1
|
Moncada-Diaz MJ, Rodríguez-Almonacid CC, Quiceno-Giraldo E, Khuong FTH, Muskus C, Karamysheva ZN. Molecular Mechanisms of Drug Resistance in Leishmania spp. Pathogens 2024; 13:835. [PMID: 39452707 PMCID: PMC11510721 DOI: 10.3390/pathogens13100835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/23/2024] [Accepted: 09/24/2024] [Indexed: 10/26/2024] Open
Abstract
The protozoan parasite Leishmania causes leishmaniasis, a neglected tropical disease, that disproportionately affects underdeveloped countries. This disease has major health, economic, and social implications, particularly because of the limited treatment options, high cost, the severe side effects associated with available therapeutics, and the high rate of treatment failure caused by the parasites' growing resistance to current medications. In this review, we describe first the common strategies used by pathogens to develop drug resistance and then focus on the arsenal of available drugs to treat leishmaniasis, their modes of action, and the molecular mechanisms contributing to drug resistance in Leishmania spp., including the role of genomic, transcriptional, and translational control. We focus more specifically on our recent discovery of translational reprogramming as a major driver of drug resistance leading to coordinated changes in the translation of transcripts and orchestrating changes in metabolome and lipidome to support drug resistance. A thorough understanding of these mechanisms is essential to identify the key elements needed to combat resistance and improve leishmaniasis treatment methods.
Collapse
Affiliation(s)
- Maria Juliana Moncada-Diaz
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Cristian Camilo Rodríguez-Almonacid
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Eyson Quiceno-Giraldo
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Francis T. H. Khuong
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| | - Carlos Muskus
- Programa de Estudio y Control de Enfermedades Tropicales-PECET, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Zemfira N. Karamysheva
- Department of Cell Biology and Biochemistry, Texas Tech University Health Science Center, Lubbock, TX 79430, USA; (M.J.M.-D.); (C.C.R.-A.); (E.Q.-G.); (F.T.H.K.)
| |
Collapse
|
2
|
Scheiffer G, Domingues KZA, Gorski D, Cobre ADF, Lazo REL, Borba HHL, Ferreira LM, Pontarolo R. In silico approaches supporting drug repurposing for Leishmaniasis: a scoping review. EXCLI JOURNAL 2024; 23:1117-1169. [PMID: 39421030 PMCID: PMC11484518 DOI: 10.17179/excli2024-7552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/08/2024] [Indexed: 10/19/2024]
Abstract
The shortage of treatment options for leishmaniasis, especially those easy to administer and viable for deployment in the world's poorest regions, highlights the importance of employing these strategies to cost-effectively investigate repurposing candidates. This scoping review aims to map the studies using in silico methodologies for drug repurposing against leishmaniasis. This study followed JBI recommendations for scoping reviews. Articles were searched on PubMed, Scopus, and Web of Science databases using keywords related to leishmaniasis and in silico methods for drug discovery, without publication date restrictions. The selection was based on primary studies involving computational methods for antileishmanial drug repurposing. Information about methodologies, obtained data, and outcomes were extracted. After the full-text appraisal, 34 studies were included in this review. Molecular docking was the preferred method for evaluating repurposing candidates (n=25). Studies reported 154 unique ligands and 72 different targets, sterol 14-alpha demethylase and trypanothione reductase being the most frequently reported. In silico screening was able to correctly pinpoint some known active pharmaceutical classes and propose previously untested drugs. Fifteen drugs investigated in silico exhibited low micromolar inhibition (IC50 < 10 µM) of Leishmania spp. in vitro. In conclusion, several in silico repurposing candidates are yet to be investigated in vitro and in vivo. Future research could expand the number of targets screened and employ advanced methods to optimize drug selection, offering new starting points for treatment development. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Gustavo Scheiffer
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Karime Zeraik Abdalla Domingues
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Daniela Gorski
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Alexandre de Fátima Cobre
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Raul Edison Luna Lazo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Helena Hiemisch Lobo Borba
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Luana Mota Ferreira
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| | - Roberto Pontarolo
- Postgraduate Program in Pharmaceutical Sciences, Department of Pharmacy, Federal University of Paraná, Curitiba 80210-170, Paraná, Brazil
| |
Collapse
|
3
|
Ferreira BA, Coser EM, de la Roca S, Aoki JI, Branco N, Soares GHC, Lima MIS, Coelho AC. Amphotericin B resistance in Leishmania amazonensis: In vitro and in vivo characterization of a Brazilian clinical isolate. PLoS Negl Trop Dis 2024; 18:e0012175. [PMID: 38768213 PMCID: PMC11142706 DOI: 10.1371/journal.pntd.0012175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 05/31/2024] [Accepted: 04/27/2024] [Indexed: 05/22/2024] Open
Abstract
In Brazil, Leishmania amazonensis is the etiological agent of cutaneous and diffuse cutaneous leishmaniasis. The state of Maranhão in the Northeast of Brazil is prevalent for these clinical forms of the disease and also has high rates of HIV infection. Here, we characterized the drug susceptibility of a L. amazonensis clinical isolate from a 46-year-old man with diffuse cutaneous leishmaniasis coinfected with HIV from this endemic area. This patient underwent several therapeutic regimens with meglumine antimoniate, liposomal amphotericin B, and pentamidine, without success. In vitro susceptibility assays against promastigotes and intracellular amastigotes demonstrated that this isolate had low susceptibility to amphotericin B, when compared with the reference strain of this species that is considered susceptible to antileishmanial drugs. Additionally, we investigated whether the low in vitro susceptibility would affect the in vivo response to amphotericin B treatment. The drug was effective in reducing the lesion size and parasite burden in mice infected with the reference strain, whereas those infected with the clinical isolate and a resistant line (generated experimentally by stepwise selection) were refractory to amphotericin B treatment. To evaluate whether the isolate was intrinsically resistant to amphotericin B in animals, infected mice were treated with other drugs that had not been used in the treatment of the patient (miltefosine, paromomycin, and a combination of both). Our findings demonstrated that all drug schemes were able to reduce lesion size and parasite burden in animals infected with the clinical isolate, confirming the amphotericin B-resistance phenotype. These findings indicate that the treatment failure observed in the patient may be associated with amphotericin B resistance, and demonstrate the potential emergence of amphotericin B-resistant L. amazonensis isolates in an area of Brazil endemic for cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Bianca A. Ferreira
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Elizabeth M. Coser
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Stephane de la Roca
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Juliana I. Aoki
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Nilson Branco
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Gustavo H. C. Soares
- Departamento de Parasitologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, Brazil
| | - Mayara I. S. Lima
- Departamento de Biologia, Programas de Pós Graduação em Saúde e Ambiente e Ciências da Saúde, Universidade Federal do Maranhão, São Luís, Brazil
| | - Adriano C. Coelho
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
4
|
Potvin JÉ, Fani F, Queffeulou M, Gazanion É, Leprohon P, Ouellette M. Increased copy number of the target gene squalene monooxygenase as the main resistance mechanism to terbinafine in Leishmania infantum. Int J Parasitol Drugs Drug Resist 2023; 23:37-43. [PMID: 37703646 PMCID: PMC10502319 DOI: 10.1016/j.ijpddr.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/15/2023]
Abstract
We use here two genomic screens in an attempt to understand the mode of action and resistance mechanism of terbinafine, an antifungal contemplated as a potential drug against the parasite Leishmania. One screen consisted in in vitro drug evolution where 5 independent mutants were selected step-by-step for terbinafine resistance. Sequencing of the genome of the 5 mutants revealed no single nucleotide polymorphisms related to the resistance phenotype. However, the ERG1 gene was found amplified as part of a linear amplicon, and transfection of ERG1 fully recapitulated the terbinafine resistance phenotype of the mutants. The second screen, Cos-seq, consisted in selecting a gene overexpression library with terbinafine followed by the sequencing of the enriched cosmids. This screen identified two cosmids derived from loci on chromosomes 13 and 29 encoding the squalene monooxygenase (ERG1) and the C8 sterol isomerase (ERG2), respectively. Transfection of the ERG1-cosmid, but not the ERG2-cosmid, produced resistance to terbinafine. Our screens suggest that ERG1 is the main, if not only, target for terbinafine in Leishmania and amplification of its gene is the main resistance mechanism.
Collapse
Affiliation(s)
- Jade-Éva Potvin
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Fereshteh Fani
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Marine Queffeulou
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Élodie Gazanion
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada
| | - Marc Ouellette
- Centre de Recherche en Infectiologie du Centre de Recherche du CHU de Québec and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Quebec City, Québec, Canada.
| |
Collapse
|
5
|
Choy HL, Gaylord EA, Doering TL. Ergosterol distribution controls surface structure formation and fungal pathogenicity. mBio 2023; 14:e0135323. [PMID: 37409809 PMCID: PMC10470819 DOI: 10.1128/mbio.01353-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/07/2023] Open
Abstract
Ergosterol, the major sterol in fungal membranes, is critical for defining membrane fluidity and regulating cellular processes. Although ergosterol synthesis has been well defined in model yeast, little is known about sterol organization in the context of fungal pathogenesis. We identified a retrograde sterol transporter, Ysp2, in the opportunistic fungal pathogen Cryptococcus neoformans. We found that the lack of Ysp2 under host-mimicking conditions leads to abnormal accumulation of ergosterol at the plasma membrane, invagination of the plasma membrane, and malformation of the cell wall, which can be functionally rescued by inhibiting ergosterol synthesis with the antifungal drug fluconazole. We also observed that cells lacking Ysp2 mislocalize the cell surface protein Pma1 and have abnormally thin and permeable capsules. As a result of perturbed ergosterol distribution and its consequences, ysp2∆ cells cannot survive in physiologically relevant environments such as host phagocytes and are dramatically attenuated in virulence. These findings expand our knowledge of cryptococcal biology and underscore the importance of sterol homeostasis in fungal pathogenesis. IMPORTANCE Cryptococcus neoformans is an opportunistic fungal pathogen that kills over 100,000 people worldwide each year. Only three drugs are available to treat cryptococcosis, and these are variously limited by toxicity, availability, cost, and resistance. Ergosterol is the most abundant sterol in fungi and a key component in modulating membrane behavior. Two of the drugs used for cryptococcal infection, amphotericin B and fluconazole, target this lipid and its synthesis, highlighting its importance as a therapeutic target. We discovered a cryptococcal ergosterol transporter, Ysp2, and demonstrated its key roles in multiple aspects of cryptococcal biology and pathogenesis. These studies demonstrate the role of ergosterol homeostasis in C. neoformans virulence, deepen our understanding of a pathway with proven therapeutic importance, and open a new area of study.
Collapse
Affiliation(s)
- Hau Lam Choy
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Elizabeth A. Gaylord
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara L. Doering
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
6
|
Hughes K, Le TB, Van Der Smissen P, Tyteca D, Mingeot-Leclercq MP, Quetin-Leclercq J. The Antileishmanial Activity of Eugenol Associated with Lipid Storage Reduction Rather Than Membrane Properties Alterations. Molecules 2023; 28:molecules28093871. [PMID: 37175277 PMCID: PMC10179746 DOI: 10.3390/molecules28093871] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/26/2023] [Accepted: 04/29/2023] [Indexed: 05/15/2023] Open
Abstract
Leishmaniasis is a neglected tropical disease that still infects thousands of people per year throughout the world. The occurrence of resistance against major treatments for this disease causes a healthcare burden in low-income countries. Eugenol is a phenylpropanoid that has shown in vitro antileishmanial activity against Leishmania mexicana mexicana (Lmm) promastigotes with an IC50 of 2.72 µg/mL and a high selectivity index. Its specific mechanism of action has yet to be studied. We prepared large unilamellar vesicles (LUVs), mimicking Lmm membranes, and observed that eugenol induced an increase in membrane permeability and a decrease in membrane fluidity at concentrations much higher than IC50. The effect of eugenol was similar to the current therapeutic antibiotic, amphotericin B, although the latter was effective at lower concentrations than eugenol. However, unlike amphotericin B, eugenol also affected the permeability of LUVs without sterol. Its effect on the membrane fluidity of Lmm showed that at high concentrations (≥22.5× IC50), eugenol increased membrane fluidity by 20-30%, while no effect was observed at lower concentrations. Furthermore, at concentrations below 10× IC50, a decrease in metabolic activity associated with the maintenance of membrane integrity revealed a leishmaniostatic effect after 24 h of incubation with Lmm promastigotes. While acidocalcisomes distribution and abundance revealed by Trypanosoma brucei vacuolar H+ pyrophosphatase (TbVP1) immunolabeling was not modified by eugenol, a dose-dependent decrease of lipid droplets assessed by the Nile Red assay was observed. We hereby demonstrate that the antileishmanial activity of eugenol might not directly involve plasma membrane sterols such as ergosterol, but rather target the lipid storage of Lmm.
Collapse
Affiliation(s)
- Kristelle Hughes
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 72, B1.72.03, B-1200 Brussels, Belgium
| | - Thanh Binh Le
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 72, B1.72.03, B-1200 Brussels, Belgium
| | - Patrick Van Der Smissen
- CELL Unit and PICT Imaging Platform, de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, B1.75.05, B-1200 Brussels, Belgium
| | - Donatienne Tyteca
- CELL Unit and PICT Imaging Platform, de Duve Institute, Université Catholique de Louvain, Avenue Hippocrate 75, B1.75.05, B-1200 Brussels, Belgium
| | - Marie-Paule Mingeot-Leclercq
- Cellular and Molecular Pharmacology Unit (FACM), Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 73, B1.73.05, B-1200 Brussels, Belgium
| | - Joëlle Quetin-Leclercq
- Pharmacognosy Research Group, Louvain Drug Research Institute, Université Catholique de Louvain, Avenue E. Mounier 72, B1.72.03, B-1200 Brussels, Belgium
| |
Collapse
|
7
|
Ferreira BA, Coser EM, Saborito C, Yamashiro-Kanashiro EH, Lindoso JAL, Coelho AC. In vitro miltefosine and amphotericin B susceptibility of strains and clinical isolates of Leishmania species endemic in Brazil that cause tegumentary leishmaniasis. Exp Parasitol 2023; 246:108462. [PMID: 36642298 DOI: 10.1016/j.exppara.2023.108462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/14/2023]
Abstract
Tegumentary leishmaniasis encompasses a spectrum of clinical manifestations caused by the parasitic protozoa of the genus Leishmania. In Brazil, there are at least seven Leishmania species that are endemic and responsible for this set of clinical manifestations of the disease. Current treatment is limited to a restricted number of drugs that in general have several drawbacks including parenteral use, toxicity, and severe side effects. Amphotericin B is considered a second-line drug for tegumentary leishmaniasis in Brazil, while miltefosine was recently approved for clinical use in the treatment of this disease. In this study, we investigated the in vitro susceptibility of Leishmania strains representative of the species endemic to Brazil, as well as a panel of thirteen clinical isolates of tegumentary leishmaniasis, to both amphotericin B and miltefosine. A moderate variation in the susceptibility to both drugs was found, where the EC50 values varied from 11.43 to 52.67 μM for miltefosine and from 12.89 to 62.36 nM for amphotericin B in promastigotes, while for the intracellular amastigotes, values ranged from 1.08 to 9.60 μM and from 1.69 to 22.71 nM for miltefosine and amphotericin B respectively. Furthermore, the clinical isolates and strains of the subgenus Viannia were evaluated for the presence of Leishmania RNA virus 1 (LRV1), as this is an important factor associated with disease severity and treatment outcome. These findings provide a preclinical dataset of the activity of these drugs against the causative species of tegumentary leishmaniasis in Brazil.
Collapse
Affiliation(s)
- Bianca A Ferreira
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Elizabeth M Coser
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Cristiele Saborito
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
| | - Edite H Yamashiro-Kanashiro
- Laboratório de Soroepidemiologia e Imunobiologia, Instituto de Medicina Tropical de São Paulo, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Laboratório de Imunologia (LIM 48), Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - José Angelo L Lindoso
- Laboratório de Protozoologia, Instituto de Medicina Tropical de São Paulo, Departamento de Moléstias Infecciosas e Parasitárias, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil; Instituto de Infectologia Emilio Ribas, São Paulo, Brazil
| | - Adriano C Coelho
- Departamento de Biologia Animal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
8
|
Dinani MS, Noushabadi SAE, Namdar F, Abharian PH, Hejazi SH, Sebghatollahi Z. In Vitro Study of the Leishmanicidal Activity of Perovskia Abrotanoides Terpenoid-Rich Fractions Against Leishmania Major (MRHO/IR/75/ER). Adv Biomed Res 2023; 12:67. [PMID: 37200741 PMCID: PMC10186040 DOI: 10.4103/abr.abr_175_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 02/13/2022] [Accepted: 03/05/2022] [Indexed: 05/20/2023] Open
Abstract
Background Cutaneous leishmaniasis (CL) is an ulcerative skin disease caused by some species of the genus Leishmania. Evidence shows that Perovskia abrotanoides is an important herbal medicine against Leishmania. This study was conducted to investigate the killing effect of terpenoid-rich fractions on promastigotes of L. major (MRHO/IR/75/ER). Material and Method The eluates of reverse phased medium pressure liquid chromatography (RP-MPLC) of the extract were subjected to thin-layer chromatography (TLC) and categorized into six final fractions. Primary proton nuclear magnetic resonance (H-NMR) spectroscopy confirmed fractions' nature. Fractions 4, 5, and 6 (F4, F5, F6) were identified as terpenoid-rich content. Two concentrations of 50 and 100 μg/ml were prepared to test leishmanicidal activity. Followed by treating promastigotes of L. major by the fractions in incubation times of 12, 24, and 48 hours, their viability was determined using a cell proliferation MTS ((3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay. Result F4, F5, and F6 showed significant killing activity on promastigotes of L. major in a concentration-dependent manner. The viability of promastigotes was significantly reduced at a concentration of 100 μg/ml compared to 50 μg/ml (P-value <0.05). Also, over time a significant decreasing trend in the viability of promastigotes confirmed the time-dependent manner of the fractions (P-value <0.01). Furthermore, F5 had the highest leishmanicidal activity at the first incubation time compared with other fractions. Conclusion Terpenoid-rich fractions of the P. abrotanoides have a leishmanicidal activity that depends on time and concentration. Among them, F5 has the highest potency that may contain potent terpenoid constituents.
Collapse
Affiliation(s)
- Masoud Sadeghi Dinani
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Seyed A. Emarati Noushabadi
- Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Fatemeh Namdar
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Parastoo Hassani Abharian
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - S. H. Hejazi
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Sebghatollahi
- Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
- Address for correspondence: Mrs. Zahra Sebghatollahi, Skin Diseases and Leishmaniasis Research Center, Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran. E-mail:
| |
Collapse
|
9
|
Cerone M, Roberts M, Smith TK. The lipidome of Crithidia fasiculataand its plasticity. Front Cell Infect Microbiol 2022; 12:945750. [DOI: 10.3389/fcimb.2022.945750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Crithidia fasiculata belongs to the trypanosomatidae order of protozoan parasites, bearing close relation to other kinetoplastid parasites such as Trypanosoma brucei and Leishmania spp. As an early diverging lineage of eukaryotes, the study of kinetoplastid parasites has provided unique insights into alternative mechanisms to traditional eukaryotic metabolic pathways. Crithidia are a monogenetic parasite for mosquito species and have two distinct lifecycle stages both taking place in the mosquito gut. These consist of a motile choanomastigote form and an immotile amastigote form morphologically similar to amastigotes in Leishmania. Owing to their close relation to Leishmania, Crithidia are a growing research tool, with continuing interest in its use as a model organism for kinetoplastid research with the added benefit that they are non-pathogenic to humans and can be grown with no special equipment or requirements for biological containment. Although comparatively little research has taken place on Crithidia, similarities to other kinetoplast species has been shown in terms of energy metabolism and genetics. Crithidia also show similarities to kinetoplastids in their production of the monosaccharide D-arabinopyranose similar to Leishmania, which is incorporated into a lipoarabinogalactan a major cell surface GPI-anchored molecule. Additionally, Crithidia have been used as a eukaryotic expression system to express proteins from other kinetoplastids and potentially other eukaryotes including human proteins allowing various co- and post-translational protein modifications to the recombinant proteins. Despite the obvious usefulness and potential of this organism very little is known about its lipid metabolism. Here we describe a detailed lipidomic analyses and demonstrate the possible placidity of Crithidia’s lipid metabolis. This could have important implications for biotechnology approaches and how other kinetoplastids interact with, and scavenge nutrients from their hosts.
Collapse
|
10
|
Prasad SR, Kumar P, Mandal S, Mohan A, Chaurasia R, Shrivastava A, Nikhil P, Aishwarya D, Ramalingam P, Gajbhiye R, Singh S, Dasgupta A, Chourasia M, Ravichandiran V, Das P, Mandal D. Mechanistic insight into the role of mevalonate kinase by a natural fatty acid-mediated killing of Leishmania donovani. Sci Rep 2022; 12:16453. [PMID: 36180490 PMCID: PMC9525708 DOI: 10.1038/s41598-022-20509-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/14/2022] [Indexed: 11/29/2022] Open
Abstract
We evaluated the anti-leishmanial efficacy of different saturated medium-chain fatty acids (FAs, C8–C18) where FA containing C8 chain, caprylic acid (CA), was found to be most potent against Leishmania donovani, the causative agent for visceral leishmaniasis (VL). Different analogs of CA with C8 linear chain, but not higher, along with a carboxyl/ester group showed a similar anti-leishmanial effect. Ergosterol depletion was the major cause of CA-mediated cell death. Molecular docking and molecular dynamic simulation studies indicated the enzyme mevalonate kinase (MevK) of the ergosterol biosynthesis pathway as a possible target of CA. Enzyme assays with purified recombinant MevK and CA/CA analogs confirmed the target with a competitive inhibition pattern. Using biochemical and biophysical studies; strong binding interaction between MevK and CA/CA analogs was established. Further, using parasites with overexpressed MevK and proteomics studies of CA-treated parasites the direct role of MevK as the target was validated. We established the mechanism of the antileishmanial effect of CA, a natural product, against VL where toxicity and drug resistance with current chemotherapeutics demand an alternative. This is the first report on the identification of an enzymatic target with kinetic parameters and mechanistic insights against any organism for a natural medium-chain FA.
Collapse
Affiliation(s)
- Surendra Rajit Prasad
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India
| | - Prakash Kumar
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India
| | - Saptarshi Mandal
- Department of Chemistry, Indian Institute of Technology, Patna Bihta, Bihar, 801106, India
| | - Anu Mohan
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India
| | - Radhika Chaurasia
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India
| | - Ashish Shrivastava
- Translational Bioinformatics and Computational Genomics Research Lab, Department of Life Sciences, Shiv Nadar University, G.B. Nagar, Uttar Pradesh, 201314, India
| | - Pallaprolu Nikhil
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Dande Aishwarya
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - P Ramalingam
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Rahul Gajbhiye
- Department of Pharmaceutical Analysis, National Institute of Pharmaceutical Education and Research, Hajipur, 844102, India
| | - Shriya Singh
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sitapur Rd, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India
| | - Arunava Dasgupta
- Molecular Microbiology and Immunology Division, CSIR-Central Drug Research Institute, Sitapur Rd, Sector-10, Jankipuram Extension, Lucknow, Uttar Pradesh, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Mukesh Chourasia
- Amity Institute of Biotechnology, Amity University, Sector 125, Noida, Uttar Pradesh, 201301, India
| | - V Ravichandiran
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India.,National Institute of Pharmaceutical Education and Research, Kolkata, 700054, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology, Patna Bihta, Bihar, 801106, India
| | - Debabrata Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research, Export Promotions Industrial Park (EPIP), Vaishali District, Hajipur, Bihar, 844102, India.
| |
Collapse
|
11
|
Alpizar-Sosa EA, Ithnin NRB, Wei W, Pountain AW, Weidt SK, Donachie AM, Ritchie R, Dickie EA, Burchmore RJS, Denny PW, Barrett MP. Amphotericin B resistance in Leishmania mexicana: Alterations to sterol metabolism and oxidative stress response. PLoS Negl Trop Dis 2022; 16:e0010779. [PMID: 36170238 PMCID: PMC9581426 DOI: 10.1371/journal.pntd.0010779] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 10/19/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Amphotericin B is increasingly used in treatment of leishmaniasis. Here, fourteen independent lines of Leishmania mexicana and one L. infantum line were selected for resistance to either amphotericin B or the related polyene antimicrobial, nystatin. Sterol profiling revealed that, in each resistant line, the predominant wild-type sterol, ergosta-5,7,24-trienol, was replaced by other sterol intermediates. Broadly, two different profiles emerged among the resistant lines. Whole genome sequencing then showed that these distinct profiles were due either to mutations in the sterol methyl transferase (C24SMT) gene locus or the sterol C5 desaturase (C5DS) gene. In three lines an additional deletion of the miltefosine transporter gene was found. Differences in sensitivity to amphotericin B were apparent, depending on whether cells were grown in HOMEM, supplemented with foetal bovine serum, or a serum free defined medium (DM). Metabolomic analysis after exposure to AmB showed that a large increase in glucose flux via the pentose phosphate pathway preceded cell death in cells sustained in HOMEM but not DM, indicating the oxidative stress was more significantly induced under HOMEM conditions. Several of the lines were tested for their ability to infect macrophages and replicate as amastigote forms, alongside their ability to establish infections in mice. While several AmB resistant lines showed reduced virulence, at least two lines displayed heightened virulence in mice whilst retaining their resistance phenotype, emphasising the risks of resistance emerging to this critical drug.
Collapse
Affiliation(s)
- Edubiel A. Alpizar-Sosa
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Nur Raihana Binti Ithnin
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Department of Medical Microbiology, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Wenbin Wei
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Andrew W. Pountain
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Institute for Computational Medicine, New York University Grossman School of Medicine, New York City, New York, United States of America
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Anne M. Donachie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Ryan Ritchie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emily A. Dickie
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Richard J. S. Burchmore
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Paul W. Denny
- Department of Biosciences, Durham University, Durham, United Kingdom
| | - Michael P. Barrett
- Wellcome Centre for Integrative Parasitology, School of Infection & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
12
|
Kumari S, Kumar V, Tiwari RK, Ravidas V, Pandey K, Kumar A. - Amphotericin B: A drug of choice for Visceral Leishmaniasis. Acta Trop 2022; 235:106661. [PMID: 35998680 DOI: 10.1016/j.actatropica.2022.106661] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 11/01/2022]
Abstract
Visceral leishmaniasis or Kala-azar is a vector-borne disease caused by an intracellular parasite of the genus leishmania. In India, Amphotericin B (AmB) is a first-line medication for treating leishmaniasis. After a large-scale resistance to pentavalent antimony therapy developed in Bihar state, it was rediscovered as an effective treatment for Leishmania donovani infection. AmB which binds to the ergosterol of protozoan cells causes a change in membrane integrity resulting in ions leakage, and ultimately leading to cell death. The treatment effect of liposomal AmB can be seen more quickly than deoxycholate AmB because, it has some toxic effects, but liposomal AmB is significantly less toxic. Evidence from studies suggested that ABLC (Abelcet) and ABCD (Amphotec) are as effective as L-AmB but Liposomal form (Ambisome) is a more widely accepted treatment option than conventional ones. Nevertheless, the world needs some way more efficient antileishmanial drugs that are less toxic and less expensive for people living with parasitic infections caused by Leishmania. So, academics, researchers, and sponsors need to focus on finding such drugs. This review provides a summary of the chemical, pharmacokinetic, drug-target interactions, stability, dose efficacy, and many other characteristics of the AmB and their various formulations. We have also highlighted the clinically significant aspects of PKDL and VL co-infection with HIV/TB.
Collapse
Affiliation(s)
- Shobha Kumari
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Vikash Kumar
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Ritesh Kumar Tiwari
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Vidyanand Ravidas
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Krishna Pandey
- Department of Clinical Medicine, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India
| | - Ashish Kumar
- Department of Biochemistry, Rajendra Memorial Research Institute of Medical Sciences, Agamkuan, Patna 800007, Bihar, India.
| |
Collapse
|
13
|
Solomon M, Greenberger S, Milner M, Pavlotzky F, Barzilai A, Schwartz E, Hadayer N, Baum S. Efficacy of Systemic Treatment for Leishmania tropica Cutaneous Leishmaniasis. Acta Derm Venereol 2022; 102:adv00721. [PMID: 35229163 PMCID: PMC9574677 DOI: 10.2340/actadv.v102.2079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The effectiveness of systemic treatment for Leishmania tropica cutaneous leishmaniasis remains unclear. The purpose of the study is to evaluate the efficacy and safety of systemic treatments for L. tropica cutaneous leishmaniasis. This retrospective study was performed in 114 patients. Systemic treatments included liposomal amphotericin B and sodium stibogluconate. All patients underwent systemic treatment for L. tropica cutaneous leishmaniasis. Favourable treatment responses were recorded in 72.5% and 70.2% of the patients in the liposomal amphotericin B and sodium stibogluconate groups, respectively; 25.3% and 46% of those in the liposomal amphotericin B and sodium stibogluconate groups respectively, experienced at least one adverse effect. Lesions in cartilaginous areas were associated with higher treatment failure. Prior topical or systemic treatment increased the chance of future systemic treatment success. Liposomal amphotericin B was associated with a shorter intravenous treatment duration and better safety profile. Thus, liposomal amphotericin B is the treatment of choice for L. tropica cutaneous leishmaniasis.
Collapse
Affiliation(s)
- Michal Solomon
- Michal Solomon, Department of Dermatology, The Chaim Sheba Medical Center, IL-52621 Tel Hashomer, Israel.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Wijnant GJ, Dumetz F, Dirkx L, Bulté D, Cuypers B, Van Bocxlaer K, Hendrickx S. Tackling Drug Resistance and Other Causes of Treatment Failure in Leishmaniasis. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.837460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis is a tropical infectious disease caused by the protozoan Leishmania parasite. The disease is transmitted by female sand flies and, depending on the infecting parasite species, causes either cutaneous (stigmatizing skin lesions), mucocutaneous (destruction of mucous membranes of nose, mouth and throat) or visceral disease (a potentially fatal infection of liver, spleen and bone marrow). Although more than 1 million new cases occur annually, chemotherapeutic options are limited and their efficacy is jeopardized by increasing treatment failure rates and growing drug resistance. To delay the emergence of resistance to existing and new drugs, elucidating the currently unknown causes of variable drug efficacy (related to parasite susceptibility, host immunity and drug pharmacokinetics) and improved use of genotypic and phenotypic tools to define, measure and monitor resistance in the field are critical. This review highlights recent progress in our understanding of drug action and resistance in Leishmania, ongoing challenges (including setbacks related to the COVID-19 pandemic) and provides an overview of possible strategies to tackle this public health challenge.
Collapse
|
15
|
Caffrey P, Hogan M, Song Y. New Glycosylated Polyene Macrolides: Refining the Ore from Genome Mining. Antibiotics (Basel) 2022; 11:334. [PMID: 35326797 PMCID: PMC8944477 DOI: 10.3390/antibiotics11030334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 01/26/2023] Open
Abstract
Glycosylated polyene macrolides include effective antifungal agents, such as pimaricin, nystatin, candicidin, and amphotericin B. For the treatment of systemic mycoses, amphotericin B has been described as a gold-standard antibiotic because of its potent activity against a broad spectrum of fungal pathogens, which do not readily become resistant. However, amphotericin B has severe toxic side effects, and the development of safer alternatives remains an important objective. One approach towards obtaining such compounds is to discover new related natural products. Advances in next-generation sequencing have delivered a wealth of microbial genome sequences containing polyene biosynthetic gene clusters. These typically encode a modular polyketide synthase that catalyzes the assembly of the aglycone core, a cytochrome P450 that oxidizes a methyl branch to a carboxyl group, and additional enzymes for synthesis and attachment of a single mycosamine sugar residue. In some cases, further P450s catalyze epoxide formation or hydroxylation within the macrolactone. Bioinformatic analyses have identified over 250 of these clusters. Some are predicted to encode potentially valuable new polyenes that have not been uncovered by traditional screening methods. Recent experimental studies have characterized polyenes with new polyketide backbones, previously unknown late oxygenations, and additional sugar residues that increase water-solubility and reduce hemolytic activity. Here we review these studies and assess how this new knowledge can help to prioritize silent polyene clusters for further investigation. This approach should improve the chances of discovering better antifungal antibiotics.
Collapse
Affiliation(s)
- Patrick Caffrey
- School of Biomolecular and Biomedical Science, University College Dublin, D04 V1W8 Dublin, Ireland; (M.H.); (Y.S.)
| | | | | |
Collapse
|
16
|
Dinç M, Yalçın T, Çavuş İ, Özbilgin A. Comparative proteomic analysis of Leishmania parasites isolated from visceral and cutaneous leishmaniasis patients. Parasitology 2022; 149:298-305. [PMID: 34758895 PMCID: PMC11010476 DOI: 10.1017/s0031182021001967] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 09/30/2021] [Accepted: 10/27/2021] [Indexed: 11/06/2022]
Abstract
Leishmaniasis is an infectious disease in which different clinical manifestations are classified into three primary forms: visceral, cutaneous and mucocutaneous. These disease forms are associated with parasite species of the protozoan genus Leishmania. For instance, Leishmania infantum and Leishmania tropica are typically linked with visceral (VL) and cutaneous (CL) leishmaniasis, respectively; however, these two species can also cause other form to a lesser extent. What is more alarming is this characteristic, which threatens current medical diagnosis and treatment, is started to be acquired by other species. Our purpose was to address this issue; therefore, gel-based and gel-free proteomic analyses were carried out on the species L. infantum to determine the proteins differentiating between the parasites caused VL and CL. In addition, L. tropica parasites representing the typical cases for CL were included. According to our results, electrophoresis gels of parasites caused to VL were distinguishable regarding the repetitive down-regulation on some specific locations. In addition, a distinct spot of an antioxidant enzyme, superoxide dismutase, was shown up only on the gels of CL samples regardless of the species. In the gel-free approach, 37 proteins that were verified with a second database search using a different search engine, were recognized from the comparison between VL and CL samples. Among them, 31 proteins for the CL group and six proteins for the VL group were determined differentially abundant. Two proteins from the gel-based analysis, pyruvate kinase and succinyl-coA:3-ketoacid-coenzyme A transferase analysis were encountered in the protein list of the CL group.
Collapse
Affiliation(s)
- Melike Dinç
- Izmir Institute of Technology, Integrated Research Centers, National Mass Spectrometry Application and Research Center, Izmir, Turkey
| | - Talat Yalçın
- Faculty of Science, Department of Chemistry, Izmir Institute of Technology, Izmir, Turkey
| | - İbrahim Çavuş
- Faculty of Medicine, Department of Parasitology, Manisa Celal Bayar University, Manisa, Turkey
| | - Ahmet Özbilgin
- Faculty of Medicine, Department of Parasitology, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
17
|
Santi AMM, Murta SMF. Impact of Genetic Diversity and Genome Plasticity of Leishmania spp. in Treatment and the Search for Novel Chemotherapeutic Targets. Front Cell Infect Microbiol 2022; 12:826287. [PMID: 35141175 PMCID: PMC8819175 DOI: 10.3389/fcimb.2022.826287] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/04/2022] [Indexed: 11/21/2022] Open
Abstract
Leishmaniasis is one of the major public health concerns in Latin America, Africa, Asia, and Europe. The absence of vaccines for human use and the lack of effective vector control programs make chemotherapy the main strategy to control all forms of the disease. However, the high toxicity of available drugs, limited choice of therapeutic agents, and occurrence of drug-resistant parasite strains are the main challenges related to chemotherapy. Currently, only a small number of drugs are available for leishmaniasis treatment, including pentavalent antimonials (SbV), amphotericin B and its formulations, miltefosine, paromomycin sulphate, and pentamidine isethionate. In addition to drug toxicity, therapeutic failure of leishmaniasis is a serious concern. The occurrence of drug-resistant parasites is one of the causes of therapeutic failure and is closely related to the diversity of parasites in this genus. Owing to the enormous plasticity of the genome, resistance can occur by altering different metabolic pathways, demonstrating that resistance mechanisms are multifactorial and extremely complex. Genetic variability and genome plasticity cause not only the available drugs to have limitations, but also make the search for new drugs challenging. Here, we examined the biological characteristics of parasites that hinder drug discovery.
Collapse
|
18
|
Morelle C, Mukherjee A, Zhang J, Fani F, Khandelwal A, Gingras H, Trottier J, Barbier O, Leprohon P, Burke MD, Ouellette M. Well-Tolerated Amphotericin B Derivatives That Effectively Treat Visceral Leishmaniasis. ACS Infect Dis 2021; 7:2472-2482. [PMID: 34282886 DOI: 10.1021/acsinfecdis.1c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemotherapy against the neglected tropical disease visceral leishmaniasis (VL) is suboptimal with only four licensed drugs. Amphotericin B (AmB), despite its toxicity, remained a second line drug for a long time. However, the demonstration that liposomal AmB is highly effective against VL propelled it, despite its cost, to a first line drug in many countries. While several ongoing efforts are aiming at finding cheaper and stable AmB-formulations, an alternative strategy is the development of less-toxic AmB derivatives. We show here that two less-toxic AmB derivatives with the carboxylate at position 16 of AmB derivatized to a methyl urea (AmB-MU) or amino urea (AmB-AU) are active in vitro against Leishmania donovani, both as free-living parasites as well as their intracellular form. Both less-toxic derivatives, similarly to AmB, target the ergosterol pathway of L. donovani. While the AmB-AU derivative showed female-specific liver toxicity in vivo, the AmB-MU derivative was well-tolerated and more effective than AmB against experimental VL. These studies are an important step for improving AmB-based therapy against a prevalent parasitic disease.
Collapse
Affiliation(s)
- Christelle Morelle
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Angana Mukherjee
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Jiabao Zhang
- Department of Chemistry, Department of Biochemistry, Arnold and Mabel Beckman Institute, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Fereshteh Fani
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Anuj Khandelwal
- Department of Chemistry, Department of Biochemistry, Arnold and Mabel Beckman Institute, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Hélène Gingras
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Jocelyn Trottier
- Laboratory of Molecular Pharmacology, Endocrinology-Nephrology Axis, Centre de Recherche du CHU de Québec, Faculty of Pharmacy, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Olivier Barbier
- Laboratory of Molecular Pharmacology, Endocrinology-Nephrology Axis, Centre de Recherche du CHU de Québec, Faculty of Pharmacy, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Philippe Leprohon
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| | - Martin D. Burke
- Department of Chemistry, Department of Biochemistry, Arnold and Mabel Beckman Institute, Carle Illinois College of Medicine, Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana−Champaign, Urbana, Illinois 61801, United States
| | - Marc Ouellette
- Axe des Maladies Infectieuses et Immunitaires du Centre de Recherche du CHU de Québec, Centre de Recherche en Infectiologie, and Département de Microbiologie, Infectiologie et Immunologie, Faculté de Médecine, Université Laval, Québec City, Québec G1V 4G2,Canada
| |
Collapse
|
19
|
Bansal R, Sen SS, Muthuswami R, Madhubala R. Stigmasterol as a potential biomarker for amphotericin B resistance in Leishmania donovani. J Antimicrob Chemother 2021; 75:942-950. [PMID: 31886855 DOI: 10.1093/jac/dkz515] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/03/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Leishmania donovani, a protozoan parasite, is the primary causative agent for visceral leishmaniasis. Toxicity and increased resistance to existing drugs have led to an urgent need for identifying new drugs and drug targets. Understanding the risks and mechanisms of resistance is of great importance. Amphotericin B (AmB) is a polyene antimicrobial, the mainstay therapy for visceral leishmaniasis in several parts of India. OBJECTIVES In the present study, we established a line of AmB-resistant L. donovani promastigotes in vitro and demonstrated the molecular basis of resistance to AmB. METHODS AmB-resistant promastigotes were generated and characterized to evaluate the mechanism of resistance to AmB. We examined the sterol composition of the promastigotes and the axenic amastigotes derived from the WT and AmB-resistant promastigotes. The role of the plant-like C-22 desaturase responsible for stigmasterol production was also evaluated in the AmB-resistant strain. RESULTS The IC50 for resistant cells was four times higher than for the WT. AmB-resistant promastigotes showed an increase in the conversion of β-sitosterol into stigmasterol. The presence of higher amounts of stigmasterol in resistant promastigotes, as well as in axenic amastigotes, signifies its role in AmB resistance in Leishmania. The resistant strain showed reduced infectivity in vitro. CONCLUSIONS We have elucidated the mode of action and resistance mechanisms to the drug. However, further work is required to validate the potential role of stigmasterol in resistance and to help develop a diagnostic kit that can assist in diagnosing potentially resistant lines in the field.
Collapse
Affiliation(s)
- Ruby Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shib Sankar Sen
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Muthuswami
- Chromatin Remodelling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rentala Madhubala
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
20
|
Abstract
Malassezia are emerging fungal pathogens causing opportunistic skin and severe systemic infection. Nosocomial outbreaks are associated with azole resistance and understanding of the underlying mechanisms are limited to knowledge from other fungal species. Herein, we identified distinct antifungal susceptibility patterns in 26 Malassezia furfur isolates derived from healthy and diseased individuals. A Y67F CYP51 mutation was identified in five isolates of M. furfur However, this mutation alone was insufficient to induce reduce azole susceptibility in the wild type strain. RNA-seq and differential gene analysis of healthy and disease derived strains exposed to clotrimazole in vitro identified several key metabolic pathways and transporter proteins which are involved in reduce azole susceptibility. The pleiotropic drug transporter PDR10 was the single most highly upregulated transporter gene in multiple strains of M. furfur after azole treatment and increased expression of PDR10 is associated with reduced azole susceptibility in some systemic disease isolates of M. furfur Deletion of PDR10 in a pathogenic M. furfur strain with reduced susceptibility reduced MIC values to the level of that in susceptible isolates. The current dearth of antifungal technologies, globally emerging multi-azole resistance, and broad agriculture and consumer care use of azoles means improved understanding of the mechanisms underlying intrinsic and acquired azole resistance in Malassezia is crucial for development of antibiotic stewardship and antifungal treatment strategies.
Collapse
|
21
|
Mukherjee S, Moitra S, Xu W, Hernandez V, Zhang K. Sterol 14-α-demethylase is vital for mitochondrial functions and stress tolerance in Leishmania major. PLoS Pathog 2020; 16:e1008810. [PMID: 32817704 PMCID: PMC7462297 DOI: 10.1371/journal.ppat.1008810] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 09/01/2020] [Accepted: 07/14/2020] [Indexed: 11/18/2022] Open
Abstract
Sterol 14-α-demethylase (C14DM) is a key enzyme in the biosynthesis of sterols and the primary target of azoles. In Leishmania major, genetic or chemical inactivation of C14DM leads to accumulation of 14-methylated sterol intermediates and profound plasma membrane abnormalities including increased fluidity and failure to maintain ordered membrane microdomains. These defects likely contribute to the hypersensitivity to heat and severely reduced virulence displayed by the C14DM-null mutants (c14dm‾). In addition to plasma membrane, sterols are present in intracellular organelles. In this study, we investigated the impact of C14DM ablation on mitochondria. Our results demonstrate that c14dm‾ mutants have significantly higher mitochondrial membrane potential than wild type parasites. Such high potential leads to the buildup of reactive oxygen species in the mitochondria, especially under nutrient-limiting conditions. Consistent with these mitochondrial alterations, c14dm‾ mutants show impairment in respiration and are heavily dependent on glucose uptake and glycolysis to generate energy. Consequently, these mutants are extremely sensitive to glucose deprivation and such vulnerability can be rescued through the supplementation of glucose or glycerol. In addition, the accumulation of oxidants may also contribute to the heat sensitivity exhibited by c14dm‾. Finally, genetic or chemical ablation of C14DM causes increased susceptibility to pentamidine, an antimicrobial agent with activity against trypanosomatids. In summary, our investigation reveals that alteration of sterol synthesis can negatively affect multiple cellular processes in Leishmania parasites and make them vulnerable to clinically relevant stress conditions.
Collapse
Affiliation(s)
- Sumit Mukherjee
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Samrat Moitra
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Wei Xu
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Veronica Hernandez
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
| | - Kai Zhang
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas, United States of America
- * E-mail:
| |
Collapse
|
22
|
Can We Harness Immune Responses to Improve Drug Treatment in Leishmaniasis? Microorganisms 2020; 8:microorganisms8071069. [PMID: 32709117 PMCID: PMC7409143 DOI: 10.3390/microorganisms8071069] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/12/2020] [Accepted: 07/16/2020] [Indexed: 02/07/2023] Open
Abstract
Leishmaniasis is a vector-borne parasitic disease that has been neglected in priority for control and eradication of malaria, tuberculosis, and HIV/AIDS. Collectively, over one seventh of the world’s population is at risk of being infected with 0.7–1.2 million new infections reported annually. Clinical manifestations range from self-healing cutaneous lesions to fatal visceral disease. The first anti-leishmanial drugs were introduced in the 1950′s and, despite several shortcomings, remain the mainstay for treatment. Regardless of this and the steady increase in infections over the years, particularly among populations of low economic status, research on leishmaniasis remains under funded. This review looks at the drugs currently in clinical use and how they interact with the host immune response. Employing chemoimmunotherapeutic approaches may be one viable alternative to improve the efficacy of novel/existing drugs and extend their lifespan in clinical use.
Collapse
|
23
|
Ahmed H, Curtis CR, Tur-Gracia S, Olatunji TO, Carter KC, Williams RAM. Drug combinations as effective anti-leishmanials against drug resistant Leishmania mexicana. RSC Med Chem 2020; 11:905-912. [PMID: 33479685 DOI: 10.1039/d0md00101e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 06/09/2020] [Indexed: 12/18/2022] Open
Abstract
Leishmania is a parasite that causes the disease leishmaniasis, and 700 000 to 1 million new cases occur each year. There are few drugs that treat the disease and drug resistance in the parasite limits the clinical utility of existing drugs. One way to combat drug resistance is to use combination therapy rather than monotherapy. In this study we have compared the effect of single and combination treatments with four different compounds, i.e. alkylphosphocholine analogues APC12 and APC14, miltefosine (MIL), ketoconazole (KTZ), and amphotericin B (AmpB), on the survival of Leishmania mexicana wild-type promastigotes and a cell line derived from the WT with induced resistance to APC12 (C12Rx). The combination treatment with APC14 and APC16 had a synergistic effect in killing the WT while the combination treatment with KTZ and APC12 or APC14 or APC12 and APC14 had a synergistic effect against C12Rx. More than 90% killing efficiency was obtained using APC12 alone at >1 mg ml-1 against the C12Rx strain; however, combinations with APC14 produced a similar killing efficiency using APC12 at 0.063-0.25 mg ml-1 and APC14 at 0.003-0.5 mg ml-1. These results show that combination therapy can negate induced drug resistance in L. mexicana and that the use of this type of screening system could accelerate the development of drug combinations for clinical use.
Collapse
Affiliation(s)
- Humera Ahmed
- University of the West of Scotland Paisley Campus , UK .
| | | | | | | | | | | |
Collapse
|
24
|
Lathosterol Oxidase (Sterol C-5 Desaturase) Deletion Confers Resistance to Amphotericin B and Sensitivity to Acidic Stress in Leishmania major. mSphere 2020; 5:5/4/e00380-20. [PMID: 32611698 PMCID: PMC7333571 DOI: 10.1128/msphere.00380-20] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Sterols are essential membrane components in eukaryotes, and sterol synthesis inhibitors can have potent effects against pathogenic fungi and trypanosomatids. Understanding the roles of sterols will facilitate the development of new drugs and counter drug resistance. LSO is required for the formation of the C-5–C-6 double bond in the sterol core structure in mammals, fungi, protozoans, plants, and algae. Functions of this C-5–C-6 double bond are not well understood. In this study, we generated and characterized a lathosterol oxidase-null mutant in Leishmania major. Our data suggest that LSO is vital for the structure and membrane-stabilizing functions of leishmanial sterols. In addition, our results imply that while mutations in lathosterol oxidase can confer resistance to amphotericin B, an important antifungal and antiprotozoal agent, the alteration in sterol structure leads to significant defects in stress response that could be exploited for drug development. Lathosterol oxidase (LSO) catalyzes the formation of the C-5–C-6 double bond in the synthesis of various types of sterols in mammals, fungi, plants, and protozoa. In Leishmania parasites, mutations in LSO or other sterol biosynthetic genes are associated with amphotericin B resistance. To investigate the biological roles of sterol C-5–C-6 desaturation, we generated an LSO-null mutant line (lso−) in Leishmania major, the causative agent for cutaneous leishmaniasis. lso− parasites lacked the ergostane-based sterols commonly found in wild-type L. major and instead accumulated equivalent sterol species without the C-5–C-6 double bond. These mutant parasites were replicative in culture and displayed heightened resistance to amphotericin B. However, they survived poorly after reaching the maximal density and were highly vulnerable to the membrane-disrupting detergent Triton X-100. In addition, lso− mutants showed defects in regulating intracellular pH and were hypersensitive to acidic conditions. They also had potential alterations in the carbohydrate composition of lipophosphoglycan, a membrane-bound virulence factor in Leishmania. All these defects in lso− were corrected upon the restoration of LSO expression. Together, these findings suggest that the C-5–C-6 double bond is vital for the structure of the sterol core, and while the loss of LSO can lead to amphotericin B resistance, it also makes Leishmania parasites vulnerable to biologically relevant stress. IMPORTANCE Sterols are essential membrane components in eukaryotes, and sterol synthesis inhibitors can have potent effects against pathogenic fungi and trypanosomatids. Understanding the roles of sterols will facilitate the development of new drugs and counter drug resistance. LSO is required for the formation of the C-5–C-6 double bond in the sterol core structure in mammals, fungi, protozoans, plants, and algae. Functions of this C-5–C-6 double bond are not well understood. In this study, we generated and characterized a lathosterol oxidase-null mutant in Leishmania major. Our data suggest that LSO is vital for the structure and membrane-stabilizing functions of leishmanial sterols. In addition, our results imply that while mutations in lathosterol oxidase can confer resistance to amphotericin B, an important antifungal and antiprotozoal agent, the alteration in sterol structure leads to significant defects in stress response that could be exploited for drug development.
Collapse
|
25
|
Anderson O, Beckett J, Briggs CC, Natrass LA, Cranston CF, Wilkinson EJ, Owen JH, Mir Williams R, Loukaidis A, Bouillon ME, Pritchard D, Lahmann M, Baird MS, Denny PW. An investigation of the antileishmanial properties of semi-synthetic saponins. RSC Med Chem 2020; 11:833-842. [PMID: 33479679 PMCID: PMC7651632 DOI: 10.1039/d0md00123f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/21/2020] [Indexed: 12/25/2022] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by insect-vector borne protozoan parasites of the, Leishmania species. Whilst infection threatens and affects millions of the global poor, vaccines are absent and drug therapy limited. Extensive efforts have recently been made to discover new leads from small molecule synthetic compound libraries held by industry; however, the number of new chemical entities identified and entering development as anti-leishmanials has been very low. This has led to increased interest in the possibility of discovering naturally derived compounds with potent antileishmanial activity which may be developed towards clinical applications. Plant-derived triterpenoid and steroidal saponins have long been considered as anti-microbials and here we describe an investigation of a library of 137 natural (9) and semi-synthetic saponins (128) for activity against Leishmania mexicana, a causative agent of cutaneous leishmaniasis. The triterpenoid sapogenin, hederagenin, readily obtained in large quantities from Hedera helix (common ivy), was converted into a range of 128 derivatives. These semi-synthetic compounds, as well as saponins isolated from ivy, were examined with a phenotypic screening approach to identify potent and selective anti-leishmanial hits. This led to the identification of 12 compounds, including the natural saponin gypsogenin, demonstrating high potency (ED50 < 10.5 μM) against axenic L. mexicana amastigotes, the mammalian pathogenic form. One of these, hederagenin disuccinate, was sufficiently non-toxic to the macrophage host cell to facilitate further analyses, selectivity index (SI) > 10. Whilst this was not active in an infected cell model, the anti-leishmanial properties of hederagenin-derivatives have been demonstrated, and the possibility of improving the selectivity of natural hederagenin through chemical modification has been established.
Collapse
Affiliation(s)
- Orlagh Anderson
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Joseph Beckett
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Carla C Briggs
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Liam A Natrass
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
- Department of Chemistry and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK
| | - Charles F Cranston
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| | - Elizabeth J Wilkinson
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Jack H Owen
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Rhodri Mir Williams
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Angelos Loukaidis
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Marc E Bouillon
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Deiniol Pritchard
- Naturiol Bangor Ltd , Alun Roberts Building , Bangor University , Gwynedd LL57 2UW , UK
| | - Martina Lahmann
- Department of Chemistry , School of Natural Science , Bangor University , Gwynedd LL57 2UW , UK
| | - Mark S Baird
- Naturiol Bangor Ltd , Alun Roberts Building , Bangor University , Gwynedd LL57 2UW , UK
| | - Paul W Denny
- Department of Biosciences and Centre for Global Infectious Diseases , Durham University , Stockton Road , Durham , DH1 3LE , UK . ; Tel: +44 (0)191 3343983
| |
Collapse
|
26
|
Van den Kerkhof M, Sterckx YGJ, Leprohon P, Maes L, Caljon G. Experimental Strategies to Explore Drug Action and Resistance in Kinetoplastid Parasites. Microorganisms 2020; 8:E950. [PMID: 32599761 PMCID: PMC7356981 DOI: 10.3390/microorganisms8060950] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022] Open
Abstract
Kinetoplastids are the causative agents of leishmaniasis, human African trypanosomiasis, and American trypanosomiasis. They are responsible for high mortality and morbidity in (sub)tropical regions. Adequate treatment options are limited and have several drawbacks, such as toxicity, need for parenteral administration, and occurrence of treatment failure and drug resistance. Therefore, there is an urgency for the development of new drugs. Phenotypic screening already allowed the identification of promising new chemical entities with anti-kinetoplastid activity potential, but knowledge on their mode-of-action (MoA) is lacking due to the generally applied whole-cell based approach. However, identification of the drug target is essential to steer further drug discovery and development. Multiple complementary techniques have indeed been used for MoA elucidation. In this review, the different 'omics' approaches employed to define the MoA or mode-of-resistance of current reference drugs and some new anti-kinetoplastid compounds are discussed.
Collapse
Affiliation(s)
- Magali Van den Kerkhof
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Yann G.-J. Sterckx
- Laboratory of Medical Biochemistry (LMB), University of Antwerp, 2610 Wilrijk, Belgium;
| | - Philippe Leprohon
- Centre de Recherche en Infectiologie du Centre de Recherche du Centre Hospitalier Universitaire de Québec, Université Laval, Québec, QC G1V 0A6, Canada;
| | - Louis Maes
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), University of Antwerp, 2610 Wilrijk, Belgium; (M.V.d.K.); (L.M.)
| |
Collapse
|
27
|
Pountain AW, Barrett MP. Untargeted metabolomics to understand the basis of phenotypic differences in amphotericin B-resistant Leishmania parasites. Wellcome Open Res 2020; 4:176. [PMID: 32133420 PMCID: PMC7041363 DOI: 10.12688/wellcomeopenres.15452.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2019] [Indexed: 11/20/2022] Open
Abstract
Background: Protozoan
Leishmania parasites are responsible for a range of clinical infections that represent a substantial challenge for global health. Amphotericin B (AmB) is increasingly used to treat
Leishmania infection, so understanding the potential for resistance to this drug is an important priority. Previously we described four independently-derived AmB-resistant
L. mexicana lines that exhibited resistance-associated genetic lesions resulting in altered sterol content. However, substantial phenotypic variation between these lines, including differences in virulence attributes, were not fully explained by these changes. Methods: To identify alterations in cellular metabolism potentially related to phenotypic differences between wild-type and AmB-resistant lines, we extracted metabolites and performed untargeted metabolomics by liquid chromatography-mass spectrometry. Results: We observed substantial differences in metabolite abundance between lines, arising in an apparently stochastic manner. Concerted remodeling of central carbon metabolism was not observed; however, in three lines, decreased abundance of several oligohexoses was observed. Given that the oligomannose mannogen is an important virulence factor in
Leishmania, this could relate to loss of virulence in these lines. Increased abundance of the reduced forms of the oxidative stress-protective thiols trypanothione and glutathione was also observed in multiple lines. Conclusions: This dataset will provide a useful resource for understanding the molecular basis of drug resistance in
Leishmania, and suggests a role for metabolic changes separate from the primary mechanism of drug resistance in determining the phenotypic profile of parasite lines subjected to experimental selection of resistance.
Collapse
Affiliation(s)
- Andrew W Pountain
- Wellcome Center for Integrative Parasitology, University of Glasgow, Glasgow, G12 8TA, UK.,Department of Microbiology and Molecular Genetics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, 77030, USA
| | - Michael P Barrett
- Wellcome Center for Integrative Parasitology, University of Glasgow, Glasgow, G12 8TA, UK.,Glasgow Polyomics, Wolfson Wohl Cancer Research Centre, University of Glasgow, Bearsden, Glasgow, G61 1QH, UK
| |
Collapse
|
28
|
Braga SS. Multi-target drugs active against leishmaniasis: A paradigm of drug repurposing. Eur J Med Chem 2019; 183:111660. [PMID: 31514064 DOI: 10.1016/j.ejmech.2019.111660] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/27/2019] [Accepted: 08/28/2019] [Indexed: 11/17/2022]
Abstract
This mini-review focuses on leishmanicidal drugs that were sourced from small molecules previously approved for other diseases. The mechanisms of action of these molecules are herein explored, to probe the origins of their inter-species growth inhibitory activities. It is shown how the transversal action of the azoles - fluconazole, posaconazole and itraconazole - in both fungi and Leishmania is due to the occurrence of the same target, lanosterol 14-α-demethylase, in these two groups of species. In turn, the drugs miltefosine and amphotericin B are presented as truly multi-target agents, acting on small molecules, proteins, genes and even organelles. Steps towards future leishmanicidal drug candidates based on the multi-target strategy and on drug repurposing are also briefly presented.
Collapse
Affiliation(s)
- Susana Santos Braga
- QOPNA & LAQV/REQUIMTE, Department of Chemistry, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
29
|
Chemogenomic Profiling of Antileishmanial Efficacy and Resistance in the Related Kinetoplastid Parasite Trypanosoma brucei. Antimicrob Agents Chemother 2019; 63:AAC.00795-19. [PMID: 31160283 PMCID: PMC6658743 DOI: 10.1128/aac.00795-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/23/2019] [Indexed: 01/01/2023] Open
Abstract
The arsenal of drugs used to treat leishmaniasis, caused by Leishmania spp., is limited and beset by toxicity and emergent resistance. Furthermore, our understanding of drug mode of action and potential routes to resistance is limited. Forward genetic approaches have revolutionized our understanding of drug mode of action in the related kinetoplastid parasite Trypanosoma brucei. The arsenal of drugs used to treat leishmaniasis, caused by Leishmania spp., is limited and beset by toxicity and emergent resistance. Furthermore, our understanding of drug mode of action and potential routes to resistance is limited. Forward genetic approaches have revolutionized our understanding of drug mode of action in the related kinetoplastid parasite Trypanosoma brucei. Therefore, we screened our genome-scale T. brucei RNA interference (RNAi) library against the current antileishmanial drugs sodium stibogluconate (antimonial), paromomycin, miltefosine, and amphotericin B. Identification of T. brucei orthologues of the known Leishmania antimonial and miltefosine plasma membrane transporters effectively validated our approach, while a cohort of 42 novel drug efficacy determinants provides new insights and serves as a resource. Follow-up analyses revealed the antimonial selectivity of the aquaglyceroporin TbAQP3. A lysosomal major facilitator superfamily transporter contributes to paromomycin-aminoglycoside efficacy. The vesicle-associated membrane protein TbVAMP7B and a flippase contribute to amphotericin B and miltefosine action and are potential cross-resistance determinants. Finally, multiple phospholipid-transporting flippases, including the T. brucei orthologue of the Leishmania miltefosine transporter, a putative β-subunit/CDC50 cofactor, and additional membrane-associated hits, affect amphotericin B efficacy, providing new insights into mechanisms of drug uptake and action. The findings from this orthology-based chemogenomic profiling approach substantially advance our understanding of antileishmanial drug action and potential resistance mechanisms and should facilitate the development of improved therapies as well as surveillance for drug-resistant parasites.
Collapse
|
30
|
Bansal R, Sen SS, Muthuswami R, Madhubala R. A Plant like Cytochrome P450 Subfamily CYP710C1 Gene in Leishmania donovani Encodes Sterol C-22 Desaturase and its Over-expression Leads to Resistance to Amphotericin B. PLoS Negl Trop Dis 2019; 13:e0007260. [PMID: 30943203 PMCID: PMC6464246 DOI: 10.1371/journal.pntd.0007260] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 04/15/2019] [Accepted: 02/25/2019] [Indexed: 11/26/2022] Open
Abstract
Background Leishmania donovani is a protozoan parasite, a primary causative agent of visceral leishmaniasis. Sterol produced via the mevalonate pathway, show differences in composition across biological kingdoms. The specific occurrence of Δ22-unsaturated sterols, containing a double bond at the C-22 position in the side chain occurs in fungi as ergosterol and as stigmasterol in plants. In the present study, we report the identification and functional characterization of a plant-like Cytochrome P450 subfamily CYP710C1 in L. donovani as the Leishmania C-22 desaturase. Methodology In silico analysis predicted the presence of a plant like CYP710C1 gene that encodes a sterol C-22 desaturase, a key enzyme in stigmasterol biosynthesis. The enzymatic function of recombinant CYP710C1 as C-22 desaturase was determined. To further study the physiological role of CYP710C1 in Leishmania, we developed and characterized an overexpressing strain and a gene deletion mutant. C-22 desaturase activity and stigmasterol levels were estimated in the wild-type, overexpressing promastigotes and heterozygous mutants. Conclusion We for the first time report the presence of a CYP710C1 gene that encodes a plant like sterol C-22 desaturase leading to stigmasterol biosynthesis in Leishmania. The recombinant CYP710C1 exhibited C-22 desaturase activity by converting β-sitosterol to stigmasterol. Axenic amastigotes showed higher expression of CYP710C1 mRNA, protein and stigmasterol levels compared to the promastigotes. Sterol profiling of CYP710C1 overexpressing L. donovani and heterozygous mutant parasites demonstrated that CYP710C1 was responsible for stigmasterol production. Most importantly, we demonstrate that these CYP710C1 overexpressing promastigotes are resistant to amphotericin B, a drug of choice for use against leishmaniasis. We report that Leishmania sterol biosynthesis pathway has a chimeric organisation with characteristics of both plant and fungal pathways. The cytochromes P450 (P450s) are ubiquitous heme-containing enzymes that affect a vast range of oxidation reactions in nature. Cytochrome P450s (CYPs) play an essential role in the metabolism of endogenous or xenobiotic compounds and steroid. The sterol compositions among biological kingdoms differ in the specific occurrence of Δ22-sterols. The C22-desaturation reaction is catalyzed by independent cytochrome P450 family proteins, CYP61 in fungi, and CYP710 in plants. Leishmania donovani is a protozoan parasite that causes visceral leishmaniasis (kala-azar). In silico analysis predicted the presence of a plant like CYP710C1 gene in L. donovani that encodes a plant like sterol C-22 desaturase, a key enzyme in stigmasterol biosynthesis. Here, we have characterized CYP710C1 protein of L. donovani. Sterol profile analysis of wild-type, CYP710C1 overexpressing L. donovani and heterozygous mutant parasite showed that CYP710C1 is responsible for stigmasterol production. Amphotericin B has been used in India for treatment of visceral leishmaniasis for over a decade. Our results demonstrated that overexpression of CYP710C1 gene leads to resistance to amphotericin B in L. donovani. Furthermore, characterization of a plant like CYP710C1 gene in Leishmania indicates the presence of a hybrid pathway that shares a resemblance to both fungal and plant pathways.
Collapse
Affiliation(s)
- Ruby Bansal
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Shib Sankar Sen
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rohini Muthuswami
- Chromatin Remodeling Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Rentala Madhubala
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
- * E-mail:
| |
Collapse
|
31
|
Giordani F, Khalaf AI, Gillingwater K, Munday JC, de Koning HP, Suckling CJ, Barrett MP, Scott FJ. Novel Minor Groove Binders Cure Animal African Trypanosomiasis in an in Vivo Mouse Model. J Med Chem 2019; 62:3021-3035. [DOI: 10.1021/acs.jmedchem.8b01847] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
| | - Abedawn I. Khalaf
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow G1 1XL, U.K
| | - Kirsten Gillingwater
- Parasite Chemotherapy, Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel 4051, Switzerland
- University of Basel, Basel 4001, Switzerland
| | | | | | - Colin J. Suckling
- Department of Pure and Applied Chemistry, WestCHEM, University of Strathclyde, Glasgow G1 1XL, U.K
| | | | - Fraser J. Scott
- Department of Biological and Geographical Sciences, School of Applied Sciences, University of Huddersfield, Huddersfield HD1 3DH, U.K
| |
Collapse
|
32
|
Vijayakumar S, Kant V, Das P. LeishInDB: A web-accessible resource for small molecule inhibitors against Leishmania sp. Acta Trop 2019; 190:375-379. [PMID: 30552881 DOI: 10.1016/j.actatropica.2018.12.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/23/2022]
Abstract
Despite the availability of drugs to treat Leishmaniasis, various other factors including drug resistance and adverse side effects encourage the researchers to search for new strategies and alternatives for treating Leishmaniasis. Repurposing and devising combination therapy with the existing small molecules would serve as an alternative strategy to address the issue, especially the drug resistance. Hence, here we report LeishInDB, a web-accessible resource of small molecule inhibitors having a varying degree of activity towards Leishmania sp. The database includes searchable information of >7000 small molecules collected from >600 literature. The comprehensive information of inhibitors mainly include the activity details (IC50, EC50, Ki, binding energy etc., if any); information on species and form of Leishmania the inhibitor is active against; and the details about their protein target (actively linked to TriTrypDB). In addition, chemical properties including the log P-value, number of rotatable bonds, number of hydrogen bond donors and acceptors, molecular weight, 2D/3D structural information etc., were also included. Toxicity prediction for each molecule was performed using admetSAR and their corresponding results were available to perform the filtered search. In addition, facility to perform sub-structure search, facility to perform the dynamic search on various fields, and facility to download all the structure of molecules that match the search criteria were also included. We believe that the scope of LeishInDB allows the researchers to utilize the available information for repurposing the inhibitors as well as for the investigation of new therapeutics. Database URL:http://leishindb.biomedinformri.com/.
Collapse
|
33
|
Pountain AW, Weidt SK, Regnault C, Bates PA, Donachie AM, Dickens NJ, Barrett MP. Genomic instability at the locus of sterol C24-methyltransferase promotes amphotericin B resistance in Leishmania parasites. PLoS Negl Trop Dis 2019; 13:e0007052. [PMID: 30716073 PMCID: PMC6375703 DOI: 10.1371/journal.pntd.0007052] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/14/2019] [Accepted: 12/04/2018] [Indexed: 01/24/2023] Open
Abstract
Amphotericin B is an increasingly important tool in efforts to reduce the global disease burden posed by Leishmania parasites. With few other chemotherapeutic options available for the treatment of leishmaniasis, the potential for emergent resistance to this drug is a considerable threat. Here we characterised four novel amphotericin B-resistant Leishmania mexicana lines. All lines exhibited altered sterol biosynthesis, and hypersensitivity to pentamidine. Whole genome sequencing demonstrated resistance-associated mutation of the sterol biosynthesis gene sterol C5-desaturase in one line. However, in three out of four lines, RNA-seq revealed loss of expression of sterol C24-methyltransferase (SMT) responsible for drug resistance and altered sterol biosynthesis. Additional loss of the miltefosine transporter was associated with one of those lines. SMT is encoded by two tandem gene copies, which we found to have very different expression levels. In all cases, reduced overall expression was associated with loss of the 3' untranslated region of the dominant gene copy, resulting from structural variations at this locus. Local regions of sequence homology, between the gene copies themselves, and also due to the presence of SIDER1 retrotransposon elements that promote multi-gene amplification, correlate to these structural variations. Moreover, in at least one case loss of SMT expression was not associated with loss of virulence in primary macrophages or in vivo. Whilst such repeat sequence-mediated instability is known in Leishmania genomes, its presence associated with resistance to a major antileishmanial drug, with no evidence of associated fitness costs, is a significant concern.
Collapse
Affiliation(s)
- Andrew W. Pountain
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Stefan K. Weidt
- Glasgow Polyomics, College of Medical, Veterinary & Life Sciences, University of Glasgow, Garscube Estate, Bearsden, Glasgow, United Kingdom
| | - Clément Regnault
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, United Kingdom
| | - Anne M. Donachie
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Nicholas J. Dickens
- Marine Biomedical & Biotechnology Research Program, Florida Atlantic University Harbor Branch Oceanographic Institute, Fort Pierce, Florida, United States of America
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
34
|
Pramanik PK, Alam MN, Roy Chowdhury D, Chakraborti T. Drug Resistance in Protozoan Parasites: An Incessant Wrestle for Survival. J Glob Antimicrob Resist 2019; 18:1-11. [PMID: 30685461 DOI: 10.1016/j.jgar.2019.01.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 01/04/2019] [Accepted: 01/15/2019] [Indexed: 11/19/2022] Open
Abstract
Nowadays, drug resistance in parasites is considered to be one of the foremost concerns in health and disease management. It is interconnected worldwide and undermines the health of millions of people, threatening to grow worse. Unfortunately, it does not receive serious attention from every corner of society. Consequently, drug resistance in parasites is gradually complicating and challenging the treatment of parasitic diseases. In this context, we have dedicated ourselves to review the incidence of drug resistance in the protozoan parasites Plasmodium, Leishmania, Trypanosoma, Entamoeba and Toxoplasma gondii. Moreover, understanding the role of ATP-binding cassette (ABC) transporters in drug resistance is essential in the control of parasitic diseases. Therefore, we also focused on the involvement of ABC transporters in drug resistance, which will be a superior approach to find ways for better regulation of diseases caused by parasitic infections.
Collapse
Affiliation(s)
- Pijush Kanti Pramanik
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Md Nur Alam
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Dibyapriya Roy Chowdhury
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Tapati Chakraborti
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India.
| |
Collapse
|
35
|
Mandal H, Vijayakumar S, Yadav S, Kumar Singh S, Das P. Validation of NAD synthase inhibitors for inhibiting the cell viability of Leishmania donovani: In silico and in vitro approach. J Biomol Struct Dyn 2019; 37:4481-4493. [PMID: 30526395 DOI: 10.1080/07391102.2018.1552199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
NAD (nicotinamide adenine dinucleotide) synthase catalyses the biochemical synthesis of NAD, from nicotinic acid adenine dinucleotide (NAAD). NAD may be synthesized through the de novo pathways and/or the salvage pathways in cells. However, in Leishmania parasite, the synthesis of NAD solely depends on the salvage pathways. NAD synthetase is widely explored as a drug target in various microorganisms. In Bacillus anthracis, a group of sulphonamides 5599, 5617 and 5824 and complex amide 5833 were reported to have activity at micromolar range against NAD synthetase. Hence, in the present study, the same group of sulphonamides and complex amide were validated through in silico and in vitro studies for its efficiency towards Leishmania donovani NAD synthase. In silico study revealed the ligands 5824 and 5833 to have better docking score. Molecular dynamics simulation for a duration of 50 ns of all the ligand-protein complexes suggested that the complexes with the ligands 5824 and 5833 were stable and interacting. In vitro and ex vivo studies have shown that 5824 and 5833 inhibit the cell viability of the organism at a lower concentration than 5599 and 5617. Hence, with further in vivo validation, 5824 (or its synthetic analogues) and 5833 could be the choice that may work synergistically with other potential drugs in treating drug-resistant cases of leishmaniasis. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Haraprasad Mandal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER) , Hajipur , Bihar , India.,Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences , Patna , Bihar , India
| | - Saravanan Vijayakumar
- Bioinformatics Centre , ICMR, Bioinformatics Centre, Rajendra Memorial Research Institute of Medical Sciences , Patna , Bihar , India
| | - Shalini Yadav
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences , Patna , Bihar , India
| | - Shubhankar Kumar Singh
- Department of Microbiology, Rajendra Memorial Research Institute of Medical Sciences , Patna , Bihar , India
| | - Pradeep Das
- Division of Molecular Biology, Rajendra Memorial Research Institute of Medical Sciences (RMRIMS), Indian Council of Medical Research , Patna , Bihar , India
| |
Collapse
|
36
|
Mehrizi TZ, Ardestani MS, Khamesipour A, Hoseini MHM, Mosaffa N, Anissian A, Ramezani A. Reduction toxicity of Amphotericin B through loading into a novel nanoformulation of anionic linear globular dendrimer for improve treatment of leishmania major. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:125. [PMID: 30056571 DOI: 10.1007/s10856-018-6122-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 07/04/2018] [Indexed: 05/21/2023]
Abstract
Amphotericin B (A) as an antileishmanial drug has limited clinical application owing to severe side-effects and low-water solubility. This is the first study reported using Anionic Linear Globular Dendrimer (ALGD) as A carrier for the increase of A solubility rate, decrease its toxicity, and improve its therapeutic effects. ALGD was synthesized and A was loaded into nanoparticles for the first time with the drug-loading efficiency of 82%. Drug loading was confirmed using characterization methods. The drug solubility rate was increased by 478-folds. The results of the study showed that the A toxicity was significantly decreased by 95% in vitro and in vivo environments, which was confirmed by pathology findings and enzymatic evaluation. Furthermore, the nanodrug caused that mortality rate was reached to zero. Moreover, the nanodrug was as potent as the free drug and glucantime (GUL) in reducing the parasite burden and parasite number. These findings indicated the potency of ALGD to decrease the drug side-effects, increase the drug solubility rate, and improve the drug efficacy. Moreover, the nanoformulation was a non-toxic and cost-effective formulation. The conformity between in vitro and in vivo results suggested that the A-loaded ALGD could be considered as a promising candidate in reducing the side-effects of A in leishmaniasis treatment.
Collapse
Affiliation(s)
| | - Mehdi Shafiee Ardestani
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.
| | - Ali Khamesipour
- Center for Research and Training in Skin Diseases and Leprosy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mostafa Haji Molla Hoseini
- Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nariman Mosaffa
- Department of Medical Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ali Anissian
- Veterinary Pathology Department, Islamic Azad University, Abhar branch, Abhar, Iran
| | - Amitis Ramezani
- Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
37
|
Vijayakumar S, Das P. Recent progress in drug targets and inhibitors towards combating leishmaniasis. Acta Trop 2018; 181:95-104. [PMID: 29452111 DOI: 10.1016/j.actatropica.2018.02.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 01/24/2018] [Accepted: 02/11/2018] [Indexed: 12/22/2022]
Abstract
Lesihmaniasis is one of the major neglected tropical disease caused by the parasite of the genus Leishmania. The disease has more than one clinical forms and the visceral form is considered fatal. With the lack of potential vaccine, chemotherapy is the major treatment source considered for the control of the disease in the infected people. Drugs including amphotericin B and miltefosine are widely used for the treatment, however, development of resistance by the parasite towards the administered drug and high-toxicity of the drug are of major concern. Hence, more attention has been shown on identifying new targets, effective inhibitors, and better drug delivery system against the disease. This review deals with recent studies on drug targets and exploring their essentiality for the survival of Leishmania. Further, new inhibitors for those targets, novel anti-leishmanial peptides and vaccines against leishmaniasis were discussed. We believe that this pool of information will ease the researchers to gain knowledge and help in choosing right targets and design of new inhibitors against Leishmaniasis.
Collapse
|
38
|
Franco-Muñoz C, Manjarrés-Estremor M, Ovalle-Bracho C. Intraspecies differences in natural susceptibility to amphotericine B of clinical isolates of Leishmania subgenus Viannia. PLoS One 2018; 13:e0196247. [PMID: 29698432 PMCID: PMC5919572 DOI: 10.1371/journal.pone.0196247] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/08/2018] [Indexed: 12/18/2022] Open
Abstract
Amphotericin B (AmB) is a recommended medication for the treatment of cutaneous and mucosal leishmaniasis in cases of therapeutic failure with first-line medications; however, little is known about the in vitro susceptibility to AmB of clinical isolates of the subgenus Viannia, which is most prevalent in South America. This work aimed to determine the in vitro susceptibility profiles to AmB of clinical isolates of the species L. (V.) panamensis, L. (V.) guyanensis and L. (V.) braziliensis. In vitro susceptibility to AmB was evaluated for 65 isolates. Macrophages derived from the U937 cell line were infected with promastigotes and exposed to different AmB concentrations. After 96 hours, the number of intracellular amastigotes was quantified by qPCR, and median effective concentration (EC50) was determined using the PROBIT model. The controls included sensitive strains and experimentally derived less sensitive strains generated in vitro, which presented EC50 values up to 7.57-fold higher than the values of the sensitive strains. The isolates were classified into groups according to their in vitro susceptibility profiles using Ward’s hierarchical method. The susceptibility to AmB differed in an intraspecies-specific manner as follows: 28.21% (11/39) of L. (V.) panamensis strains, 50% (3/6) of L. (V.) guyanensis strains and 34.61% (9/26) of L. (V.) braziliensis strains were classified as less sensitive. The latter subset featured three susceptibility groups. We identified Colombian isolates with different AmB susceptibility profiles. In addition, the capacity of species of subgenus Viannia to develop lower susceptibility to AmB was demonstrated in vitro. These new findings should be considered in the pharmacovigilance of AmB in Colombia and South America.
Collapse
Affiliation(s)
- Carlos Franco-Muñoz
- Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E., Bogotá D.C., Colombia
| | - Merab Manjarrés-Estremor
- Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E., Bogotá D.C., Colombia
| | - Clemencia Ovalle-Bracho
- Hospital Universitario Centro Dermatológico Federico Lleras Acosta E.S.E., Bogotá D.C., Colombia
- * E-mail:
| |
Collapse
|
39
|
Identification and Characterization of Key Charged Residues in the Cofilin Protein Involved in Azole Susceptibility, Apoptosis, and Virulence of Aspergillus fumigatus. Antimicrob Agents Chemother 2018; 62:AAC.01659-17. [PMID: 29483117 DOI: 10.1128/aac.01659-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 02/10/2018] [Indexed: 12/28/2022] Open
Abstract
Through some specific amino acid residues, cofilin, a ubiquitous actin depolymerization factor, can significantly affect mitochondrial function related to drug resistance and apoptosis in Saccharomyces cerevisiae; however, this modulation in a major fungal pathogen, Aspergillus fumigatus, was still unclear. Hereby, it was found, first, that mutations on several charged residues in cofilin to alanine, D19A-R21A, E48A, and K36A, increased the formation of reactive oxygen species and induced apoptosis along with typical hallmarks, including mitochondrial membrane potential depolarization, cytochrome c release, upregulation of metacaspases, and DNA cleavage, in A. fumigatus Two of these mutations (D19A-R21A and K36A) increased acetyl coenzyme A and ATP concentrations by triggering fatty acid β-oxidation. The upregulated acetyl coenzyme A affected the ergosterol biosynthetic pathway, leading to overexpression of cyp51A and -B, while excess ATP fueled ATP-binding cassette transporters. Besides, both of these mutations reduced the susceptibility of A. fumigatus to azole drugs and enhanced the virulence of A. fumigatus in a Galleria mellonella infection model. Taken together, novel and key charged residues in cofilin were identified to be essential modules regulating the mitochondrial function involved in azole susceptibility, apoptosis, and virulence of A. fumigatus.
Collapse
|
40
|
Vijayakumar S, Das P. Structural, molecular motions, and free-energy landscape of Leishmania sterol-14α-demethylase wild type and drug resistant mutant: a comparative molecular dynamics study. J Biomol Struct Dyn 2018; 37:1477-1493. [PMID: 29620481 DOI: 10.1080/07391102.2018.1461135] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sterol-14α-demethylase (CYP51) is an ergosterol pathway enzyme crucial for the survival of infectious Leishmania parasite. Recent high-throughput metabolomics and whole genome sequencing study revealed amphotericin B resistance in Leishmania is indeed due to mutation in CYP51. The residue of mutation (asparagine 176) is conserved across the kinetoplastidae and not in yeast or humans, portraying its functional significance. In order to understand the possible cause for the resistance, knowledge of structural changes due to mutation is of high importance. To shed light on the structural changes of wild and mutant CYP51, we conducted comparative molecular dynamics simulation study. The active site, substrate biding cavity, substrate channel entrance (SCE), and cavity involving the mutated site were studied based on basic parameters and large concerted molecular motions derived from essential dynamics analyses of 100 ns simulation. Results indicated that mutant CYP51 is stable and less compact than the wild type. Correspondingly, the solvent accessible surface area (SASA) of the mutant was found to be increased, especially in active site and cavities not involving the mutation site. Free-energy landscape analysis disclosed mutant to have a rich conformational diversity than wild type, with various free-energy conformations of mutant having SASA greater than wild type with SCE open. More residues were found to interact with the mutant CYP51 upon docking of substrate to both the wild and mutant CYP51. These results indicate that, relative to wild type, the N176I mutation of CYP51 in Leishmania mexicana could possibly favor increased substrate binding efficiency.
Collapse
Affiliation(s)
- Saravanan Vijayakumar
- a Department of Statistics/Bioinformatics , Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research , Agamkuan, Patna 800007 , Bihar , India
| | - Pradeep Das
- b Department of Molecular Biology/Bioinformatics Centre , Rajendra Memorial Research Institute of Medical Science, Indian Council for Medical Research , Agamkuan, Patna 800007 , Bihar , India
| |
Collapse
|
41
|
Rastrojo A, García-Hernández R, Vargas P, Camacho E, Corvo L, Imamura H, Dujardin JC, Castanys S, Aguado B, Gamarro F, Requena JM. Genomic and transcriptomic alterations in Leishmania donovani lines experimentally resistant to antileishmanial drugs. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2018; 8:246-264. [PMID: 29689531 PMCID: PMC6039315 DOI: 10.1016/j.ijpddr.2018.04.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/10/2018] [Accepted: 04/10/2018] [Indexed: 12/20/2022]
Abstract
Leishmaniasis is a serious medical issue in many countries around the World, but it remains largely neglected in terms of research investment for developing new control and treatment measures. No vaccines exist for human use, and the chemotherapeutic agents currently used are scanty. Furthermore, for some drugs, resistance and treatment failure are increasing to alarming levels. The aim of this work was to identify genomic and trancriptomic alterations associated with experimental resistance against the common drugs used against VL: trivalent antimony (SbIII, S line), amphotericin B (AmB, A line), miltefosine (MIL, M line) and paromomycin (PMM, P line). A total of 1006 differentially expressed transcripts were identified in the S line, 379 in the A line, 146 in the M line, and 129 in the P line. Also, changes in ploidy of chromosomes and amplification/deletion of particular regions were observed in the resistant lines regarding the parental one. A series of genes were identified as possible drivers of the resistance phenotype and were validated in both promastigotes and amastigotes from Leishmania donovani, Leishmania infantum and Leishmania major species. Remarkably, a deletion of the gene LinJ.36.2510 (coding for 24-sterol methyltransferase, SMT) was found to be associated with AmB-resistance in the A line. In the P line, a dramatic overexpression of the transcripts LinJ.27.T1940 and LinJ.27.T1950 that results from a massive amplification of the collinear genes was suggested as one of the mechanisms of PMM resistance. This conclusion was reinforced after transfection experiments in which significant PMM-resistance was generated in WT parasites over-expressing either gene LinJ.27.1940 (coding for a D-lactate dehydrogenase-like protein, D-LDH) or gene LinJ.27.1950 (coding for an aminotransferase of branched-chain amino acids, BCAT). This work allowed to identify new drivers, like SMT, the deletion of which being associated with resistance to AmB, and the tandem D-LDH-BCAT, the amplification of which being related to PMM resistance.
Collapse
Affiliation(s)
- Alberto Rastrojo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Paola Vargas
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain
| | - Esther Camacho
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Laura Corvo
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Hideo Imamura
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Jean-Claude Dujardin
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Santiago Castanys
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain
| | - Begoña Aguado
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain
| | - Francisco Gamarro
- Instituto de Parasitología y Biomedicina ''López-Neyra'' (IPBLN-CSIC), Granada, Spain.
| | - Jose M Requena
- Centro de Biología Molecular "Severo Ochoa" (CSIC-UAM), Universidad Autónoma de Madrid, Madrid, Spain.
| |
Collapse
|
42
|
Ponte-Sucre A, Gamarro F, Dujardin JC, Barrett MP, López-Vélez R, García-Hernández R, Pountain AW, Mwenechanya R, Papadopoulou B. Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Negl Trop Dis 2017; 11:e0006052. [PMID: 29240765 PMCID: PMC5730103 DOI: 10.1371/journal.pntd.0006052] [Citation(s) in RCA: 539] [Impact Index Per Article: 77.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Reevaluation of treatment guidelines for Old and New World leishmaniasis is urgently needed on a global basis because treatment failure is an increasing problem. Drug resistance is a fundamental determinant of treatment failure, although other factors also contribute to this phenomenon, including the global HIV/AIDS epidemic with its accompanying impact on the immune system. Pentavalent antimonials have been used successfully worldwide for the treatment of leishmaniasis since the first half of the 20th century, but the last 10 to 20 years have witnessed an increase in clinical resistance, e.g., in North Bihar in India. In this review, we discuss the meaning of “resistance” related to leishmaniasis and discuss its molecular epidemiology, particularly for Leishmania donovani that causes visceral leishmaniasis. We also discuss how resistance can affect drug combination therapies. Molecular mechanisms known to contribute to resistance to antimonials, amphotericin B, and miltefosine are also outlined. Chemotherapy is central to the control and management of leishmaniasis. Antimonials remain the primary drugs against different forms of leishmaniasis in several regions. However, resistance to antimony has necessitated the use of alternative medications, especially in the Indian subcontinent (ISC). Compounds, notably the orally available miltefosine (MIL), parenteral paromomycin, and amphotericin B (AmB), are increasingly used to treat leishmaniasis. Although treatment failure (TF) has been observed in patients treated with most anti-leishmanials, its frequency of appearance may be important in patients treated with MIL, which has replaced antimonials within the kala-azar elimination program in the ISC. AmB is highly efficacious, and the associated toxic effects—when administered in its free deoxycholate form—are somewhat ameliorated in its liposomal formulation. Regrettably, laboratory experimentation has demonstrated a risk of resistance towards AmB as well. The rise of drug resistance impacts treatment outcome, and understanding its causes, spread, and impact will help us manage the risks it imposes. Here, we review the problem of TF in leishmaniasis and the contribution of drug resistance to the problem. Molecular mechanisms causing resistance to anti-leishmanials are discussed along with the appropriate use of additional available drugs, as well as the urgent need to consolidate strategies to monitor drug efficacy, epidemiological surveillance, and local policies. Coordination of these activities in national and international programs against leishmaniasis might represent a successful guide to further research and prevention activities.
Collapse
Affiliation(s)
- Alicia Ponte-Sucre
- Department of Physiological Sciences, Laboratory of Molecular Physiology, Institute of Experimental Medicine, Luis Razetti School of Medicine, Universidad Central de Venezuela, Caracas, Venezuela
- * E-mail: (BP); (APS)
| | - Francisco Gamarro
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López-Neyra, Spanish National Research Council (IPBLN-CSIC), Granada, Spain
| | - Jean-Claude Dujardin
- Molecular Parasitology Unit, Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Michael P. Barrett
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Rogelio López-Vélez
- Department of Infectious Diseases, National Referral Unit for Tropical Diseases, Ramón y Cajal University Hospital, Madrid, Spain
| | - Raquel García-Hernández
- Department of Biochemistry and Molecular Pharmacology, Instituto de Parasitología y Biomedicina López-Neyra, Spanish National Research Council (IPBLN-CSIC), Granada, Spain
| | - Andrew W. Pountain
- Wellcome Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Roy Mwenechanya
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Zambia, Lusaka, Zambia
| | - Barbara Papadopoulou
- Research Center in Infectious Diseases, CHU de Quebec Research Center and Department of Microbiology-Infectious Disease and Immunology, University Laval, Quebec, Canada
- * E-mail: (BP); (APS)
| |
Collapse
|
43
|
Burgess KEV, Borutzki Y, Rankin N, Daly R, Jourdan F. MetaNetter 2: A Cytoscape plugin for ab initio network analysis and metabolite feature classification. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1071:68-74. [PMID: 29030098 PMCID: PMC5726607 DOI: 10.1016/j.jchromb.2017.08.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 08/07/2017] [Accepted: 08/13/2017] [Indexed: 01/19/2023]
Abstract
An update to the ab-initio network construction tool MetaNetter has been produced. The tool creates networks of masses from high resolution mass spectrometry data. The new plugin provides both chemical transformation and adduct mapping. Tables mapping adduct and transform counts across samples can be generated. Retention time windows are supported for both adduct and transform network generation.
Metabolomics frequently relies on the use of high resolution mass spectrometry data. Classification and filtering of this data remain a challenging task due to the plethora of complex mass spectral artefacts, chemical noise, adducts and fragmentation that occur during ionisation and analysis. Additionally, the relationships between detected compounds can provide a wealth of information about the nature of the samples and the biochemistry that gave rise to them. We present a biochemical networking tool: MetaNetter 2 that is based on the original MetaNetter, a Cytoscape plugin that creates ab initio networks. The new version supports two major improvements: the generation of adduct networks and the creation of tables that map adduct or transformation patterns across multiple samples, providing a readout of compound relationships. We have applied this tool to the analysis of adduct patterns in the same sample separated under two different chromatographies, allowing inferences to be made about the effect of different buffer conditions on adduct detection, and the application of the chemical transformation analysis to both a single fragmentation analysis and an all-ions fragmentation dataset. Finally, we present an analysis of a dataset derived from anaerobic and aerobic growth of the organism Staphylococcus aureus demonstrating the utility of the tool for biological analysis.
Collapse
Affiliation(s)
- K E V Burgess
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.
| | - Y Borutzki
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom; Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - N Rankin
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom; Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - R Daly
- Glasgow Polyomics, University of Glasgow, Glasgow, United Kingdom
| | - F Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRA, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|