1
|
Ghazy E, Abdelsalam M, Robaa D, Pierce RJ, Sippl W. Histone Deacetylase (HDAC) Inhibitors for the Treatment of Schistosomiasis. Pharmaceuticals (Basel) 2022; 15:ph15010080. [PMID: 35056137 PMCID: PMC8779837 DOI: 10.3390/ph15010080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/18/2022] Open
Abstract
Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. Schistosomes display morphologically distinct stages during their life cycle and the transformations between stages are controlled by epigenetic mechanisms. The targeting of epigenetic actors might therefore represent the parasites’ Achilles’ heel. Specifically, histone deacetylases have been recently characterized as drug targets for the treatment of schistosomiasis. This review focuses on the recent development of inhibitors for schistosome histone deacetylases. In particular, advances in the development of inhibitors of Schistosoma mansoni histone deacetylase 8 have indicated that targeting this enzyme is a promising approach for the treatment of this infection.
Collapse
Affiliation(s)
- Ehab Ghazy
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Abdelsalam
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
| | - Raymond J. Pierce
- Centre d’Infection et d’Immunité de Lille, U1019—UMR9017—CIIL, Institute Pasteur de Lille, CNRS, Inserm, CHU Lille, Univ. Lille, F-59000 Lille, France;
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
- Correspondence:
| |
Collapse
|
2
|
OUP accepted manuscript. Brief Funct Genomics 2022; 21:243-269. [DOI: 10.1093/bfgp/elac007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 03/17/2022] [Accepted: 03/18/2022] [Indexed: 11/14/2022] Open
|
3
|
Pagliazzo L, Caby S, Lancelot J, Salomé-Desnoulez S, Saliou JM, Heimburg T, Chassat T, Cailliau K, Sippl W, Vicogne J, Pierce RJ. Histone deacetylase 8 interacts with the GTPase SmRho1 in Schistosoma mansoni. PLoS Negl Trop Dis 2021; 15:e0009503. [PMID: 34843489 PMCID: PMC8670706 DOI: 10.1371/journal.pntd.0009503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 12/14/2021] [Accepted: 10/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Schistosoma mansoni histone deacetylase 8 (SmHDAC8) has elicited considerable interest as a target for drug discovery. Invalidation of its transcripts by RNAi leads to impaired survival of the worms in infected mice and its inhibition causes cell apoptosis and death. To determine why it is a promising therapeutic target the study of the currently unknown cellular signaling pathways involving this enzyme is essential. Protein partners of SmHDAC8 were previously identified by yeast two-hybrid (Y2H) cDNA library screening and by mass spectrometry (MS) analysis. Among these partners we characterized SmRho1, the schistosome orthologue of human RhoA GTPase, which is involved in the regulation of the cytoskeleton. In this work, we validated the interaction between SmHDAC8 and SmRho1 and explored the role of the lysine deacetylase in cytoskeletal regulation. Methodology/principal findings We characterized two isoforms of SmRho1, SmRho1.1 and SmRho1.2. Co- immunoprecipitation (Co-IP)/Mass Spectrometry (MS) analysis identified SmRho1 partner proteins and we used two heterologous expression systems (Y2H assay and Xenopus laevis oocytes) to study interactions between SmHDAC8 and SmRho1 isoforms. To confirm SmHDAC8 and SmRho1 interaction in adult worms and schistosomula, we performed Co-IP experiments and additionally demonstrated SmRho1 acetylation using a Nano LC-MS/MS approach. A major impact of SmHDAC8 in cytoskeleton organization was documented by treating adult worms and schistosomula with a selective SmHDAC8 inhibitor or using RNAi followed by confocal microscopy. Conclusions/significance Our results suggest that SmHDAC8 is involved in cytoskeleton organization via its interaction with the SmRho1.1 isoform. The SmRho1.2 isoform failed to interact with SmHDAC8, but did specifically interact with SmDia suggesting the existence of two distinct signaling pathways regulating S. mansoni cytoskeleton organization via the two SmRho1 isoforms. A specific interaction between SmHDAC8 and the C-terminal moiety of SmRho1.1 was demonstrated, and we showed that SmRho1 is acetylated on K136. SmHDAC8 inhibition or knockdown using RNAi caused extensive disruption of schistosomula actin cytoskeleton. Schistosoma mansoni is the major parasitic platyhelminth species causing intestinal schistosomiasis. Currently one drug, praziquantel, is the treatment of choice but its use in mass treatment programs means that the development of resistance is likely and renders imperative the development of new therapeutic agents. As new potential targets we have focused on lysine deacetylases, and in particular S. mansoni histone deacetylase 8 (SmHDAC8). Previous studies showed that reduction in the level of transcripts of SmHDAC8 by RNAi led to the impaired survival of the worms after the infection of mice. The analysis of the 3D structure of SmHDAC8 by X-ray crystallography showed that the catalytic domain structure diverges significantly from that of human HDAC8 and this was exploited to develop novel potential anti-schistosomal drugs. The biological roles of SmHDAC8 are unknown. For this reason, we previously characterized its protein binding partners and identified the schistosome orthologue of the human RhoA GTPase, suggesting the involvement of SmHDAC8 in the modulation of cytoskeleton organization. Here we investigated the interaction between SmHDAC8 and SmRho1 and identified two SmRho1 isoforms (SmRho1.1 and SmRho1.2). Our study showed that SmHDAC8 is involved in schistosome cytoskeleton organization.
Collapse
Affiliation(s)
- Lucile Pagliazzo
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Stéphanie Caby
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
| | - Julien Lancelot
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
| | | | - Jean-Michel Saliou
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Tino Heimburg
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Thierry Chassat
- Institut Pasteur de Lille - PLEHTA (Plateforme d’expérimentation et de Haute Technologie Animale), Lille, France
| | - Katia Cailliau
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, Halle/Saale, Germany
| | - Jérôme Vicogne
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
- * E-mail: (JV); (RJP)
| | - Raymond J. Pierce
- Univ. Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, - Centre d’Infection et d’Immunité de Lille, Lille, France
- * E-mail: (JV); (RJP)
| |
Collapse
|
4
|
Identification of Toxocara canis Antigen-Interacting Partners by Yeast Two-Hybrid Assay and a Putative Mechanism of These Host-Parasite Interactions. Pathogens 2021; 10:pathogens10080949. [PMID: 34451413 PMCID: PMC8398310 DOI: 10.3390/pathogens10080949] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 01/11/2023] Open
Abstract
Toxocara canis is a zoonotic roundworm that infects humans and dogs all over the world. Upon infection, larvae migrate to various tissues leading to different clinical syndromes. The host–parasite interactions underlying the process of infection remain poorly understood. Here, we describe the application of a yeast two-hybrid assay to screen a human cDNA library and analyse the interactome of T. canis larval molecules. Our data identifies 16 human proteins that putatively interact with the parasite. These molecules were associated with major biological processes, such as protein processing, transport, cellular component organisation, immune response and cell signalling. Some of these identified interactions are associated with the development of a Th2 response, neutrophil activity and signalling in immune cells. Other interactions may be linked to neurodegenerative processes observed during neurotoxocariasis, and some are associated with lung pathology found in infected hosts. Our results should open new areas of research and provide further data to enable a better understanding of this complex and underestimated disease.
Collapse
|
5
|
Mota EA, do Patrocínio AB, Rodrigues V, da Silva JS, Pereira VC, Guerra-Sá R. Epigenetic and parasitological parameters are modulated in EBi3-/- mice infected with Schistosoma mansoni. PLoS Negl Trop Dis 2020; 14:e0008080. [PMID: 32078636 PMCID: PMC7053770 DOI: 10.1371/journal.pntd.0008080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 03/03/2020] [Accepted: 01/22/2020] [Indexed: 12/16/2022] Open
Abstract
Schistosoma mansoni adaptive success is related to regulation of replication, transcription and translation inside and outside the intermediate and definitive host. We hypothesize that S. mansoni alters its epigenetic state in response to the mammalian host immune system, reprogramming gene expression and altering the number of eggs. In response, a change in the DNA methylation profile of hepatocytes could occurs, modulating the extent of hepatic granuloma. To investigate this hypothesis, we used the EBi3-/- murine (Mus musculus) model of S. mansoni infection and evaluated changes in new and maintenance DNA methylation profiles in the liver after 55 days of infection. We evaluated expression of epigenetic genes and genes linked to histone deubiquitination in male and female S. mansoni worms. Comparing TET expression with DNMT expression indicated that DNA demethylation exceeds methylation in knockout infected and uninfected mice and in wild-type infected and uninfected mice. S. mansoni infection provokes activation of demethylation in EBi3-/-I mice (knockout infected). EBi3-/-C (knockout uninfected) mice present intrinsically higher DNA methylation than WTC (control uninfected) mice. EBi3-/-I mice show decreased hepatic damage considering volume and reduced number of granulomas compared to WTI mice; the absence of IL27 and IL35 pathways decreases the Th1 response resulting in minor liver damage. S. mansoni males and females recovered from EBi3-/-I mice have reduced expression of a deubiquitinating enzyme gene, orthologs of which target histones and affect chromatin state. SmMBD and SmHDAC1 expression levels are downregulated in male and female parasites recovered from EBi3-/-, leading to epigenetic gene downregulation in S. mansoni. Changes to the immunological background thus induce epigenetic changes in hepatic tissues and alterations in S. mansoni gene expression, which attenuate liver symptoms in the acute phase of schistosomiasis.
Collapse
Affiliation(s)
- Ester Alves Mota
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| | - Andressa Barban do Patrocínio
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Vanderlei Rodrigues
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - João Santana da Silva
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Carregaro Pereira
- Universidade de São Paulo, Medicine Faculty of Ribeirão Preto, Department of Biochemistry and Immunology; Vila Monte Alegre, Ribeirão Preto, São Paulo, Brazil
| | - Renata Guerra-Sá
- Biochemistry and Molecular Biology Laboratory, Department of Biological Sciences, Universidade Federal de Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
6
|
Rando DG, da Costa MO, Pavani TF, Oliveira T, dos Santos PF, Amorim CR, Pinto PL, de Brito MG, Silva MP, Roquini DB, de Moraes J. Vanillin-Related N-Acylhydrazones: Synthesis, Antischistosomal Properties and Target Fishing Studies. Curr Top Med Chem 2019; 19:1241-1251. [DOI: 10.2174/1568026619666190620163237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 12/06/2018] [Accepted: 12/06/2018] [Indexed: 12/11/2022]
Abstract
Background:
Schistosomiasis is a neglected disease, which affects millions of people in developing
countries. Its treatment relies on a single therapeutic alternative, the praziquantel. This situation
may lead to drug resistance which, in turn, made urgent the need for new antischistosomal agents. Nacylhydrazones
are usually explored as good antimicrobial agents, but the vanillin-related N-acylhydrazones
have never been tested by their antiparasitic potential.
Objective:
Herein, we report the synthesis of seven analogues, three of them unpublished, their biological
investigation against Schistosoma mansoni and Target Fishing studies.
Methods:
The compounds were synthesized following classical synthetical approaches. The anthelmintic
potential was assessed as well as their cytotoxicity profile. Confocal laser scanning microscopy and target
fishing study were performed to better understand the observed antischistosomal activity.
Results:
Compound GPQF-407 exhibited good antischistosomal activity (47.91 µM) with suitable selectivity
index (4.14). Confocal laser scanning microscopy revealed that it triggered severe tegumental destruction
and tubercle disintegration. Target fishing studies pointed out some probable targets, such as the
serine-threonine kinases, dihydroorotate dehydrogenases and carbonic anhydrase II.
Conclusion:
The GPQF-407 was revealed to be a promising antischistosomal agent which, besides presenting
the N-acylhydrazone privileged scaffold, also could be easily synthesized on large scales from
commercially available materials.
Collapse
Affiliation(s)
- Daniela G.G. Rando
- Grupo de Pesquisas Quimico-Farmaceuticas, Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Diadema, SP, Brazil
| | - Marcela O.L. da Costa
- Grupo de Pesquisas Quimico-Farmaceuticas, Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Diadema, SP, Brazil
| | - Thais F.A. Pavani
- Grupo de Pesquisas Quimico-Farmaceuticas, Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Diadema, SP, Brazil
| | - Thiago Oliveira
- Grupo de Pesquisas Quimico-Farmaceuticas, Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Diadema, SP, Brazil
| | - Paloma F. dos Santos
- Grupo de Pesquisas Quimico-Farmaceuticas, Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Diadema, SP, Brazil
| | - Carina R. Amorim
- Grupo de Pesquisas Quimico-Farmaceuticas, Instituto de Ciencias Ambientais, Quimicas e Farmaceuticas, Departamento de Ciencias Farmaceuticas, Universidade Federal de Sao Paulo, Diadema, SP, Brazil
| | - Pedro L.S. Pinto
- Nucleo de Enteroparasitas, Instituto Adolfo Lutz, Sao Paulo, SP, Brazil
| | - Mariana G. de Brito
- Nucleo de Pesquisa em Doencas Negligenciadas, Universidade Guarulhos, Praca Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Marcos P.N. Silva
- Nucleo de Pesquisa em Doencas Negligenciadas, Universidade Guarulhos, Praca Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Daniel B. Roquini
- Nucleo de Pesquisa em Doencas Negligenciadas, Universidade Guarulhos, Praca Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| | - Josué de Moraes
- Nucleo de Pesquisa em Doencas Negligenciadas, Universidade Guarulhos, Praca Tereza Cristina, 229, Centro, 07023-070, Guarulhos, SP, Brazil
| |
Collapse
|
7
|
Gemma S, Federico S, Brogi S, Brindisi M, Butini S, Campiani G. Dealing with schistosomiasis: Current drug discovery strategies. ANNUAL REPORTS IN MEDICINAL CHEMISTRY 2019. [DOI: 10.1016/bs.armc.2019.06.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|