1
|
Rashed HAEH, Abu Almaaty AH, Soliman MFM, El-Shenawy NS. The in Vitro Antischistosomal Activity and Genotoxicity of the Active Ingredients of Allium sativum (allicin) and Curcuma longa (curcumin). IRANIAN JOURNAL OF PARASITOLOGY 2021; 16:101-110. [PMID: 33786052 PMCID: PMC7988669 DOI: 10.18502/ijpa.v16i1.5540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: In this study, we assessed the in vitro antischistosomal activity of the active ingredients of Allium sativum (allicin) and Curcuma longa (curcumin) on Schistosoma mansoni. Methods: This study was conducted in Faculty of Science, Port said University, Egypt (2018). Adult worms were exposed to a range of concentrations of AL or CU, and worm survival was assessed 24 h post-exposure to calculate the lethal concentration of the compounds. Scanning electron microscopy was used to assess ultrastructural changes in the surface of AL- or CU- treated worms. The genotoxicities of AL and CU on S. mansoni were determined by DNA fragmentation analysis. Results: We determined the concentrations of AL and CU required to kill 50% of S. mansoni (LC50
). The LC50 of AL was 8.66 μL/mL, whereas 100% mortality of S. mansoni was achieved by AL at concentrations of 50 μL/mL. The LC50 of CU was 87.25 μL/mL, with the highest mortality of 91.3% seen after 24 h exposure to 100 μg/mL CU. Ultrastructural studies revealed that exposure to either AL or CU led to mild or severe surface damage to S. mansion, respectively. The degree of damage in the worms was sex-dependent. Interestingly, while CU exposure resulted in DNA fragmentation in S. mansoni worms, we observed no genotoxic effects of AL. Conclusion: Both AL and CU exhibit antischistosomal activity; the study provided evidence suggesting that these compounds act through distinct mechanisms. These promising results encourage further investigation into these compounds as potential antischistosomal agents, either alone or as complementary treatments to praziquantel.
Collapse
|
2
|
Abdel-Azeem HH, Osman GY, El Garhy MF, Al Benasy KS. Efficacy of Miltefosine and Artemether on Infected Biomphalaria Alexandrina Snails with Schistosoma Mansoni: Immunological and Histological Studies. Helminthologia 2020; 57:335-343. [PMID: 33364902 PMCID: PMC7734665 DOI: 10.2478/helm-2020-0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/08/2020] [Indexed: 11/20/2022] Open
Abstract
Biomphalaria alexandrina snails have received much attention due to their great medical importance as vectors for transmitting Schistosoma mansoni infection to humans. The main objective of the present work was to assess the efficacy of miltefosin a synthetic molluscicidal drug and artemether a natural molluscicidal drug. The correlation between immunological and histological observations from light and electron microscopy of the hemocytes of B. alexandrina post treatment with both drugs was also evaluated. LC50 and LC90 values were represented by 13.80 ppm and 24.40 ppm for miltefosine and 16.88 ppm and 27.97 ppm for artemether, respectively. The results showed that the treatment of S. mansoni-infected snails and normal snails with sublethal dose of miltefosine (LC25=8.20 ppm) and artemether (LC25=11.04 ppm) induced morphological abnormalities and a significant reduction in hemocytes count.
Collapse
Affiliation(s)
| | - G. Y. Osman
- Department of Zoology, Menoufia University, Shebeen El-koom, Egypt
| | | | - K. S. Al Benasy
- Department of Zoology, Menoufia University, Shebeen El-koom, Egypt
- College of Applied Medical Sciences, Majmaah University, MajmaahSaudi Arabia
| |
Collapse
|
3
|
Maccesi M, Aguiar PHN, Pasche V, Padilla M, Suzuki BM, Montefusco S, Abagyan R, Keiser J, Mourão MM, Caffrey CR. Multi-center screening of the Pathogen Box collection for schistosomiasis drug discovery. Parasit Vectors 2019; 12:493. [PMID: 31640761 PMCID: PMC6805474 DOI: 10.1186/s13071-019-3747-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Accepted: 10/11/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Over the past five years, as a public service to encourage and accelerate drug discovery for diseases of poverty, the Medicines for Malaria Venture (MMV) has released box sets of 400 compounds named the Malaria, Pathogen and Stasis Boxes. Here, we screened the Pathogen Box against the post-infective larvae (schistosomula) of Schistosoma mansoni using assays particular to the three contributing institutions, namely, the University of California San Diego (UCSD) in the USA, the Swiss Tropical and Public Health Institute (Swiss TPH) in Switzerland, and the Fundação Oswaldo Cruz (FIOCRUZ) in Brazil. With the same set of compounds, the goal was to determine the degree of inter-assay variability and identify a core set of active compounds common to all three assays. New drugs for schistosomiasis would be welcome given that current treatment and control strategies rely on chemotherapy with just one drug, praziquantel. METHODS Both the UCSD and Swiss TPH assays utilize daily observational scoring methodologies over 72 h, whereas the FIOCRUZ assay employs XTT (2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-5-[(phenylamino)carbonyl]-2H-tetrazolium hydroxide) at 72 h to measure viability as a function of NAD+/NADH redox state. Raw and transformed data arising from each assay were assembled for comparative analysis. RESULTS For the UCSD and Swiss TPH assays, there was strong concordance of at least 87% in identifying active and inactive compounds on one or more of the three days. When all three assays were compared at 72 h, concordance remained a robust 74%. Further, robust Pearson's correlations (0.48-0.68) were measured between the assays. Of those actives at 72 h, the UCSD, Swiss TPH and FIOCRUZ assays identified 86, 103 and 66 compounds, respectively, of which 35 were common. Assay idiosyncrasies included the identification of unique compounds, the differential ability to identify known antischistosomal compounds and the concept that compounds of interest might include those that increase metabolic activity above baseline. CONCLUSIONS The inter-assay data generated were in good agreement, including with previously reported data. A common set of antischistosomal molecules for further exploration has been identified .
Collapse
Affiliation(s)
- Martina Maccesi
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Pedro H N Aguiar
- Laboratório de Helmintologia e Malacologia Médica, René Rachou Institute, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil
| | - Valérian Pasche
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, 4002, Basel, Switzerland.,University of Basel, P.O. Box, 4003, Basel, Switzerland
| | - Melody Padilla
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Brian M Suzuki
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sandro Montefusco
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, NA, Italy
| | - Ruben Abagyan
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, P.O. Box, 4002, Basel, Switzerland. .,University of Basel, P.O. Box, 4003, Basel, Switzerland.
| | - Marina M Mourão
- Laboratório de Helmintologia e Malacologia Médica, René Rachou Institute, FIOCRUZ, Belo Horizonte, Minas Gerais, Brazil.
| | - Conor R Caffrey
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
da Silva VBR, Boucherle B, El-Methni J, Hoffmann B, da Silva AL, Fortune A, de Lima MDCA, Thomas A. Could we expect new praziquantel derivatives? A meta pharmacometrics/pharmacoinformatics analysis of all antischistosomal praziquantel derivatives found in the literature. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2019; 30:383-401. [PMID: 31144535 DOI: 10.1080/1062936x.2019.1607898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Praziquantel (PZQ) is the first line drug for the treatment of human Schistosoma spp. worm infections. However, it suffers from low activity towards immature stages of the worm, and its prolonged use induces resistance/tolerance. During the last 40 years, 263 PZQ analogues have been synthesized and tested against Schistosoma spp. worms, but less than 10% of them showed significant activity. Here, we propose a rationalization of the chemical space of the PZQ derivatives by a ligand-based approach. First, we constructed an in-house database with all PZQ derivatives available in the literature. This analysis shows a high heterogeneity in the data. Fortunately, all studies include PZQ as a reference, permitting the classification of compounds into three classes according to their activities. Models involving ligand-based pharmacophore and logistic regression were performed. Five physicochemical parameters were identified as the best to explain the biological activity. In the end, we proposed new PZQ derivatives with modifications at positions 1 and 7, we analysed them with our models, and we observed that they can be more active than the previously synthesized derivatives. The main goal of this work was to conduct the most valuable meta-pharmacometrics/pharmacoinformatics analysis with all Praziquantel medicinal chemistry data available in the literature.
Collapse
Affiliation(s)
- V B Ribeiro da Silva
- a CNRS, DPM , Université Grenoble Alpes , Grenoble , France
- b Departamento de Antibióticos (DANTI) , Universidade Federal de Pernambuco (UFPE) , Recife , Brazil
| | - B Boucherle
- a CNRS, DPM , Université Grenoble Alpes , Grenoble , France
| | - J El-Methni
- c MAP5, UMR CNRS , Université Paris Descartes, Sorbonne Paris Cité , Paris , France
| | - B Hoffmann
- d UMR CNRS 7590, Museum National d'Histoire Naturelle, IRD UMR 206, IUC, IMPMC , Sorbonne Universités, UPMC Univ Paris , Paris , France
| | - A L da Silva
- e Universidade Federal do Vale do São Francisco, Univasf, Campus Paulo Afonso , Paulo Afonso , Brazil
| | - A Fortune
- a CNRS, DPM , Université Grenoble Alpes , Grenoble , France
| | - M do Carmo Alves de Lima
- b Departamento de Antibióticos (DANTI) , Universidade Federal de Pernambuco (UFPE) , Recife , Brazil
| | - A Thomas
- a CNRS, DPM , Université Grenoble Alpes , Grenoble , France
| |
Collapse
|
5
|
Gemma S, Federico S, Brogi S, Brindisi M, Butini S, Campiani G. Dealing with schistosomiasis: Current drug discovery strategies. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1016/bs.armc.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Shi Y, Yue T, Zhang Y, Wei J, Yuan Y. Surface Immunoproteomics Reveals Potential Biomarkers in Alicyclobacillus acidoterrestris. Front Microbiol 2018; 9:3032. [PMID: 30564227 PMCID: PMC6288362 DOI: 10.3389/fmicb.2018.03032] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 11/23/2018] [Indexed: 11/21/2022] Open
Abstract
Alicyclobacillus acidoterrestris is a major putrefying bacterium that can cause pecuniary losses in the global juice industry. Current detection approaches are time-consuming and exhibit reduced specificity and sensitivity. In this study, an immunoproteomic approach was utilized to identify specific biomarkers from A. acidoterrestris for the development of new detection methods. Cell surface-associated proteins were extracted and separated by 2-D (two-dimensional) gel electrophoresis. Immunogenic proteins were detected by Western blot analysis using antisera against A. acidoterrestris. Twenty-two protein spots exhibiting immunogenicity were excised and eighteen of the associated spots were successfully identified by matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS). These proteins were observed to be involved in energy and carbohydrate metabolism, transmembrane transport, response to oxidative stress, polypeptide biosynthesis, and molecule binding activity. This is the first report detailing the identification of cell surface-associated antigens of A. acidoterrestris. The identified immunogenic proteins could serve as potential targets for the development of novel detection methods.
Collapse
Affiliation(s)
- Yiheng Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Tianli Yue
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Yipei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Jianping Wei
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| | - Yahong Yuan
- College of Food Science and Engineering, Northwest A&F University, Yangling, China.,Laboratory of Quality and Safety Risk Assessment for Agro-Products, Ministry of Agriculture, Yangling, China.,National Engineering Research Center of Agriculture Integration Test, Yangling, China
| |
Collapse
|
7
|
Amara RO, Ramadan AA, El-Moslemany RM, Eissa MM, El-Azzouni MZ, El-Khordagui LK. Praziquantel-lipid nanocapsules: an oral nanotherapeutic with potential Schistosoma mansoni tegumental targeting. Int J Nanomedicine 2018; 13:4493-4505. [PMID: 30122922 PMCID: PMC6084080 DOI: 10.2147/ijn.s167285] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Purpose Lipid nanocapsules (LNCs) have shown potential to increase the bioavailability and efficacy of orally administered drugs. However, their intestinal translocation to distal target sites and their implication in pharmacokinetic (PK)–pharmacodynamic (PD) relationships are yet to be elucidated. In this study, the effect of LNCs on the PD activity and pharmacokinetics of praziquantel (PZQ), the mainstay of schistosomiasis chemotherapy, was investigated. Materials and methods The composition of LNCs was modified to increase PZQ payload and to enhance membrane permeability. PZQ–LNCs were characterized in vitro for colloidal properties, entrapment efficiency (EE%), and drug release. PD activity of the test formulations was assessed in Schistosoma mansoni-infected mice 7 days post-oral administration of a single 250 mg/kg oral dose. Pharmacokinetics of the test formulations and their stability in simulated gastrointestinal (GI) fluids were investigated to substantiate in vivo data. Results PZQ–LNCs exhibited good pharmaceutical attributes in terms of size (46–62 nm), polydispersity index (0.01–0.08), EE% (>95%), and sustained release profiles. Results indicated significant efficacy enhancement by reduction in worm burden, amelioration of liver pathology, and extensive damage to the fluke suckers and tegument. This was partly explained by PK data determined in rats. In addition, oral targeting of the worms was supported by the stability of PZQ–LNCs in simulated GI fluids and scanning electron microscopy (SEM) visualization of nanostructures on the tegument of worms recovered from mesenteric/hepatic veins. Cytotoxicity data indicated tolerability of PZQ–LNCs. Conclusion Data obtained provide evidence for the ability of oral LNCs to target distal post-absorption sites, leading to enhanced drug efficacy. From a practical standpoint, PZQ–LNCs could be suggested as a potential tolerable single lower dose oral nanomedicine for more effective PZQ mass chemotherapy.
Collapse
Affiliation(s)
- Rokaya O Amara
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt, .,Biotechnology Research Center, Tripoli, Libya
| | - Alyaa A Ramadan
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt,
| | - Riham M El-Moslemany
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt,
| | - Maha M Eissa
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mervat Z El-Azzouni
- Department of Medical Parasitology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Labiba K El-Khordagui
- Department of Pharmaceutics, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt,
| |
Collapse
|
8
|
Arachidonic acid: Physiological roles and potential health benefits - A review. J Adv Res 2017; 11:33-41. [PMID: 30034874 PMCID: PMC6052655 DOI: 10.1016/j.jare.2017.11.004] [Citation(s) in RCA: 334] [Impact Index Per Article: 47.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 12/17/2022] Open
Abstract
It is time to shift the arachidonic acid (ARA) paradigm from a harm-generating molecule to its status of polyunsaturated fatty acid essential for normal health. ARA is an integral constituent of biological cell membrane, conferring it with fluidity and flexibility, so necessary for the function of all cells, especially in nervous system, skeletal muscle, and immune system. Arachidonic acid is obtained from food or by desaturation and chain elongation of the plant-rich essential fatty acid, linoleic acid. Free ARA modulates the function of ion channels, several receptors and enzymes, via activation as well as inhibition. That explains its fundamental role in the proper function of the brain and muscles and its protective potential against Schistosoma mansoni and S. haematobium infection and tumor initiation, development, and metastasis. Arachidonic acid in cell membranes undergoes reacylation/deacylation cycles, which keep the concentration of free ARA in cells at a very low level and limit ARA availability to oxidation. Metabolites derived from ARA oxidation do not initiate but contribute to inflammation and most importantly lead to the generation of mediators responsible for resolving inflammation and wound healing. Endocannabinoids are oxidation-independent ARA derivatives, critically important for brain reward signaling, motivational processes, emotion, stress responses, pain, and energy balance. Free ARA and metabolites promote and modulate type 2 immune responses, which are critically important in resistance to parasites and allergens insult, directly via action on eosinophils, basophils, and mast cells and indirectly by binding to specific receptors on innate lymphoid cells. In conclusion, the present review advocates the innumerable ARA roles and considerable importance for normal health.
Collapse
|