidi I, Daoui O, Kbaich MA, El Kacem S, El Idrissi Saik I, Riyad M, Bekhti K, Guizani I, Lemrani M. Genetic Diversity and Population Structure of Leishmania infantum in Morocco as Revealed by Multilocus Sequence Typing (MLST) Approach. Pathogens 2023; 12:785. [PMID: 37375475 DOI: 10.3390/pathogens12060785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/29/2023] Open
Abstract
Leishmania infantum is endemic in Morocco, and it causes both visceral (VL) and cutaneous leishmaniasis (CL). In this study, the multilocus sequence typing (MLST) approach was used to investigate the phylogeny and population structure of Leishmania infantum strains isolated from CL and VL patients and the canine reservoir in different leishmaniasis endemic foci in Morocco. For this purpose, eight loci (pgm, alat, me, fh, g6pd, pgd, gpi and cytb) were amplified in 40 samples, out of which 31 were successfully sequenced. The genetic diversity analysis detected a high degree of intraspecific genetic variability among the studied strains. The phylogenetic and the haplotype analyses showed that most of the strains from the same geographical areas clustered together. The recombination among Leishmania infantum strains was revealed through a splits tree analysis and the number of recombination events. Moreover, the assessment of the gene flow between Leishmania infantum and Leishmania tropica through phylogenetic analysis and haplotype diversity in two endemic foci where the two species were sympatric showed no genetic exchange between the two species.
Collapse
Affiliation(s)
- Sara El Mazini
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Morocco, Casablanca 20360, Morocco
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohammed Ben Abdellah University, Fes 30000, Morocco
| | - Mourad Barhoumi
- Molecular Epidemiology and Experimental Pathology (MEEP)/ LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, B.P. 74, Tunis 1068, Tunisia
| | - Idris Mhaidi
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Morocco, Casablanca 20360, Morocco
| | - Othmane Daoui
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Morocco, Casablanca 20360, Morocco
| | - Mouad Ait Kbaich
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Morocco, Casablanca 20360, Morocco
| | - Sofia El Kacem
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Morocco, Casablanca 20360, Morocco
| | - Imane El Idrissi Saik
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Morocco, Casablanca 20360, Morocco
- Laboratory of Cellular and Molecular Pathology, Research Team on Immunopathology of Infectious and Systemic Diseases, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca 21100, Morocco
| | - Myriam Riyad
- Laboratory of Cellular and Molecular Pathology, Research Team on Immunopathology of Infectious and Systemic Diseases, Faculty of Medicine and Pharmacy, Hassan II University of Casablanca, Casablanca 21100, Morocco
| | - Khadija Bekhti
- Laboratory of Microbial Biotechnology and Bioactive Molecules, Faculty of Sciences and Technologies, Sidi Mohammed Ben Abdellah University, Fes 30000, Morocco
| | - Ikram Guizani
- Molecular Epidemiology and Experimental Pathology (MEEP)/ LR16IPT04, Institut Pasteur de Tunis, Université de Tunis El Manar, B.P. 74, Tunis 1068, Tunisia
| | - Meryem Lemrani
- Laboratory of Parasitology and Vector-Borne-Diseases, Institut Pasteur du Morocco, Casablanca 20360, Morocco
| |
Collapse
|
2
|
Mendieta D, Vásquez V, Jaén L, Pineda V, Saldaña A, Calzada JE, Samudio F. Insights into the Genetic Diversity of Leishmania (Viannia) panamensis in Panama, Inferred via Multilocus Sequence Typing (MLST). Pathogens 2023; 12:pathogens12050747. [PMID: 37242417 DOI: 10.3390/pathogens12050747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 04/26/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Leishmaniasis is a disease caused by parasites of the genus Leishmania and transmitted by sand fly vectors. Tegumentary leishmaniasis is the most prevalent clinical outcome in Latin America, afflicting people from 18 countries. In Panama, the annual incidence rate of leishmaniasis is as high as 3000 cases, representing a major public health problem. In endemic regions, L. panamensis is responsible for almost eighty percent of human cases that present different clinical outcomes. These differences in disease outcomes could be the result of the local interplay between L. panamensis variants and human hosts with different genetic backgrounds. The genetic diversity of L. panamensis in Panama has only been partially explored, and the variability reported for this species is based on few studies restricted to small populations and/or with poor resolutive markers at low taxonomic levels. Accordingly, in this study, we explored the genetic diversity of sixty-nine L. panamensis isolates from different endemic regions of Panama, using an MLST approach based on four housekeeping genes (Aconitase, ALAT, GPI and HSP70). Two to seven haplotypes per locus were identified, and regional differences in the genetic diversity of L. panamensis were observed. A genotype analysis evidenced the circulation of thirteen L. panamensis genotypes, a fact that might have important implications for the local control of the disease.
Collapse
Affiliation(s)
- Daniel Mendieta
- Facultad de Ciencias Naturales Exactas y Tecnología, Universidad de Panamá, Panama City P.O. Box 0824-00073, Panama
| | - Vanessa Vásquez
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Avenida Justo Arosemena, Panama City P.O. Box 0816-02593, Panama
| | - Luis Jaén
- Facultad de Ciencias Naturales Exactas y Tecnología, Universidad de Panamá, Panama City P.O. Box 0824-00073, Panama
| | - Vanessa Pineda
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Avenida Justo Arosemena, Panama City P.O. Box 0816-02593, Panama
| | - Azael Saldaña
- Facultad de Ciencias Naturales Exactas y Tecnología, Universidad de Panamá, Panama City P.O. Box 0824-00073, Panama
- Centro de Investigación y Diagnóstico de Enfermedades Parasitarias (CIDEP), Universidad de Panamá, Panama City P.O. Box 0824-00073, Panama
- Sistema Nacional de Investigación, Panama City P.O. Box 0816-02852, Panama
| | - José Eduardo Calzada
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Avenida Justo Arosemena, Panama City P.O. Box 0816-02593, Panama
- Sistema Nacional de Investigación, Panama City P.O. Box 0816-02852, Panama
| | - Franklyn Samudio
- Facultad de Ciencias Naturales Exactas y Tecnología, Universidad de Panamá, Panama City P.O. Box 0824-00073, Panama
- Instituto Conmemorativo Gorgas de Estudios de la Salud, Avenida Justo Arosemena, Panama City P.O. Box 0816-02593, Panama
- Sistema Nacional de Investigación, Panama City P.O. Box 0816-02852, Panama
| |
Collapse
|
3
|
Pilling OA, Reis-Cunha JL, Grace CA, Berry ASF, Mitchell MW, Yu JA, Malekshahi CR, Krespan E, Go CK, Lombana C, Song YS, Amorim CF, Lago AS, Carvalho LP, Carvalho EM, Brisson D, Scott P, Jeffares DC, Beiting DP. Selective whole-genome amplification reveals population genetics of Leishmania braziliensis directly from patient skin biopsies. PLoS Pathog 2023; 19:e1011230. [PMID: 36940219 PMCID: PMC10063166 DOI: 10.1371/journal.ppat.1011230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 03/30/2023] [Accepted: 02/22/2023] [Indexed: 03/21/2023] Open
Abstract
In Brazil, Leishmania braziliensis is the main causative agent of the neglected tropical disease, cutaneous leishmaniasis (CL). CL presents on a spectrum of disease severity with a high rate of treatment failure. Yet the parasite factors that contribute to disease presentation and treatment outcome are not well understood, in part because successfully isolating and culturing parasites from patient lesions remains a major technical challenge. Here we describe the development of selective whole genome amplification (SWGA) for Leishmania and show that this method enables culture-independent analysis of parasite genomes obtained directly from primary patient skin samples, allowing us to circumvent artifacts associated with adaptation to culture. We show that SWGA can be applied to multiple Leishmania species residing in different host species, suggesting that this method is broadly useful in both experimental infection models and clinical studies. SWGA carried out directly on skin biopsies collected from patients in Corte de Pedra, Bahia, Brazil, showed extensive genomic diversity. Finally, as a proof-of-concept, we demonstrated that SWGA data can be integrated with published whole genome data from cultured parasite isolates to identify variants unique to specific geographic regions in Brazil where treatment failure rates are known to be high. SWGA provides a relatively simple method to generate Leishmania genomes directly from patient samples, unlocking the potential to link parasite genetics with host clinical phenotypes.
Collapse
Affiliation(s)
- Olivia A. Pilling
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - João L. Reis-Cunha
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Cooper A. Grace
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Alexander S. F. Berry
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Matthew W. Mitchell
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Jane A. Yu
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
| | - Clara R. Malekshahi
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Elise Krespan
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Christina K. Go
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Cláudia Lombana
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Yun S. Song
- Computer Science Division, University of California, Berkeley, Berkeley, California, United States of America
- Department of Statistics, University of California, Berkeley, Berkeley, California, United States of America
| | - Camila F. Amorim
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Alexsandro S. Lago
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, Brazil
| | - Lucas P. Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, Brazil
| | - Edgar M. Carvalho
- Serviço de Imunologia, Complexo Hospitalar Universitário Professor Edgard Santos, Universidade Federal da Bahia, Salvador, Bahia, Brazil
- Laboratório de Pesquisas Clínicas do Instituto de Pesquisas Gonçalo Moniz, Fiocruz Bahia, Brazil
| | - Dustin Brisson
- Department of Biology, School of Arts & Sciences, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| | - Daniel C. Jeffares
- Department of Biology, York Biomedical Research Institute, University of York, York, United Kingdom
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
4
|
Matrix-assisted laser desorption ionization time-of-flight mass spectrometry: An effective method for identification and phylogenetic analysis of Leishmania species. Exp Parasitol 2022; 240:108278. [PMID: 35764122 DOI: 10.1016/j.exppara.2022.108278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/11/2022] [Accepted: 05/12/2022] [Indexed: 02/05/2023]
Abstract
BACKGROUND Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) is a rapid and reproducible method that has been widely applied for the identification of bacteria and fungi. However, this technique has not yet been applied in clinical laboratories for parasitology, such as for the study of the protozoan Leishmania. METHODOLOGY By using MALDI-TOF MS, mass spectra database entries (MSPs) were created with 7 World Health Organization reference strains in order to establish a rapid method for Leishmania species identification. Furthermore, cluster analysis was performed with 18 Chinese Leishmania isolates. PRINCIPAL FINDINGS The MSPs of Leishmania corresponded well with our past identification results, and the dendrogram analysis result was more or less similar to that of the phylogenetic analysis performed by multi-locus sequence typing. CONCLUSIONS/SIGNIFICANCE MALDI-TOF MS is a promising method that offers both rapidity and efficiency for the identification and dendrogram analysis of Leishmania species.
Collapse
|
5
|
Zabala-Peñafiel A, Cysne-Finkelstein L, Conceição-Silva F, Fagundes A, Miranda LDFC, Souza-Silva F, Brandt AAML, Dias-Lopes G, Alves CR. Novel Insights Into Leishmania (Viannia) braziliensis In Vitro Fitness Guided by Temperature Changes Along With Its Subtilisins and Oligopeptidase B. Front Cell Infect Microbiol 2022; 12:805106. [PMID: 35531337 PMCID: PMC9069558 DOI: 10.3389/fcimb.2022.805106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Proteases are virulence factors with a recognized impact on the Leishmania spp. life cycle. This study considers a set of analyses measuring phenotypic factors of L. (V.) braziliensis clinical isolates as promastigotes growth curves, murine peritoneal macrophages infection, inflammatory mediators production, and serine proteases gene expression (subtilisin 13: S13, subtilisin 28: S28, oligopeptidase B: OPB) assessing these isolates’ fitness on in vitro conditions. Parasites had different behavior during the early growth phase from day zero to day three, and all isolates reached the stationary growth phase between days four and seven. Macrophages infection showed two tendencies, one of decreased infection rate and number of parasites per macrophage (Infection Index <1000) and another with a constant infection index (≥1400). TNF-α (≥10 pg/mL) detected in infections by 75% of isolates, IL-6 (≥80 pg/mL) by 30% of isolates and low levels of NO (≥0.01µM) in almost all infections. Gene expression showed higher values of S13 (≥2RQ) in the intracellular amastigotes of all the isolates evaluated. On the contrary, S28 expression was low (≤1RQ) in all isolates. OPB expression was different between promastigotes and intracellular amastigotes, being significantly higher (≥2RQ) in the latter form of 58% of the isolates. Predictive structural assays of S13 and OPB were performed to explore temperature influence on gene expression and the encoded proteases. Gene expression data is discussed based on in silico predictions of regulatory regions that show plasticity in the linearity index of secondary structures of S13 and OPB 3’-untranslated regions of mRNA, dependent on temperature changes. While hairpin structures suggest an active region of mRNA for both genes above 26°C, pseudoknot structure found in S13 is an indication of a particular profile of this gene at mammalian host temperatures (37°C). Furthermore, the predicted 3D structures are in accordance with the influence of these temperatures on the catalytic site stability of both enzymes, favoring their action over peptide substrates. Data gathered here suggest that L. (V.) braziliensis serine proteases can be influenced by the temperature conditions affecting parasite fitness throughout its life cycle.
Collapse
Affiliation(s)
- Anabel Zabala-Peñafiel
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Lea Cysne-Finkelstein
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Fatima Conceição-Silva
- Laboratório de Imunoparasitologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Aline Fagundes
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Luciana de Freitas Campos Miranda
- Laboratório de Pesquisa Clínica e Vigilância em Leishmanioses, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Franklin Souza-Silva
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- Universidade Iguaçu, Dom Rodrigo, Nova Iguaçu, Rio de Janeiro, Brazil
| | - Artur A. M. L. Brandt
- Departamento de Computação e Sistemas, Faculdade de Educação Tecnológica do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Ciência da Computação, Univeritas-Rio, Rio de Janeiro, Brazil
| | - Geovane Dias-Lopes
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Geovane Dias-Lopes, ; Carlos Roberto Alves,
| | - Carlos Roberto Alves
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
- *Correspondence: Geovane Dias-Lopes, ; Carlos Roberto Alves,
| |
Collapse
|
6
|
Pereira LOR, Sousa CS, Ramos HCP, Torres-Santos EC, Pinheiro LS, Alves MR, Cuervo P, Romero GAS, Boité MC, Porrozzi R, Cupolillo E. Insights from Leishmania (Viannia) guyanensis in vitro behavior and intercellular communication. Parasit Vectors 2021; 14:556. [PMID: 34711290 PMCID: PMC8554959 DOI: 10.1186/s13071-021-05057-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Pentavalent antimonial-based chemotherapy is the first-line approach for leishmaniasis treatment and disease control. Nevertheless antimony-resistant parasites have been reported in some endemic regions. Treatment refractoriness is complex and is associated with patient- and parasite-related variables. Although amastigotes are the parasite stage in the vertebrate host and, thus, exposed to the drug, the stress caused by trivalent antimony in promastigotes has been shown to promote significant modification in expression of several genes involved in various biological processes, which will ultimately affect parasite behavior. Leishmania (Viannia) guyanensis is one of the main etiological agents in the Amazon Basin region, with a high relapse rate (approximately 25%). METHODS Herein, we conducted several in vitro analyses with L. (V.) guyanensis strains derived from cured and refractory patients after treatment with standardized antimonial therapeutic schemes, in addition to a drug-resistant in vitro-selected strain. Drug sensitivity assessed through Sb(III) half-maximal inhibitory concentration (IC50) assays, growth patterns (with and without drug pressure) and metacyclic-like percentages were determined for all strains and compared to treatment outcomes. Finally, co-cultivation without intercellular contact was followed by parasitic density and Sb(III) IC50 measurements. RESULTS Poor treatment response was correlated with increased Sb(III) IC50 values. The decrease in drug sensitivity was associated with a reduced cell replication rate, increased in vitro growth ability, and higher metacyclic-like proportion. Additionally, in vitro co-cultivation assays demonstrated that intercellular communication enabled lower drug sensitivity and enhanced in vitro growth ability, regardless of direct cell contact. CONCLUSIONS Data concerning drug sensitivity in the Viannia subgenus are emerging, and L. (V.) guyanensis plays a pivotal epidemiological role in Latin America. Therefore, investigating the parasitic features potentially related to relapses is urgent. Altogether, the data presented here indicate that all tested strains of L. (V.) guyanensis displayed an association between treatment outcome and in vitro parameters, especially the drug sensitivity. Remarkably, sharing enhanced growth ability and decreased drug sensitivity, without intercellular communication, were demonstrated.
Collapse
Affiliation(s)
- Luiza O R Pereira
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil.
| | - Cíntia S Sousa
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Hellen C P Ramos
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Liliane S Pinheiro
- Laboratório de Bioquímica de Tripanossomatídeos, IOC, FIOCRUZ, Rio de Janeiro, Brazil.,Instituto de Saúde e Biotecnologia, Universidade Federal do Amazonas, Campus Coari, Amazonas, Brazil
| | - Marcelo R Alves
- Laboratório de Pesquisa Clínica em DST-AIDS, Instituto Nacional de Infectologia Evandro Chagas, FIOCRUZ, Rio de Janeiro, Brazil
| | - Patricia Cuervo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Mariana C Boité
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Renato Porrozzi
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | - Elisa Cupolillo
- Laboratório de Pesquisa em Leishmanioses, Instituto Oswaldo Cruz (IOC), Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| |
Collapse
|
7
|
Bel Hadj Ali I, Chouaieb H, Saadi Ben Aoun Y, Harigua-Souiai E, Souguir H, Yaacoub A, El Dbouni O, Harrat Z, Mukhtar MM, Ben Said M, Haddad N, Fathallah-Mili A, Guizani I. Dipeptidyl peptidase III as a DNA marker to investigate epidemiology and taxonomy of Old World Leishmania species. PLoS Negl Trop Dis 2021; 15:e0009530. [PMID: 34310607 PMCID: PMC8341715 DOI: 10.1371/journal.pntd.0009530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 08/05/2021] [Accepted: 06/01/2021] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Dipeptidyl peptidase III (DPPIII) member of M49 peptidase family is a zinc-dependent metallopeptidase that cleaves dipeptides sequentially from the N-terminus of its substrates. In Leishmania, DPPIII, was reported with other peptidases to play a significant role in parasites' growth and survival. In a previous study, we used a coding sequence annotated as DPPIII to develop and evaluate a PCR assay that is specific to dermotropic Old World (OW) Leishmania species. Thus, our objective was to further assess use of this gene for Leishmania species identification and for phylogeny, and thus for diagnostic and molecular epidemiology studies of Old World Leishmania species. METHODOLOGY Orthologous DDPIII genes were searched in all Leishmania genomes and aligned to design PCR primers and identify relevant restriction enzymes. A PCR assays was developed and seventy-two Leishmania fragment sequences were analyzed using MEGA X genetics software to infer evolution and phylogenetic relationships of studied species and strains. A PCR-RFLP scheme was also designed and tested on 58 OW Leishmania strains belonging to 8 Leishmania species and evaluated on 75 human clinical skin samples. FINDINGS Sequence analysis showed 478 variable sites (302 being parsimony informative). Test of natural selection (dN-dS) (-0.164, SE = 0.013) inferred a negative selection, characteristic of essential genes, corroborating the DPPIII importance for parasite survival. Inter- and intra-specific genetic diversity was used to develop universal amplification of a 662bp fragment. Sequence analyses and phylogenies confirmed occurrence of 6 clusters congruent to L. major, L. tropica, L. aethiopica, L. arabica, L. turanica, L. tarentolae species, and one to the L. infantum and L. donovani species complex. A PCR-RFLP algorithm for Leishmania species identification was designed using double digestions with HaeIII and KpnI and with SacI and PvuII endonucleases. Overall, this PCR-RFLP yielded distinct profiles for each of the species L. major, L. tropica, L. aethiopica, L. arabica and L. turanica and the L. (Sauroleishmania) L. tarentolae. The species L. donovani, and L. infantum shared the same profile except for strains of Indian origin. When tested on clinical samples, the DPPIII PCR showed sensitivities of 82.22% when compared to direct examination and was able to identify 84.78% of the positive samples. CONCLUSION The study demonstrates that DPPIII gene is suitable to detect and identify Leishmania species and to complement other molecular methods for leishmaniases diagnosis and epidemiology. Thus, it can contribute to evidence-based disease control and surveillance.
Collapse
Affiliation(s)
- Insaf Bel Hadj Ali
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| | - Hamed Chouaieb
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
- Service de parasitologie, EPS Farhat Hached, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Yusr Saadi Ben Aoun
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| | - Emna Harigua-Souiai
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| | - Hejer Souguir
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| | - Alia Yaacoub
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
- Service de parasitologie, EPS Farhat Hached, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Oussaïma El Dbouni
- Department of Infectious Diseases, Rafik Hariri Hospital, Beirut, Lebanon
| | - Zoubir Harrat
- Laboratoire d’Eco-épidémiologie Parasitaire et Génétique des Populations, Institut Pasteur d’Algérie, Algiers, Algeria
| | | | - Moncef Ben Said
- Service de parasitologie, EPS Farhat Hached, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Nabil Haddad
- Laboratory of Immunology and Vector-Borne Diseases, Faculty of Public Health Lebanese University, Hadath, Lebanon
| | - Akila Fathallah-Mili
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
- Service de parasitologie, EPS Farhat Hached, Faculté de Médecine de Sousse, Université de Sousse, Sousse, Tunisia
| | - Ikram Guizani
- Laboratory of Molecular Epidemiology and Experimental Pathology, Institut Pasteur de Tunis, Université de Tunis El Manar, Tunisia
| |
Collapse
|
8
|
Patino LH, Muñoz M, Cruz-Saavedra L, Muskus C, Ramírez JD. Genomic Diversification, Structural Plasticity, and Hybridization in Leishmania (Viannia) braziliensis. Front Cell Infect Microbiol 2020; 10:582192. [PMID: 33178631 PMCID: PMC7596589 DOI: 10.3389/fcimb.2020.582192] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/28/2020] [Indexed: 01/12/2023] Open
Abstract
Leishmania (Viannia) braziliensis is an important Leishmania species circulating in several Central and South American countries. Among Leishmania species circulating in Brazil, Argentina and Colombia, L. braziliensis has the highest genomic variability. However, genomic variability at the whole genome level has been only studied in Brazilian and Peruvian isolates; to date, no Colombian isolates have been studied. Considering that in Colombia, L. braziliensis is a species with great clinical and therapeutic relevance, as well as the role of genetic variability in the epidemiology of leishmaniasis, we analyzed and evaluated intraspecific genomic variability of L. braziliensis from Colombian and Bolivian isolates and compared them with Brazilian isolates. Twenty-one genomes were analyzed, six from Colombian patients, one from a Bolivian patient, and 14 Brazilian isolates downloaded from public databases. The results obtained of Phylogenomic analysis showed the existence of four well-supported clades, which evidenced intraspecific variability. The whole-genome analysis revealed structural variations in the somy, mainly in the Brazilian genomes (clade 1 and clade 3), low copy number variations, and a moderate number of single-nucleotide polymorphisms (SNPs) in all genomes analyzed. Interestingly, the genomes belonging to clades 2 and 3 from Colombia and Brazil, respectively, were characterized by low heterozygosity (~90% of SNP loci were homozygous) and regions suggestive of loss of heterozygosity (LOH). Additionally, we observed the drastic whole genome loss of heterozygosity and possible hybridization events in one genome belonging to clade 4. Unique/shared SNPs between and within the four clades were identified, revealing the importance of some of them in biological processes of L. braziliensis. Our analyses demonstrate high genomic variability of L. braziliensis in different regions of South America, mainly in Colombia and suggest that this species exhibits striking genomic diversity and a capacity of genomic hybridization; additionally, this is the first study to report whole-genome sequences of Colombian L. braziliensis isolates.
Collapse
Affiliation(s)
- Luz H Patino
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Marina Muñoz
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Lissa Cruz-Saavedra
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales (PECET), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
9
|
Hosseini M, Nateghi Rostami M, Hosseini Doust R, Khamesipour A. Multilocus sequence typing analysis of Leishmania clinical isolates from cutaneous leishmaniasis patients of Iran. INFECTION GENETICS AND EVOLUTION 2020; 85:104533. [PMID: 32919066 DOI: 10.1016/j.meegid.2020.104533] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 08/30/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
Cutaneous leishmaniasis (CL) is mainly caused by L. major and L. tropica in Old World and might be represented as typical skin lesion(s) or sometimes as a spectrum of atypical manifestations. We applied multilocus sequence typing (MLST) to explore genetic variations of Leishmania strains isolated from atypical vs. typical CL patients from Iran. A PCR-sequencing was performed for seven housekeeping genes (g6pd, mpi, asat, icd, 6pgd, fh, and trys) and genetic diversity indices and phylogenetic relationships were analyzed. A total of 41 isolates of L. major (28/41) and L. tropica (13/41) from 21 (51.2%) atypical CL and 20 (48.8%) typical CL cases were included. A set of additional sequences of 41 strains of 17 species of Leishmania were retrieved from databases. Different SNP variations were detected and the highest rate of heterozygous sites was found in g6pd and 6pgd genes (6 sites) for L. tropica and in asat and 6pgd genes (7 sites) for L. major strains. All strains were clustered into 58 unique sequence types (STs) including 17 STs related to 41 strains of Leishmania of this study. Concatenated tree clustered all strains in 6 main clades (A to F) including L. major (clade D) and L. tropica (clade B) strains. Two strains of L. major (codes 28 and 42) with highest nucleotide variations were more close to L. tropica and were grouped in Clade B. All of the STs were related in clonal complexes by using eBURST with the prediction of founder genotypes. A high rate of genetic variations and heterozygocity was evident in L. tropica and L. major strains; nevertheless, there was no significant difference in the diversity of Leishmania strains between typical CL and atypical CL groups. This study represents the first successful application of MLST approach to L. tropica and L. major strains in Iran.
Collapse
Affiliation(s)
- Mansoure Hosseini
- Department of Microbiology, Faculty of Advanced Sciences, Islamic Azad University of Medical Sciences, Tehran, Iran
| | | | - Reza Hosseini Doust
- Department of Microbiology, Faculty of Advanced Sciences, Islamic Azad University of Medical Sciences, Tehran, Iran
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
10
|
Lauthier JJ, Ruybal P, Barroso PA, Hashiguchi Y, Marco JD, Korenaga M. Development of a Multilocus sequence typing (MLST) scheme for Pan-Leishmania. Acta Trop 2020; 201:105189. [PMID: 31580847 DOI: 10.1016/j.actatropica.2019.105189] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 09/06/2019] [Accepted: 09/19/2019] [Indexed: 12/14/2022]
Abstract
Since the description of the Leishmania genus, its identification and organization have been a challenge. A high number of molecular markers have been developed to resolve phylogenetic differences at the species level and for addressing key epidemiological and population genetics questions. Based on Multilocus enzyme electrophoresis (MLEE), Multilocus sequence typing (MLST) schemes have been developed using different gene candidates. From 38 original gene targets proposed by other authors, 27 of them were chosen. In silico selection was made by analyzing free access genomic sequence data of 33 Leishmania species, one Paraleishmania representative, and one outgroup, in order to select the best 15 loci. De novo amplifications and primers redesign of these 15 genes were analyzed over a panel of 20 reference strains and isolates. Phylogenetic analysis was made at every step. Two MLST schemes were selected. The first one was based on the analysis of three-gene fragments, and it is suitable for species assignment as well as basic phylogenetic studies. By the addition of seven-genes, an approach based on the analysis of ten-gene fragments was also proposed. This is the first work that two optimized MLST schemes have been suggested, validated against a phylogenetically diverse panel of Leishmania isolates. MLST is potentially a powerful phylogenetic approach, and most probably the new gold standard for Leishmania spp. characterization.
Collapse
Affiliation(s)
- Juan Jose Lauthier
- Parasitology Department, Kochi Medical School, Kochi University, Okocho Kohasu, Nankoku, Kochi Prefecture 783-8505, Japan.
| | - Paula Ruybal
- Universidad de Buenos Aires. Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM). Facultad de Medicina. Paraguay 2155 Piso: 12, CABA (1121). Argentina
| | - Paola Andrea Barroso
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta / CONICET, Salta, Argentina
| | - Yoshihisa Hashiguchi
- Parasitology Department, Kochi Medical School, Kochi University, Okocho Kohasu, Nankoku, Kochi Prefecture 783-8505, Japan; Departamento de Parasitología y Medicina Tropical, Carrera de Medicina, Facultad de Ciencias Médicas, Universidad Católica de Santiago de Guayaquil, Guayaquil, Ecuador
| | - Jorge Diego Marco
- Instituto de Patología Experimental, Facultad de Ciencias de la Salud, Universidad Nacional de Salta / CONICET, Salta, Argentina
| | - Masataka Korenaga
- Parasitology Department, Kochi Medical School, Kochi University, Okocho Kohasu, Nankoku, Kochi Prefecture 783-8505, Japan.
| |
Collapse
|
11
|
S. L. Figueiredo de Sá B, Rezende AM, de Melo Neto OP, de Brito MEF, Brandão Filho SP. Identification of divergent Leishmania (Viannia) braziliensis ecotypes derived from a geographically restricted area through whole genome analysis. PLoS Negl Trop Dis 2019; 13:e0007382. [PMID: 31170148 PMCID: PMC6581274 DOI: 10.1371/journal.pntd.0007382] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 06/18/2019] [Accepted: 04/10/2019] [Indexed: 01/22/2023] Open
Abstract
Leishmania braziliensis, the main etiological agent of cutaneous leishmaniasis (CL) in Latin America, is characterized by major differences in basic biology in comparison with better-known Leishmania species. It is also associated with a high phenotypic and possibly genetic diversity that need to be more adequately defined. Here we used whole genome sequences to evaluate the genetic diversity of ten L. braziliensis isolates from a CL endemic area from Northeastern Brazil, previously classified by Multi Locus Enzyme Electrophoresis (MLEE) into ten distinct zymodemes. These sequences were first mapped using the L. braziliensis M2904 reference genome followed by identification of Single Nucleotide Polymorphisms (SNPs). A substantial level of diversity was observed when compared with the reference genome, with SNP counts ranging from ~95,000 to ~131,000 for the different isolates. When the genome data was used to infer relationship between isolates, those belonging to zymodemes Z72/Z75, recovered from forested environments, were found to cluster separately from the others, generally associated with more urban environments. Among the remaining isolates, those from zymodemes Z74/Z106 were also found to form a separate group. Phylogenetic analyses were also performed using Multi-Locus Sequence Analysis from genes coding for four metabolic enzymes used for MLEE as well as the gene sequence coding for the Hsp70 heat shock protein. All 10 isolates were firmly identified as L. braziliensis, including the zymodeme Z26 isolate previously classified as Leishmania shawi, with the clustering into three groups confirmed. Aneuploidy was also investigated but found in general restricted to chromosome 31, with a single isolate, from zymodeme Z27, characterized by extra copies for other chromosomes. Noteworthy, both Z72 and Z75 isolates are characterized by a much reduced heterozygosity. Our data is consistent with the existence of distinct evolutionary groups in the restricted area sampled and a substantial genetic diversity within L. braziliensis.
Collapse
Affiliation(s)
| | - Antonio M. Rezende
- Department of Microbiology, Aggeu Magalhães Institute/FIOCRUZ, Recife, Pernambuco, Brazil
| | | | | | | |
Collapse
|
12
|
Banu SS, Meyer W, Ferreira-Paim K, Wang Q, Kuhls K, Cupolillo E, Schönian G, Lee R. A novel multilocus sequence typing scheme identifying genetic diversity amongst Leishmania donovani isolates from a genetically homogeneous population in the Indian subcontinent. Int J Parasitol 2019; 49:555-567. [PMID: 31108098 DOI: 10.1016/j.ijpara.2019.02.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 02/20/2019] [Accepted: 02/23/2019] [Indexed: 01/29/2023]
Abstract
In the Indian subcontinent, infection with Leishmania donovani can cause fatal visceral leishmaniasis. Genetic variation in L. donovani is believed to occur rapidly from environmental changes and through selective drug pressures, thereby allowing continued disease occurrence in this region. All previous molecular markers that are commonly in use multilocus microsatellite typing and multilocus sequence typing, were monomorphic in L. donovani originating from the Indian subcontinent (with only a few exceptions) and hence are not suitable for this region. An multilocus sequence typing scheme consisting of a new set of seven housekeeping genes was developed in this study, based on recent findings from whole genome sequencing data. This new scheme was used to assess the genetic diversity amongst 22 autochthonous L. donovani isolates from Bangladesh. Nineteen additional isolates of the L. donovani complex (including sequences of L. donovani reference strain BPK282A1) from other countries were included for comparison. By using restriction fragment length polymorphism of the internal transcribed spacer 1 region (ITS1-RFLP) and ITS1 sequencing, all Bangladeshi isolates were confirmed to be L. donovani. Population genetic analyses of 41 isolates using the seven new MLST loci clearly separated L. donovani from Leishmania infantum. With this multilocus sequence typing scheme, seven genotypes were identified amongst Bangladeshi L. donovani isolates, and these isolates were found to be phylogenetically different compared with those from India, Nepal, Iraq and Africa. This novel multilocus sequence typing approach can detect intra- and inter-species variations within the L. donovani complex, but most importantly these molecular markers can be applied to resolve the phylogenetically very homogeneous L. donovani strains from the Indian subcontinent. Four of these markers were found suitable to differentiate strains originating from Bangladesh, with marker A2P being the most discriminative one.
Collapse
Affiliation(s)
- Sultana Shahana Banu
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia; Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia; Directorate General of Health Services (DGHS), Ministry of Health and Family Welfare (MOHFW), Dhaka, Bangladesh
| | - Wieland Meyer
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia
| | - Kennio Ferreira-Paim
- Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia; Westmead Institute for Medical Research, Westmead, Sydney, NSW, Australia; Department of Microbiology, Federal University of Triangulo Mineiro, Uberaba, Brazil
| | - Qinning Wang
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Elisa Cupolillo
- Laboratory on Leishmaniasis Research, Oswaldo Cruz Institute - Fiocruz, Rio de Janeiro, Brazil
| | - Gabriele Schönian
- Institute for Microbiology and Hygiene CC05, Charité University Medicine Berlin, Berlin, Germany
| | - Rogan Lee
- Parasitology Department, Centre for Infectious Diseases and Microbiology Laboratory Services (CIDMLS), Institute of Clinical Pathology and Medical Research (ICPMR), Westmead Hospital, Westmead, Sydney, NSW, Australia; Molecular Mycology Research Laboratory, Centre for Infectious Diseases and Microbiology, Faculty of Medicine and Health, Sydney Medical School, Westmead Clinical School, Marie Bashir Institute for Emerging Infectious Diseases and Biosecurity, Westmead Hospital (Research and Education Network), The University of Sydney, Sydney, NSW, Australia.
| |
Collapse
|
13
|
Abstract
Phylogenetics is an important component of the systems biology approach. Knowledge about evolution of the genus Leishmania is essential to understand various aspects of basic biology of these parasites, such as parasite-host or parasite-vector relationships, biogeography, or epidemiology. Here, we present a comprehensive guideline for performing phylogenetic studies based on DNA sequence data, but with principles that can be adapted to protein sequences or other molecular markers. It is presented as a compilation of the most commonly used genetic targets for phylogenetic studies of Leishmania, including their respective primers for amplification and references, as well as details of PCR assays. Guidelines are, then, presented to choose the best targets in relation to the types of samples under study. Finally, and importantly, instructions are given to obtain optimal sequences, alignments, and datasets for the subsequent data analysis and phylogenetic inference. Different bioinformatics methods and software for phylogenetic inference are presented and explained. This chapter aims to provide a compilation of methods and generic guidelines to conduct phylogenetics of Leishmania for nonspecialists.
Collapse
Affiliation(s)
- Katrin Kuhls
- Molekulare Biotechnologie und Funktionelle Genomik, Technische Hochschule Wildau, Wildau, Germany.
| | - Isabel Mauricio
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| |
Collapse
|
14
|
Conceição-Silva F, Leite-Silva J, Morgado FN. The Binomial Parasite-Host Immunity in the Healing Process and in Reactivation of Human Tegumentary Leishmaniasis. Front Microbiol 2018; 9:1308. [PMID: 29971054 PMCID: PMC6018218 DOI: 10.3389/fmicb.2018.01308] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 05/29/2018] [Indexed: 01/09/2023] Open
Abstract
Leishmaniasis is a vector-borne infectious disease caused by different species of protozoa from the Leishmania genus. Classically, the disease can be classified into two main clinical forms: Visceral (VL) and Tegumentary (TL) leishmaniasis. TL is a skin/mucosal granulomatous disease that manifests mainly as cutaneous localized or disseminated ulcers, papules diffusely distributed, mucosal lesions or atypical lesions. Once the etiology of the infection is confirmed, treatment can take place, and different drugs can be administered. It has already been shown that, even when the scar is clinically evident, inflammation is still present in the native tissue, and the decrease of the inflammatory process occurs slowly during the 1st years after clinical healing. The maintenance of residual parasites in the scar tissue is also well documented. Therefore, it is no longer a surprise that, under some circumstances, therapeutic failure and/or lesion reactivation occurs. All over the years, an impressive amount of data on relapses, treatment resistance and lesion reactivation after healing has been collected, and several factors have been pointed out as having a role in the process. Different factors such as Leishmania species, parasite variability, Leishmania RNA virus 1, parasite load, parasite persistence, age, nutritional status, gender, co-morbidities, co-infection, pregnancy, immunosuppression, lesion duration, number and localization of lesions, drug metabolism, irregular treatment and individual host cellular immune response were described and discussed in the present review. Unfortunately, despite this amount of information, a conclusive understanding remains under construction. In addition, multifactorial influence cannot be discarded. In this context, knowing why leishmaniasis has been difficult to treat and control can help the development of new approaches, such as drugs and immunotherapy in order to improve healing maintenance. In this sense, we would like to highlight some of the findings that may influence the course of Leishmania infection and the therapeutic response, with an emphasis on TL.
Collapse
Affiliation(s)
- Fatima Conceição-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
| | - Jessica Leite-Silva
- Laboratory of Immunoparasitology, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
| | - Fernanda N. Morgado
- Laboratory of Leishmaniasis Research, Oswaldo Cruz Institute (Fiocruz), Rio de Janeiro, Brazil
| |
Collapse
|
15
|
Herrera G, Hernández C, Ayala MS, Flórez C, Teherán AA, Ramírez JD. Evaluation of a Multilocus Sequence Typing (MLST) scheme for Leishmania (Viannia) braziliensis and Leishmania (Viannia) panamensis in Colombia. Parasit Vectors 2017; 10:236. [PMID: 28499458 PMCID: PMC5429539 DOI: 10.1186/s13071-017-2175-8] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/03/2017] [Indexed: 11/30/2022] Open
Abstract
Background Leishmaniases are parasitic vector-borne diseases affecting more than 12 million people in 98 countries. In Colombia, leishmaniasis is widespread and the most common clinical manifestation is cutaneous, mainly caused by L. panamensis and L. braziliensis. Currently, the genetic diversity of these species in Colombia is unknown. To address this, we applied molecular techniques for their characterization, using multilocus sequence typing (MLST) to explore the genetic variability and phylodynamics of the disease. Methods Seven previously described genetic markers were selected highlighting the implementation of a mitochondrial marker. Markers were applied to 163 samples from isolates obtained between 1980 and 2001. Results The identification of the samples showed an excellent correlation with typing tests previously applied (MLEE, monoclonal antibodies). Isolates of L. braziliensis showed greater genetic diversity than L. panamensis, and a greater number of diploid sequence types (DSTs). In addition, the geographical distribution of DSTs for each species were obtained through georeferencing maps. Conclusions To our knowldge, this study represents the first description of the genetic variability of L. panamensis in Colombia and South America, and is the first to propose a scheme of MLST for epidemiological surveillance of leishmaniasis in the country. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2175-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Giovanny Herrera
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, Colombia
| | - Carolina Hernández
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, Colombia
| | - Martha S Ayala
- Grupo de Parasitología, Instituto Nacional de Salud, Avenida Calle 26 #51-20, Bogotá, Colombia
| | - Carolina Flórez
- Grupo de Parasitología, Instituto Nacional de Salud, Avenida Calle 26 #51-20, Bogotá, Colombia
| | - Aníbal A Teherán
- Residente Medicina de Emergencias, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, Colombia
| | - Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Carrera 24 No. 63C-69, Bogotá, Colombia.
| |
Collapse
|
16
|
Ramírez JD, Hernández C, León CM, Ayala MS, Flórez C, González C. Taxonomy, diversity, temporal and geographical distribution of Cutaneous Leishmaniasis in Colombia: A retrospective study. Sci Rep 2016; 6:28266. [PMID: 27328969 PMCID: PMC4916406 DOI: 10.1038/srep28266] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 06/01/2016] [Indexed: 11/13/2022] Open
Abstract
Leishmaniases are tropical zoonotic diseases, caused by kinetoplastid parasites from the genus Leishmania. New World (NW) species are related to sylvatic cycles although urbanization processes have been reported in some South American Countries such as Colombia. Currently, few studies show the relative distribution of Leishmania species related to cutaneous Leishmaniasis (CL) in South America due to the lack of accurate surveillance and public health systems. Herein, we conducted a systematic estimation of the Leishmania species causing CL in Colombia from 1980 to 2001 via molecular typing and isoenzymes. A total of 327 Leishmania isolates from humans, sandflies and reservoirs were typed as L. panamensis 61.3% (201), L. braziliensis 27.1% (88), L. lainsoni 0.6% (2), L. guyanensis 0.9% (3), L. infantum chagasi 4% (12), L. equatoriensis 0.6% (2), L. mexicana 2.1% (8), L. amazonensis 2.8% (9) and L. colombiensis 0.6% (2). This is the first report of two new Leishmania species circulating in Colombia and suggests the need to convince the Colombian government about the need to deploy and standardize tools for the species identification to provide adequate management to individuals suffering this pathology.
Collapse
Affiliation(s)
- Juan David Ramírez
- Grupo de Investigaciones Microbiológicas-UR (GIMUR), Programa de Biología, Facultad de Ciencias Naturales y Matemáticas, Universidad del Rosario, Bogotá-Colombia
| | | | - Cielo M. León
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá-Colombia
| | - Martha S. Ayala
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá-Colombia
| | - Carolina Flórez
- Grupo de Parasitología, Instituto Nacional de Salud, Bogotá-Colombia
| | - Camila González
- Centro de Investigaciones en Microbiología y Parasitología Tropica (CIMPAT), Universidad de Los Andes, Bogotá-Colombia
| |
Collapse
|
17
|
Zepeda Mendoza ML, Sicheritz-Pontén T, Gilbert MTP. Environmental genes and genomes: understanding the differences and challenges in the approaches and software for their analyses. Brief Bioinform 2015; 16:745-58. [PMID: 25673291 PMCID: PMC4570204 DOI: 10.1093/bib/bbv001] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 12/16/2014] [Indexed: 01/19/2023] Open
Abstract
DNA-based taxonomic and functional profiling is widely used for the characterization of organismal communities across a rapidly increasing array of research areas that include the role of microbiomes in health and disease, biomonitoring, and estimation of both microbial and metazoan species richness. Two principal approaches are currently used to assign taxonomy to DNA sequences: DNA metabarcoding and metagenomics. When initially developed, each of these approaches mandated their own particular methods for data analysis; however, with the development of high-throughput sequencing (HTS) techniques they have begun to share many aspects in data set generation and processing. In this review we aim to define the current characteristics, goals and boundaries of each field, and describe the different software used for their analysis. We argue that an appreciation of the potential and limitations of each method can help underscore the improvements required by each field so as to better exploit the richness of current HTS-based data sets.
Collapse
|
18
|
Chaara D, Ravel C, Bañuls AL, Haouas N, Lami P, Talignani L, El Baidouri F, Jaouadi K, Harrat Z, Dedet JP, Babba H, Pratlong F. Evolutionary history of Leishmania killicki (synonymous Leishmania tropica) and taxonomic implications. Parasit Vectors 2015; 8:198. [PMID: 25889939 PMCID: PMC4387592 DOI: 10.1186/s13071-015-0821-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 03/21/2015] [Indexed: 11/30/2022] Open
Abstract
Background The taxonomic status of Leishmania (L.) killicki, a parasite that causes chronic cutaneous leishmaniasis, is not well defined yet. Indeed, some researchers suggested that this taxon could be included in the L. tropica complex, whereas others considered it as a distinct phylogenetic complex. To try to solve this taxonomic issue we carried out a detailed study on the evolutionary history of L. killicki relative to L. tropica. Methods Thirty-five L. killicki and 25 L. tropica strains isolated from humans and originating from several countries were characterized using the MultiLocus Enzyme Electrophoresis (MLEE) and the MultiLocus Sequence Typing (MLST) approaches. Results The results of the genetic and phylogenetic analyses strongly support the hypothesis that L. killicki belongs to the L. tropica complex. Our data suggest that L. killicki emerged from a single founder event and that it evolved independently from L. tropica. However, they do not validate the hypothesis that L. killicki is a distinct complex. Therefore, we suggest naming this taxon L. killicki (synonymous L. tropica) until further epidemiological and phylogenetic studies justify the L. killicki denomination. Conclusions This study provides taxonomic and phylogenetic information on L. killicki and improves our knowledge on the evolutionary history of this taxon.
Collapse
Affiliation(s)
- Dhekra Chaara
- Département de Biologie Clinique B, Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (code LR12ES08), Faculté de Pharmacie, Université de Monastir, Monastir, Tunisia. .,Département de Parasitologie-Mycologie, Centre National de Référence des Leishmanioses, CHRU de Montpellier, Université de Montpellier, France, 39 avenue Charles FLAHAULT, 34295, Montpellier Cedex 5, France. .,UMR MIVEGEC (CNRS 5290-IRD 224-Université de Montpellier), Montpellier, 34394, France.
| | - Christophe Ravel
- Département de Parasitologie-Mycologie, Centre National de Référence des Leishmanioses, CHRU de Montpellier, Université de Montpellier, France, 39 avenue Charles FLAHAULT, 34295, Montpellier Cedex 5, France. .,UMR MIVEGEC (CNRS 5290-IRD 224-Université de Montpellier), Montpellier, 34394, France.
| | - Anne- Laure Bañuls
- UMR MIVEGEC (CNRS 5290-IRD 224-Université de Montpellier), Montpellier, 34394, France.
| | - Najoua Haouas
- Département de Biologie Clinique B, Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (code LR12ES08), Faculté de Pharmacie, Université de Monastir, Monastir, Tunisia.
| | - Patrick Lami
- Département de Parasitologie-Mycologie, Centre National de Référence des Leishmanioses, CHRU de Montpellier, Université de Montpellier, France, 39 avenue Charles FLAHAULT, 34295, Montpellier Cedex 5, France. .,UMR MIVEGEC (CNRS 5290-IRD 224-Université de Montpellier), Montpellier, 34394, France.
| | - Loïc Talignani
- Département de Parasitologie-Mycologie, Centre National de Référence des Leishmanioses, CHRU de Montpellier, Université de Montpellier, France, 39 avenue Charles FLAHAULT, 34295, Montpellier Cedex 5, France. .,UMR MIVEGEC (CNRS 5290-IRD 224-Université de Montpellier), Montpellier, 34394, France.
| | - Fouad El Baidouri
- Département de Parasitologie-Mycologie, Centre National de Référence des Leishmanioses, CHRU de Montpellier, Université de Montpellier, France, 39 avenue Charles FLAHAULT, 34295, Montpellier Cedex 5, France. .,UMR MIVEGEC (CNRS 5290-IRD 224-Université de Montpellier), Montpellier, 34394, France. .,School of Life Sciences University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, LN6 7DL, UK.
| | - Kaouther Jaouadi
- Département de Biologie Clinique B, Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (code LR12ES08), Faculté de Pharmacie, Université de Monastir, Monastir, Tunisia.
| | - Zoubir Harrat
- Laboratoire d'éco-épidémiologie Parasitaire et Génétique des Populations, Institut Pasteur d'Algérie, Dely Ibrahim, Algeria.
| | - Jean-Pierre Dedet
- Département de Parasitologie-Mycologie, Centre National de Référence des Leishmanioses, CHRU de Montpellier, Université de Montpellier, France, 39 avenue Charles FLAHAULT, 34295, Montpellier Cedex 5, France. .,UMR MIVEGEC (CNRS 5290-IRD 224-Université de Montpellier), Montpellier, 34394, France.
| | - Hamouda Babba
- Département de Biologie Clinique B, Laboratoire de Parasitologie-Mycologie Médicale et Moléculaire (code LR12ES08), Faculté de Pharmacie, Université de Monastir, Monastir, Tunisia.
| | - Francine Pratlong
- Département de Parasitologie-Mycologie, Centre National de Référence des Leishmanioses, CHRU de Montpellier, Université de Montpellier, France, 39 avenue Charles FLAHAULT, 34295, Montpellier Cedex 5, France. .,UMR MIVEGEC (CNRS 5290-IRD 224-Université de Montpellier), Montpellier, 34394, France.
| |
Collapse
|