1
|
Leelagud P, Wang HL, Lu KH, Dai SM. Pseudomonas mosselii: a potential alternative for managing pyrethroid-resistant Aedes aegypti. PEST MANAGEMENT SCIENCE 2024; 80:4344-4351. [PMID: 38634536 DOI: 10.1002/ps.8139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/23/2024] [Accepted: 04/18/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Aedes aegypti is a widespread mosquito in tropical and subtropical regions that causes significant mortality and morbidity in humans by transmitting diseases, such as dengue fever and Zika virus disease. Synthetic insecticides, such as pyrethroids, have been used to control Ae. aegypti, but these insecticides can also affect nontarget organisms and contaminate soil and water. This study aimed to investigate the mosquitocidal activity of Pseudomonas mosselii isolated from pond sludge against larvae of Ae. aegypti. RESULTS Based on the initial results, similar time-course profiles were obtained for the mosquitocidal activity of the bacterial culture and its supernatant, and the pellet resuspended in Luria-Bertani (LB) medium also showed delayed toxicity. These results imply that the toxic component can be released into the medium from live bacteria. Further research indicated that the toxic component appeared in the supernatant approximately 4 h after a 3-mL stock was cultured in 200 mL of LB medium. The stabilities of the P. mosselii culture and supernatant stored at different temperatures were also evaluated, and the best culture stability was obtained at 28 °C and supernatant stability at 4 °C. The bacterial culture and supernatant were toxic to larvae and pupae of not only susceptible Ae. aegypti but also pyrethroid-resistant strains. CONCLUSION This study highlights the value of the mosquitocidal activity of P. mosselii, which has potential as an alternative insecticide to control pyrethroid-resistant Ae. aegypti in the field. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Piyatida Leelagud
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Hui-Liang Wang
- Department of Biotechnology, National Kaohsiung Normal University, Kaohsiung, Taiwan
| | - Kuang-Hui Lu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Shu-Mei Dai
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
2
|
Spadar A, Collins E, Messenger LA, Clark TG, Campino S. Uncovering the genetic diversity in Aedes aegypti insecticide resistance genes through global comparative genomics. Sci Rep 2024; 14:13447. [PMID: 38862628 PMCID: PMC11166649 DOI: 10.1038/s41598-024-64007-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/04/2024] [Indexed: 06/13/2024] Open
Abstract
Aedes aegypti is vector of many arboviruses including Zika, dengue, yellow fever, West Nile, and Chikungunya. Its control efforts are hampered by widespread insecticide resistance reported in the Americas and Asia, while data from Africa is more limited. Here we use publicly available 729 Ae. aegypti whole-genome sequencing samples from 15 countries, including nine in Africa, to investigate the genetic diversity in four insecticide resistance linked genes: ace-1, GSTe2, rdl and vgsc. Apart from vgsc, the other genes have been less investigated in Ae. aegypti, and almost no genetic diversity information is available. Among the four genes, we identified 1,829 genetic variants including 474 non-synonymous substitutions, some of which have been previously documented, as well as putative copy number variations in GSTe2 and vgsc. Global insecticide resistance phenotypic data demonstrated variable resistance in geographic areas with resistant genotypes. Overall, our work provides the first global catalogue and geographic distribution of known and new amino-acid mutations and duplications that can be used to guide the identification of resistance drivers in Ae. aegypti and thereby support monitoring efforts and strategies for vector control.
Collapse
Affiliation(s)
- Anton Spadar
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Emma Collins
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Louisa A Messenger
- Department of Environmental and Occupational Health, School of Public Health, University of Nevada, Las Vegas, Las Vegas, NV, USA
- Parasitology and Vector Biology Laboratory (UNLV PARAVEC Lab), School of Public Health, University of Nevada, Las Vegas, NV, USA
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
- Faculty of Epidemiology and Population Health, London School of Hygiene and Tropical Medicine, London, UK
| | - Susana Campino
- Faculty of Infectious and Tropical Diseases, Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK.
| |
Collapse
|
3
|
Marcombe S, Doeurk B, Thammavong P, Veseli T, Heafield C, Mills MA, Kako S, Prado MF, Thomson S, Millett S, Hill T, Kentsley I, Davies S, Pathiraja G, Daniels B, Browne L, Nyamukanga M, Harvey J, Rubinstein L, Townsend C, Allen Z, Davey-Spence C, Hupi A, Jones AK, Boyer S. Metabolic Resistance and Not Voltage-Gated Sodium Channel Gene Mutation Is Associated with Pyrethroid Resistance of Aedes albopictus (Skuse, 1894) from Cambodia. INSECTS 2024; 15:358. [PMID: 38786914 PMCID: PMC11122440 DOI: 10.3390/insects15050358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
(1) Background: In Cambodia, Aedes albopictus is an important vector of the dengue virus. Vector control using insecticides is a major strategy implemented in managing mosquito-borne diseases. Resistance, however, threatens to undermine the use of insecticides. In this study, we present the levels of insecticide resistance of Ae. albopictus in Cambodia and the mechanisms involved. (2) Methods: Two Ae. albopictus populations were collected from the capital, Phnom Penh city, and from rural Pailin province. Adults were tested with diagnostic doses of malathion (0.8%), deltamethrin (0.03%), permethrin (0.25%), and DDT (4%) using WHO tube assays. Synergist assays using piperonyl butoxide (PBO) were implemented before the pyrethroid assays to detect the potential involvement of metabolic resistance mechanisms. Adult female mosquitoes collected from Phnom Penh and Pailin were tested for voltage-gated sodium channel (VGSC) kdr (knockdown resistance) mutations commonly found in Aedes sp.-resistant populations throughout Asia (S989P, V1016G, and F1534C), as well as for other mutations (V410L, L982W, A1007G, I1011M, T1520I, and D1763Y). (3) Results: The two populations showed resistance against all the insecticides tested (<90% mortality). The use of PBO (an inhibitor of P450s) strongly restored the efficacy of deltamethrin and permethrin against the two resistant populations. Sequences of regions of the vgsc gene showed a lack of kdr mutations known to be associated with pyrethroid resistance. However, four novel non-synonymous mutations (L412P/S, C983S, Q1554STOP, and R1718L) and twenty-nine synonymous mutations were detected. It remains to be determined whether these mutations contribute to pyrethroid resistance. (4) Conclusions: Pyrethroid resistance is occurring in two Ae. albopictus populations originating from urban and rural areas of Cambodia. The resistance is likely due to metabolic resistance specifically involving P450s monooxygenases. The levels of resistance against different insecticide classes are a cause for concern in Cambodia. Alternative tools and insecticides for controlling dengue vectors should be used to minimize disease prevalence in the country.
Collapse
Affiliation(s)
- Sébastien Marcombe
- Medical Entomology and Vector-borne Diseases Laboratory, Institut Pasteur du Laos, Ministry of Health, Vientiane P.O. Box 3560, Laos; (S.M.); (P.T.)
- Vector Control Consulting—South East Asia Sole Co., Ltd., Vientiane P.O. Box 3463, Laos
| | - Bros Doeurk
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh P.O. Box 983, Cambodia; (B.D.); (S.B.)
| | - Phoutmany Thammavong
- Medical Entomology and Vector-borne Diseases Laboratory, Institut Pasteur du Laos, Ministry of Health, Vientiane P.O. Box 3560, Laos; (S.M.); (P.T.)
| | - Tuba Veseli
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Derby DE65 5NX, UK
| | - Christian Heafield
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Oxford OX14 2RN, UK
| | - Molly-Ann Mills
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- UK Health Security Agency, Porton Down, Salisbury SP4 0JG, UK
| | - Sedra Kako
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Marcelly Ferreira Prado
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Oxford University Hospitals, Churchill Hospital, Genetics Laboratories, Old Rd, Headington, Oxford OX3 7LE, UK
| | - Shakira Thomson
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Burnham-On-Sea TA8 1AZ, UK
| | - Saffron Millett
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Timothy Hill
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- London School of Hygiene & Tropical Medicine, Keppel Street, London WC1E 7HT, UK
| | - Imogen Kentsley
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Brighton BN8 4HR, UK
| | - Shereena Davies
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Shrewsbury SY1 4YP, UK
| | - Geethika Pathiraja
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Wallingford OX10 7EA, UK
| | - Ben Daniels
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Syngenta, Jealott’s Hill International Research Centre, Bracknell RG42 6EY, Berkshire, UK
| | - Lucianna Browne
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Reading RG31 4SE, UK
| | - Miranda Nyamukanga
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Wythenshawe Hospital, Southmoor Rd, Wythenshawe M23 9LT, Manchester, UK
| | - Jess Harvey
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Oxford Nanopore Technologies plc, Unit 3, Genesis Building, Library Avenue, Harwell, Didcot OX11 0SG, Oxfordshire, UK
| | - Lyranne Rubinstein
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, 69009 Lyon, France
| | - Chloe Townsend
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Zack Allen
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Christopher Davey-Spence
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Adina Hupi
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
- Independent Researcher, Oxford OX3 8HP, UK
| | - Andrew K. Jones
- Department of Biological and Medical Sciences, Oxford Brookes University, Headington, Oxford OX3 0BP, UK; (T.V.); (C.H.); (M.-A.M.); (S.K.); (M.F.P.); (S.T.); (S.M.); (T.H.); (I.K.); (S.D.); (G.P.); (B.D.); (L.B.); (M.N.); (J.H.); (L.R.); (C.T.); (Z.A.); (C.D.-S.); (A.H.)
| | - Sebastien Boyer
- Medical and Veterinary Entomology Unit, Institut Pasteur du Cambodge, 5 Boulevard Monivong, Phnom Penh P.O. Box 983, Cambodia; (B.D.); (S.B.)
| |
Collapse
|
4
|
Chen L, Zhou K, Shi J, Zheng Y, Zhao X, Du Q, Lin Y, Yin X, Jiang J, Feng X. Pyrethroid resistance status and co-occurrence of V1016G, F1534C and S989P mutations in the Aedes aegypti population from two dengue outbreak counties along the China-Myanmar border. Parasit Vectors 2024; 17:91. [PMID: 38414050 PMCID: PMC10898090 DOI: 10.1186/s13071-024-06124-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 01/08/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Over the past two decades, dengue fever (DF) has emerged as a significant arboviral disease in Yunnan province, China, particularly in the China-Myanmar border area. Aedes aegypti, an invasive mosquito species, plays a crucial role in transmitting the dengue virus to the local population. Insecticide-based vector control has been the primary tool employed to combat DF, but the current susceptibility status of Ae. aegypti to commonly used insecticides is unknown. Assessment of Ae. aegypti resistance to pyrethroid insecticides and an understanding of the underlying mechanisms of this resistance in the China-Myanmar border region is of significant strategic importance for effectively controlling the DF epidemic in the area. METHODS Aedes aegypti larvae collected from Ruili and Gengma counties in Yunnan Province were reared to adults in the laboratory and tested for susceptibility to three pyrethroid insecticides (3.20% permethrin, 0.08% lambda-cyhalothrin and 0.20% deltamethrin) by the standard WHO susceptibility bioassay. Genotyping of mutations in the knockdown gene (kdr), namely S989P, V1016G and F1534C, that are responsible for resistance to pyrethroid insecticides was performed using allele-specific PCR methods. A possible association between the observed resistant phenotype and mutations in the voltage-gated sodium channel gene (VGSC) was also studied. RESULTS Aedes aegypti mosquitoes collected from the two counties and reared in the laboratory were resistant to all of the pyrethroids tested, with the exception of Ae. aegypti from Gengma County, which showed sensitivity to 0.20% deltamethrin. The mortality rate of Ae. aegypti from Ruili county exposed to 3.20% permethrin did not differ significantly from that of Ae. aegypti from Gengma County (χ2 = 0.311, P = 0.577). By contrast, the mortality rate of Ae. aegypti from Ruili County exposed to 0.08% lambda-cyhalothrin and 0.20% deltamethrin, respectively, was significantly different from that of Ae. aegypti from Gengma. There was no significant difference in the observed KDT50 of Ae. aegypti from the two counties to various insecticides. Four mutation types and 12 genotypes were detected at three kdr mutation sites. Based on results from all tested Ae. aegypti, the V1016G mutation was the most prevalent kdr mutation (100% prevalence), followed by the S989P mutation (81.6%) and the F1534C mutation (78.9%). The constituent ratio of VGSC gene mutation types was significantly different in Ae. aegypti mosquitoes from Ruili and those Gengma. The triple mutant S989P + V1016G + F1534C was observed in 274 Ae. aegypti mosquitoes (60.8%), with the most common genotype being SP + GG + FC (31.4%). The prevalence of the F1534C mutation was significantly higher in resistant Ae. aegypti from Ruili (odds ratio [OR] 7.43; 95% confidence interval [CI] 1.71-32.29; P = 0.01) and Gengma (OR 9.29; 95% CI 3.38-25.50; P = 0.00) counties than in susceptible Ae. aegypti when exposed to 3.20% permethrin and 0.08% lambda-cyhalothrin, respectively. No significant association was observed in the triple mutation genotypes with the Ae. aegypti population exposed to 3.20% permethrin and 0.20% deltamethrin resistance (P > 0.05), except for Ae. aegypti from Gengma County when exposed to 0.08% lambda-cyhalothrin (OR 2.86; 95% CI 1.20-6.81; P = 0.02). CONCLUSIONS Aedes aegypti from Ruili and Gengma counties have developed resistance to various pyrethroid insecticides. The occurrence of multiple mutant sites in VGSC strongly correlated with the high levels of resistance to pyrethroids in the Ae. aegypti populations, highlighting the need for alternative strategies to manage the spread of resistance. A region-specific control strategy for dengue vectors needs to be implemented in the future based on the status of insecticide resistance and kdr mutations.
Collapse
Affiliation(s)
- Li Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China
| | - Kemei Zhou
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China
| | - Jun Shi
- Lincang Center for Disease Control and Prevention, Lincang, China
| | - Yuting Zheng
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China
| | - Xiaotao Zhao
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China
| | - Qingyun Du
- Gengma Center for Disease Control and Prevention, Gengma, China
| | - Yingkun Lin
- Dehong Prefecture Center for Disease Control and Prevention, Mangshi, China
| | - Xaioxiong Yin
- Ruili Center for Disease Control and Prevention, Ruili, China
| | - Jinyong Jiang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
- Yunnan International Joint Laboratory of Tropical Infectious Diseases, Yunnan Provincial Key Laboratory of Vector-Borne Diseases Control and Research, Yunnan Key Technology Innovation Team for Insect Borne Infectious Disease Prevention and Control, Yunnan Institute of Parasitic Diseases, Pu'er, China.
| | - Xinyu Feng
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, China.
- One Health Center, Shanghai Jiao Tong University, The University of Edinburgh, Shanghai, 20025, China.
| |
Collapse
|
5
|
Enayati A, Valadan R, Bagherzadeh M, Cheraghpour M, Nikookar SH, Fazeli-Dinan M, Hosseini-Vasoukolaei N, Sahraei Rostami F, Shabani Kordshouli R, Raeisi A, Nikpour F, Mirolyaei A, Bagheri F, Sedaghat MM, Zaim M, Weetman D, Hemigway J. Kdr genotyping and the first report of V410L and V1016I kdr mutations in voltage-gated sodium channel gene in Aedes aegypti (Diptera: Culicidae) from Iran. Parasit Vectors 2024; 17:34. [PMID: 38273349 PMCID: PMC10811842 DOI: 10.1186/s13071-024-06123-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Aedes aegypti is the main vector of arboviral diseases worldwide. The species invaded and became established in southern Iran in 2020. Insecticide-based interventions are primarily used for its control. With insecticide resistance widespread, knowledge of resistance mechanisms is vital for informed deployment of insecticidal interventions, but information from Iranian Ae. aegypti is lacking. METHODS Fifty-six Ae. aegypti specimens were collected from the port city of Bandar Lengeh in Hormozgan Province in the South of Iran in 2020 and screened for kdr mutations. The most common kdr mutations in Latin America and Asia (V410L, S989P, V1016G/I and F1534C), especially when present in combinations, are highly predictive of DDT and pyrethroid resistance were detected. Phylogenetic analyses based on the diversity of S989P and V1016G/I mutations were undertaken to assess the phylogeography of these kdr mutations. RESULTS Genotyping all four kdr positions of V410L, S989P, V1016G/I and F1534C revealed that only 16 out of the 56 (28.57%) specimens were homozygous wild type for all kdr mutation sites. Six haplotypes including VSVF (0.537), VSVC (0.107), LSVF (0.016), LSIF (0.071), VPGC (0.257) and LPGC (0.011) were detected in this study. For the first time, 11 specimens harbouring the V410L mutation, and 8 samples with V1016I mutation were found. V410L and V1016I were coincided in 8 specimens. Also, six specimens contained 1016G/I double mutation which was not reported before. CONCLUSIONS The relatively high frequency of these kdr mutations in Iranian Ae. aegypti indicates a population exhibiting substantial resistance to pyrethroid insecticides, which are used widely in control operations and household formulations. The detection of the 410L/1016I kdr mutant haplotype in Iranian Ae. aegypti suggests possible convergence of invasive populations from West Africa or Latin America. However, as Iran has very limited maritime/air connections with those African countries, a Latin American origin for the invasive Ae. aegypti in Iran is more plausible.
Collapse
Affiliation(s)
- Ahmadali Enayati
- Department of Medical Entomology and Vector Control, School of Public Health and Health Sciences Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Reza Valadan
- Department of Immunology and Molecular and Cellular Biology Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahboobeh Bagherzadeh
- Department of Medical Entomology and Vector Control, School of Public Health, Student Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Cheraghpour
- Department of Medical Entomology and Vector Control, School of Public Health, Student Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyed Hassan Nikookar
- Health Sciences Research Center, Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahmoud Fazeli-Dinan
- Health Sciences Research Center, Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Nasibeh Hosseini-Vasoukolaei
- Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Farzaneh Sahraei Rostami
- Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Razieh Shabani Kordshouli
- Department of Medical Entomology and Vector Control, School of Public Health, Mazandaran University of Medical Sciences, Sari, Iran
| | - Ahmad Raeisi
- Vector Borne Diseases Control Department, Iran CDC, Ministry of Health and Medical Education, Tehran, Iran
- Department of Medical Parasitology & Mycology, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Nikpour
- Vector Borne Diseases Control Department, Iran CDC, Ministry of Health and Medical Education, Tehran, Iran
- Department of Environmental Chemical Pollutants and Pesticides, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Abdolreza Mirolyaei
- Vector Borne Diseases Control Department, Iran CDC, Ministry of Health and Medical Education, Tehran, Iran
| | - Fatemeh Bagheri
- Hormozgan Provincial Health Center, Department of Communicable Diseases Control, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Mehdi Sedaghat
- Department of Medical Entomology and Vector Control, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Zaim
- Department of Medical Entomology and Vector Control, Tehran University of Medical Sciences, Tehran, Iran
| | - David Weetman
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Janet Hemigway
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, UK
| |
Collapse
|
6
|
Lin HH, Li ZT, Tzeng HY, Chang C, Dai SM. Correlation between pyrethroid knockdown resistance and mutation frequency of voltage-gated sodium channel and its application in Aedes aegypti management. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 198:105710. [PMID: 38225068 DOI: 10.1016/j.pestbp.2023.105710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/12/2023] [Accepted: 11/23/2023] [Indexed: 01/17/2024]
Abstract
Aedes aegypti, the primary vector responsible for transmitting dengue fever in southern Taiwan, has developed a relatively high resistance to synthetic pyrethroids. It has evolved four amino acid substitutions in the voltage-gated sodium channel (VGSC), namely S996P, V1023G, F1565C, and D1794Y. To unveil the distribution and correlation of VGSC mutations and pyrethroid resistance among different field populations, Ae. aegypti collected from various districts in Kaohsiung and Tainan Cities underwent tests for resistance development against different pyrethroids and frequency of S996P, V1023G, F1565C, and D1794Y substitutions. The adult knockdown assay revealed a relatively high knockdown resistance in the Ae. aegypti populations from Kaohsiung and Tainan against permethrin, cypermethrin, and fenvalerate (averaging >50-fold). Conversely, less resistance was observed against α-cypermethrin, deltamethrin, λ-cyhalothrin, cyfluthrin, and etofenprox (averaging <35-fold). Using Polymerase Chain Reaction/restriction fragment length polymorphism analysis, four mutant haplotypes were identified in these field populations. Notably, the SIAVFD and SIBVFD wild haplotypes were absent. Analysis utilizing IBM SPSS Statistics 20.0 and Spearman's rank correlation coefficient indicated that Haplotype C (PIAGFD), especially P allele, frequency displayed a significant positive correlation with five Type II pyrethroid resistance, while 1023G and 1023G/G exhibited a significant association with permethrin and fevalerate resistance. Conversely, Haplotype E (SIBVCD) negatively correlated with pyrethroid resistance, particularly fenvalerate resistance (-0.776). Haplotype C and E were the most prevalent and widely distributed among the investigated field populations. This prevalence of haplotype C is likely tied to the extensive and excessive use of Type II pyrethroids for dengue control over the past three decades. Given the significant positive correlation, the best-fit lines and R2 values were established to facilitate the swift prediction of knockdown resistance levels to various pyrethroids based on VGSC mutation frequency. This predictive approach aims to guide insecticide usage and the management of pyrethroid resistance in the field populations of Ae. aegypti in Taiwan.
Collapse
Affiliation(s)
- Hsin-Hua Lin
- Department of Entomology, National Chung-Hsing University, 145 Hsingda Road, Taichung City 40227, Taiwan, ROC
| | - Zhong-Tai Li
- Department of Entomology, National Chung-Hsing University, 145 Hsingda Road, Taichung City 40227, Taiwan, ROC
| | - Hau-You Tzeng
- Department of Entomology, National Chung-Hsing University, 145 Hsingda Road, Taichung City 40227, Taiwan, ROC
| | - Cheng Chang
- Biotechnology Center, National Chung-Hsing University, 145 Hsingda Road, Taichung City 40227, Taiwan, ROC
| | - Shu-Mei Dai
- Department of Entomology, National Chung-Hsing University, 145 Hsingda Road, Taichung City 40227, Taiwan, ROC.
| |
Collapse
|
7
|
Zhao M, Ran X, Xing D, Liao Y, Liu W, Bai Y, Zhang Q, Chen K, Liu L, Wu M, Ma Z, Gao J, Zhang H, Zhao T. Evolution of knockdown resistance ( kdr) mutations of Aedes aegypti and Aedes albopictus in Hainan Island and Leizhou Peninsula, China. Front Cell Infect Microbiol 2023; 13:1265873. [PMID: 37808913 PMCID: PMC10552158 DOI: 10.3389/fcimb.2023.1265873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background Aedes aegypti and Aedes albopictus are important vectors of human arboviruses, transmitting arboviral diseases such as yellow fever, dengue, chikungunya and Zika. These two mosquitoes coexist on Hainan Island and the Leizhou Peninsula in China. Over the past 40 years, the distribution of Ae. albopictus has gradually expanded in these areas, while the distribution of Ae. aegypti has declined dramatically mainly due to the ecological changes and some other factors such as heavy use of insecticide indoor based on endophagic bloodfeeding of the species. Methods This study focused on the knockdown resistance (kdr) genes of both mosquitoes, investigated their mutations, and analyzed their haplotype and evolutionary diversity combined with population genetic features based on the ND4/ND5 genes to further elucidate the molecular mechanisms underlying the development of insecticide resistance in both mosquitoes. Results Three mutations, S989P, V1016G and F1534C, were found to be present in Ae. aegypti populations, and the three mutations occurred synergistically. Multiple mutation types (F1534C/S/L/W) of the F1534 locus are found in Ae. albopictus populations, with the three common mutations F1534C, F1534S and F1534L all having multiple independent origins. The F1534W (TTC/TGG) mutation is thought to have evolved from the F1534L (TTC/TTG) mutation. The F1534S (TTC/TCG) mutation has evolved from the F1534S (TTC/TCC) mutation. The most common form of mutation at the F1534 locus found in this study was S1534C, accounting for 20.97%, which may have evolved from the F1534C mutation. In addition, a new non-synonymous mutation M1524I and 28 synonymous mutations were identified in Ae. albopictus populations. Correlation analysis showed that the genetic diversity of Ae. aegypti and Ae. albopictus populations did not correlate with their kdr haplotype diversity (P>0.05), but strong gene flow between populations may have contributed to the evolution of the kdr gene. Conclusion The study of kdr gene evolution in the two mosquito species may help to identify the evolutionary trend of insecticide resistance at an early stage and provide a theoretical basis for improving the efficiency of biological vector control and subsequent research into new insecticides.
Collapse
Affiliation(s)
- Minghui Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Xin Ran
- Jiangxi Provincial Center for Disease Control and Prevention, Nanchang, China
| | - Dan Xing
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yun Liao
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Wei Liu
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Yu Bai
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Qiang Zhang
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Kan Chen
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Lan Liu
- Jiangxi International Travel Healthcare Center, Nanchang, China
| | - Mingyu Wu
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zu Ma
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Jian Gao
- Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Hengduan Zhang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Tongyan Zhao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
8
|
Wang Y, Wang X, Brown DJ, An M, Xue RD, Liu N. Insecticide resistance: Status and potential mechanisms in Aedes aegypti. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 195:105577. [PMID: 37666603 DOI: 10.1016/j.pestbp.2023.105577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/08/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023]
Abstract
Aedes aegypti, an important vector in the transmission of human diseases, has developed resistance to two commonly used classes of insecticides, pyrethroids and organophosphates, in populations worldwide. This study examined sensitivity/resistance to chlorpyrifos, fenitrothion, malathion, deltamethrin, permethrin, and β-cyfluthrin, along with possible metabolic detoxification and target site insensitivity, in three Aedes aegypti mosquito strains. The resistant strain (PR) had developed high levels of resistance to all three pyrethroid insecticides compared to a susceptible population, with 6, 500-, 3200- and 17,000-fold resistance to permethrin, β-cyfluthrin, and deltamethrin, respectively. A newly emerged Ae. aegypti population collected from St. Augustine, Florida (AeStA) showed elevated levels of resistance to malathion (12-fold) and permethrin (25-fold). Synergists DEF (S,S,S,-tributyl phosphorotrithioate) and DEM (diethyl maleate) showed no or minor effects on insecticide resistance in both the AeStA and PRG20strains, but PBO (piperonyl butoxide) completely abolished resistance to both malathion and permethrin in AeStA and partially suppressed resistance in PR. The voltage-gated sodium channel sequences were examined to explore the mechanism that only partially inhibited the suppression of resistance to PBO in PR. Two mutations, V1016G/I and F1534C substitutions, both of which are associated with the development of pyrethroid resistance, were identified in the PRG20 strain but not in AeStA. These results suggest that while cytochrome P450 mediated detoxification may not be solely responsible, it is the major mechanism governing the development of resistance in AeStA. Both P450 mediated detoxification and target site insensitivity through the mutations in the voltage-gated sodium channel contribute to the high levels of resistance in the PRG20 strain.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Xin Wang
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Dylan J Brown
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Mengru An
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| | - Rui-De Xue
- Anastasia Mosquito Control District of St. Johns County, 120 EOC Drive, St. Augustine, FL 32092, United States of America.
| | - Nannan Liu
- Department of Entomology and Plant Pathology, School of Agriculture, Auburn University, Auburn, AL 36849, United States of America.
| |
Collapse
|
9
|
Wu H, Qian J, Xu Z, Yan R, Zhu G, Wu S, Chen M. Leucine to tryptophane substitution in the pore helix IIP1 confer sodium channel resistance to pyrethroids and DDT. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2023; 194:105490. [PMID: 37532317 DOI: 10.1016/j.pestbp.2023.105490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 08/04/2023]
Abstract
Aedes aegypti is responsible for transmitting a variety of arboviral infectious diseases such as dengue and chikungunya. Insecticides, particularly pyrethroids, are used widely for mosquito control. However, intensive used of pyrethroids has led to the selection of kdr mutations on sodium channels. L982W, locating in the PyR1 (Pyrethroid receptor site 1), was first reported in Ae. aegypti populations collected from Vietnam. Recently, the high frequency of L982W was detected in pyrethroid-resistant populations of Vietnam and Cambodia, and also concomitant mutations L982W + F1534C was detected in both countries. However, the role of L982W in pyrethroid resistance remains unclear. In this study, we examined the effects of L982W on gating properties and pyrethroid sensitivity in Xenopus oocytes. We found that mutations L982W and L982W + F1534C shifted the voltage dependence of activation in the depolarizing direction, however, neither mutations altered the voltage dependence of inactivation. L982W significantly reduced channel sensitivity to Type I pyrethroids, permethrin and bifenthrin, and Type II pyrethroids, deltamethrin and cypermethrin. No enhancement was observed when synergized with F1534C. In addition, L982W and L982W + F1534C mutations reduced the channel sensitivity to DDT. Our results illustrate the molecular basis of resistance mediates by L982W mutation, which will be helpful to understand the interacions of pyrethroids or DDT with sodium channels and develop molecular markers for monitoring pest resistance to pyrethroids and DDT.
Collapse
Affiliation(s)
- Huiming Wu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Jiali Qian
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Zhanyi Xu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Ru Yan
- College of life sciences, Zhejiang University, Hangzhou, China
| | - Guonian Zhu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Shaoying Wu
- Sanya Nanfan Research Institute, Hainan University, Sanya 572024, China.
| | - Mengli Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China.
| |
Collapse
|
10
|
Yuan H, Shan W, Zhang Y, Yan H, Li Y, Zhou Q, Dong H, Tao F, Liu H, Leng P, Peng H, Ma Y. High frequency of Voltage-gated sodium channel (VGSC) gene mutations in Aedes albopictus (Diptera: Culicidae) suggest rapid insecticide resistance evolution in Shanghai, China. PLoS Negl Trop Dis 2023; 17:e0011399. [PMID: 37267343 DOI: 10.1371/journal.pntd.0011399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/22/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Dengue fever is an infectious disease that is imported into Shanghai, China and requires prevention and control measures. Controlling the vector Aedes albopictus through insecticide use is a key approach to dengue control. However, the rapid evolution of insecticide resistance in Ae. albopictus has raised concerns about the failure of dengue control efforts. Knockdown resistance (kdr) caused by point mutations in the voltage-gated sodium channel (VGSC) gene is a primary mechanism of pyrethroid resistance. In this study, we investigated the kdr mutations of Ae. albopictus in Shanghai and evaluated the trend in its evolution. METHODOLOGY/PRINCIPAL FINDINGS We collected 17 populations of Ae. albopictus from 15 districts in Shanghai in 2020, extracted genomic DNA from individual mosquitoes, and amplified Domain II, III, and IV in VGSC using PCR. Following sequencing, we obtained 658 VGSC sequences. We detected the nonsynonymous mutations V1016G, I1532T, and F1534S/C/I, among which V1016G and F1534C/I were reported in Shanghai for the first time and F1534I was a novel mutant allele in Ae. albopictus. The overall mutation frequency was 84.65%, with individual mutation frequencies ranging from 46.81% to 100%, excluding the Fengxian District population, which had a frequency of 0%. The V1016G and I1532T mutation types accounted for 7.14% and 3.42%, respectively. The mutant allele at codon 1534 accounted for 63.98% of all mutations, including TCC/S (62.77%), TGC/C (1.06%), and ATC/I (0.15%). We identified and classified five intron types in Domain III by length, including A (83 bp, 12.07%), B (68 bp, 87.30%), C (80 bp, 0.16%), D (72 bp, 0.16%), and E (70 bp, 0.31%). Individuals with intron B had a significant mutation tendency at codon 1534 relative to intron A (chi-square test, p < 0.0001). We found no correlation between mutation frequency and the amount of pyrethroid used (Pearson correlation, p = 0.4755). CONCLUSIONS/SIGNIFICANCE In recent years, kdr mutations in the Ae. albopictus population in Shanghai have rapidly evolved, as evidenced by an increase in mutation types and significantly increased mutation frequency. The F1534I/ATC mutant allele was found to be a novel mutation, F1534C/TGC was reported for the first time in Shanghai, and intron B in Domain III was significantly associated with mutation frequency at codon 1534. Continuous monitoring of resistance changes and strict regulation of insecticide use are required.
Collapse
Affiliation(s)
- Hao Yuan
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Wenqi Shan
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Yuhang Zhang
- The 1st Cadet Corp, College of Basic Medical Science, Naval Medical University, Shanghai, China
| | - Hanlu Yan
- The 1st Cadet Corp, College of Basic Medical Science, Naval Medical University, Shanghai, China
| | - Yikai Li
- The 1st Cadet Corp, College of Basic Medical Science, Naval Medical University, Shanghai, China
| | - Qiuming Zhou
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Haowei Dong
- Department of Pathogen Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Feng Tao
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hongxia Liu
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Peien Leng
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Heng Peng
- Department of Pathogen Biology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Yajun Ma
- Department of Naval Medicine, Naval Medical University, Shanghai, China
| |
Collapse
|
11
|
Sombié A, Ouédraogo WM, Oté M, Saiki E, Sakurai T, Yaméogo F, Sanon A, McCall PJ, Kanuka H, Weetman D, Badolo A. Association of 410L, 1016I and 1534C kdr mutations with pyrethroid resistance in Aedes aegypti from Ouagadougou, Burkina Faso, and development of a one-step multiplex PCR method for the simultaneous detection of 1534C and 1016I kdr mutations. Parasit Vectors 2023; 16:137. [PMID: 37076920 PMCID: PMC10116651 DOI: 10.1186/s13071-023-05743-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 03/16/2023] [Indexed: 04/21/2023] Open
Abstract
BACKGROUND Since 2000, Burkina Faso has experienced regular dengue cases and outbreaks, making dengue an increasingly important health concern for the country. Previous studies in Burkina Faso reported that resistance of Aedes aegypti to pyrethroid insecticides was associated with the F1534C and V1016I kdr mutations. The current study reports high resistance of Ae. aegypti populations to pyrethroid insecticides, likely supported by mutations in the voltage-gated sodium channel, here evidenced by genotyping the kdr SNPs V410L, V1016I and F1534C. We also describe a new multiplex PCR-based diagnostic of F1534C and V1016I kdr SNPs. METHODS Larvae of Ae. aegypti were collected from three health districts of Ouagadougou in 2018. The resistance status of Ae. aegypti to permethrin (15 μg/ml) and deltamethrin (10 μg/ml) was tested using bottles and to malathion (5%) using WHO tube tests. All bioassays used 1-h exposure and mortality recorded 24 h post-exposure. Bioassay results were interpreted according to WHO thresholds for resistance diagnosis. The kdr mutations were screened using AS-PCR and TaqMan methods in exposed and non-exposed Aedes mosquitoes. RESULTS Females from all health districts were resistant to permethrin and deltamethrin (< 20% mortality) but were fully susceptible to 5% malathion. The F1534C and V1016I kdr mutations were successfully detected using a newly developed multiplex PCR in perfect agreement with TaqMan method. The 1534C/1016I/410L haplotype was correlated with permethrin resistance but not with deltamethrin resistance; however, the test power was limited by a low frequency of dead individuals in deltamethrin exposure. CONCLUSIONS Resistance to pyrethroid insecticides is associated with kdr mutant haplotypes, while the absence of substantial resistance to malathion suggests that it remains a viable option for dengue vector control in Ouagadougou.
Collapse
Affiliation(s)
- Aboubacar Sombié
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Wendegoudi Mathias Ouédraogo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
- Programme National de Lutte Contre Les Maladies Tropicales Négligées, Ministère de la Santé, Ouagadougou, Burkina Faso
| | - Manabu Oté
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - Erisha Saiki
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Tatsuya Sakurai
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Laboratory Animal Facilities, The Jikei University School of Medicine, Tokyo, Japan
| | - Félix Yaméogo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Antoine Sanon
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| | - Philip J. McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Hirotaka Kanuka
- Center for Medical Entomology, The Jikei University School of Medicine, Tokyo, Japan
- Department of Tropical Medicine, The Jikei University School of Medicine, Tokyo, Japan
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Athanase Badolo
- Laboratoire d’Entomologie Fondamentale et Appliquée, Université Joseph Ki-Zerbo, Ouagadougou, Burkina Faso
| |
Collapse
|
12
|
Tanzila G, Rasheed SB, Khan NH, Kausar A, Jahan F, Wahid S. INSECTICIDE SUSCEPTIBILITY AND DETECTION OF kdr-GENE MUTATIONS IN AEDES AEGYPTI OF PESHAWAR, PAKISTAN. Acta Trop 2023; 242:106919. [PMID: 37028585 DOI: 10.1016/j.actatropica.2023.106919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/08/2023]
Abstract
Dengue is a common disease in Peshawar, Pakistan whose primary vector is Aedes aegypti mosquito. Due to absence of vaccines and proper drugs for dengue, vector control is a necessary tool. Insecticide resistance in vectors is a threat to the control of dengue vector. This study presents the susceptibility status of Ae. aegypti to eight insecticides in district Peshawar and screen the mutations in knock down resistant gene (kdr). Ae. aegypti were found highly resistant to DDT and Deltamethrin while highly susceptible to Cyfluthrin and Bendiocarb. DNA sequencing of two domains (II and III) of kdr-gene have detected four SNPs in domain IIS6 at positions S989P and V1016G and two mutations at position T1520I and F1534C in domain IIIS6. Results showed a low frequency i.e. 0.19 and 0.12 for S989P and V1016G, moderate for T1520I (0.42) and high frequency for F1534C (0.86). Mutational combinations showed that the predominant combination was SSVVTICC (43%) in which T1520I was heterozygous and F1534C was homozygous mutant. This study will be helpful in designing vector control strategies for the control of dengue in the studied area and will provide first knowledge about Kdr gene mutations that confer resistance in this species.
Collapse
Affiliation(s)
- Gule Tanzila
- Jinnah College for Women, University of Peshawar, Peshawar 25000, Pakistan
| | | | - Nazma Habib Khan
- Department of Zoology, University of Peshawar, Peshawar 25000, Pakistan
| | - Aisha Kausar
- Department of Zoology, University of Peshawar, Peshawar 25000, Pakistan
| | - Fatima Jahan
- Department of Zoology, Shaheed Benazir Bhutto Women University, Peshawar 25000, Pakistan
| | - Sobia Wahid
- Department of Zoology, University of Peshawar, Peshawar 25000, Pakistan.
| |
Collapse
|
13
|
Marcombe S, Shimell K, Savage R, Howlett E, Luangamath P, Nilaxay S, Vungkyly V, Baby A, King M, Clarke J, Jeffries C, Jojo J, Lacey E, Bhatty F, Mabika D, Dela Cruz A, Fisher C, Mbadu M, Despiniadis I, Brey PT, Thammavong P, Jones AK. Detection of pyrethroid resistance mutations and intron variants in the voltage-gated sodium channel of Aedes (Stegomyia) aegypti and Aedes (Stegomyia) albopictus mosquitoes from Lao People's Democratic Republic. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:424-434. [PMID: 35593512 PMCID: PMC9790263 DOI: 10.1111/mve.12580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 05/03/2022] [Indexed: 06/01/2023]
Abstract
In Lao People's Democratic Republic, Aedes aegypti (Linnaeus 1762) and Aedes albopictus (Skuse 1894) mosquitoes (Diptera: Culicidae) are vectors of arboviral diseases such as dengue. As the treatment for these diseases is limited, control of the vectors with the use of pyrethroid insecticides is still essential. However, mutations in the voltage-gated sodium channel (vgsc) gene giving rise to pyrethroid resistance are threatening vector control programs. Here, we analysed both Ae. aegypti and Ae. albopictus mosquitoes, which were collected in different districts of Laos (Kaysone Phomvihane, Vangvieng, Saysettha and Xaythany), for vgsc mutations commonly found throughout Asia (S989P, V1016G and F1534C). Sequences of the vgsc gene showed that the F1534C mutation was prevalent in both Aedes species. S989P and V1016G mutations were detected in Ae. aegypti from each site and were always found together. In addition, the mutation T1520I was seen in Ae. albopictus mosquitoes from Saysettha district as well as in all Ae. aegypti samples. Thus, mutations in the vgsc gene of Ae. aegypti are prevalent in the four districts studied indicating growing insecticide resistance throughout Laos. Constant monitoring programmes and alternative strategies for controlling Aedes should be utilized in order to prolong the effectiveness of pyrethroids thereby maximizing vector control.
Collapse
Affiliation(s)
- Sebastien Marcombe
- Institut Pasteur du LaosMinistry of HealthVientianeLao People's Democratic Republic
| | - Katherine Shimell
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Rachel Savage
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Edward Howlett
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | | | - Somphat Nilaxay
- Institut Pasteur du LaosMinistry of HealthVientianeLao People's Democratic Republic
| | - Vacky Vungkyly
- Institut Pasteur du LaosMinistry of HealthVientianeLao People's Democratic Republic
| | - Anne Baby
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Mathew King
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Josie Clarke
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Chloe Jeffries
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Josna Jojo
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Emily Lacey
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Farris Bhatty
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Dadirayi Mabika
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Andrea Dela Cruz
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Cerys Fisher
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Milca Mbadu
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Iasonas Despiniadis
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| | - Paul T. Brey
- Institut Pasteur du LaosMinistry of HealthVientianeLao People's Democratic Republic
| | - Phoutmany Thammavong
- Institut Pasteur du LaosMinistry of HealthVientianeLao People's Democratic Republic
| | - Andrew K. Jones
- Department of Biological and Medical SciencesOxford Brookes University, HeadingtonOxfordUK
| |
Collapse
|
14
|
Katusele M, Lagur S, Endersby-Harshman N, Demok S, Goi J, Vincent N, Sakur M, Dau A, Kilepak L, Gideon S, Pombreaw C, Makita L, Hoffmann A, Robinson LJ, Laman M, Karl S. Insecticide resistance in malaria and arbovirus vectors in Papua New Guinea, 2017-2022. Parasit Vectors 2022; 15:426. [PMID: 36376932 PMCID: PMC9664807 DOI: 10.1186/s13071-022-05493-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 09/13/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Insecticide resistance (IR) monitoring is essential for evidence-based control of mosquito-borne diseases. While widespread pyrethroid resistance in Anopheles and Aedes species has been described in many countries, data for Papua New Guinea (PNG) are limited. Available data indicate that the local Anopheles populations in PNG remain pyrethroid-susceptible, making regular IR monitoring even more important. In addition, Aedes aegypti pyrethroid resistance has been described in PNG. Here, Anopheles and Aedes IR monitoring data generated from across PNG between 2017 and 2022 are presented. METHODS Mosquito larvae were collected in larval habitat surveys and through ovitraps. Mosquitoes were reared to adults and tested using standard WHO susceptibility bioassays. DNA from a subset of Aedes mosquitoes was sequenced to analyse the voltage-sensitive sodium channel (Vssc) region for any resistance-related mutations. RESULTS Approximately 20,000 adult female mosquitoes from nine PNG provinces were tested. Anopheles punctulatus sensu lato mosquitoes were susceptible to pyrethroids but there were signs of reduced mortality in some areas. Some Anopheles populations were also resistant to DDT. Tests also showed that Aedes. aegypti in PNG are resistant to pyrethroids and DDT and that there was also likelihood of bendiocarb resistance. A range of Vssc resistance mutations were identified. Aedes albopictus were DDT resistant and were likely developing pyrethroid resistance, given a low frequency of Vssc mutations was observed. CONCLUSIONS Aedes aegypti is highly pyrethroid resistant and also shows signs of resistance against carbamates in PNG. Anopheles punctulatus s.l. and Ae. albopictus populations exhibit low levels of resistance against pyrethroids and DDT in some areas. Pyrethroid-only bed nets are currently the only programmatic vector control tool used in PNG. It is important to continue to monitor IR in PNG and develop proactive insecticide resistance management strategies in primary disease vectors to retain pyrethroid susceptibility especially in the malaria vectors for as long as possible.
Collapse
Affiliation(s)
- Michelle Katusele
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Solomon Lagur
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Nancy Endersby-Harshman
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria Australia
| | - Samuel Demok
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Joelyn Goi
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Naomi Vincent
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
- Burnet Institute of Medical Research, Melbourne, Victoria Australia
- Papua New Guinea National Department of Health, Port Moresby, National Capitol District Papua New Guinea
| | - Muker Sakur
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Absalom Dau
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Lemen Kilepak
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Stephen Gideon
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
- Papua New Guinea National Department of Health, Port Moresby, National Capitol District Papua New Guinea
| | - Christine Pombreaw
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Leo Makita
- Papua New Guinea National Department of Health, Port Moresby, National Capitol District Papua New Guinea
| | - Ary Hoffmann
- School of BioSciences, Bio21 Institute, The University of Melbourne, Parkville, Victoria Australia
| | - Leanne J. Robinson
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
- Burnet Institute of Medical Research, Melbourne, Victoria Australia
- School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria Australia
| | - Moses Laman
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
| | - Stephan Karl
- PNG Institute of Medical Research, Madang, Madang Province Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Smithfield, Queensland Australia
| |
Collapse
|
15
|
Mashlawi AM, Al-Nazawi AM, Noureldin EM, Alqahtani H, Mahyoub JA, Saingamsook J, Debboun M, Kaddumukasa M, Al-Mekhlafi HM, Walton C. Molecular analysis of knockdown resistance (kdr) mutations in the voltage-gated sodium channel gene of Aedes aegypti populations from Saudi Arabia. PARASITES & VECTORS 2022; 15:375. [PMID: 36261845 PMCID: PMC9583590 DOI: 10.1186/s13071-022-05525-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/02/2022] [Indexed: 12/04/2022]
Abstract
Background The Aedes aegypti mosquito is the primary vector for dengue, chikungunya, yellow fever and Zika viruses worldwide. The first record of Ae. aegypti in southwestern Saudi Arabia was in 1956. However, the first outbreak and cases of dengue fever were reported in 1994, and cases have increased in recent years. Vector control for Ae. aegypti mainly uses pyrethroid insecticides in outdoor and indoor space spraying. The constant use of pyrethroids has exerted intense selection pressure for developing target-site mutations in the voltage-gated sodium channel (vgsc) gene in Ae. Aegypti against pyrethroids—mutations that have led to knockdown resistance (kdr). Methods Aedes aegypti field populations from five regions (Jazan, Sahil, Makkah, Jeddah and Madinah) of southwestern Saudi Arabia were genotyped for known kdr mutations in domains IIS6 and IIIS6 of the vgsc gene using polymerase chain reaction (PCR) amplification and sequencing. We estimated the frequency of kdr mutations and genotypes from Saudi Arabia as well as from other countries, Thailand, Myanmar (Southeast Asia) and Uganda (East Africa). We constructed haplotype networks to infer the evolutionary relationships of these gene regions. Results The three known kdr mutations, S989P, V1016G (IIS6) and F1534C (IIIS6), were detected in all five regions of Saudi Arabia. Interestingly, the triple homozygous wild genotype was reported for the first time in two individuals from the highlands of the Jazan region and one from the Al-Quoz, Sahil region. Overall, nine genotypes comprising four haplotypes were observed in southwestern Saudi Arabia. The median-joining haplotype networks of eight populations from Saudi Arabia, Southeast Asia and East Africa for both the IIS6 and IIIS6 domains revealed that haplotype diversity was highest in Uganda and in the Jazan and Sahil regions of Saudi Arabia, whereas haplotype diversity was low in the Jeddah, Makkah and Madinah regions. Median-joining haplotype networks of both domains indicated selection acting on the kdr-mutation containing haplotypes in Saudi Arabia. Conclusions The presence of wild type haplotypes without any of the three kdr mutations, i.e. that are fully susceptible, in Saudi Arabia indicates that further consideration should be given to insecticide resistance management strategies that could restore pyrethroid sensitivity to the populations of Ae. aegypti in Saudi Arabia as part of an integrative vector control strategy. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05525-y.
Collapse
|
16
|
Updating the Insecticide Resistance Status of Aedes aegypti and Aedes albopictus in Asia: A Systematic Review and Meta-Analysis. Trop Med Infect Dis 2022; 7:tropicalmed7100306. [PMID: 36288047 PMCID: PMC9607256 DOI: 10.3390/tropicalmed7100306] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/21/2022] [Accepted: 10/13/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Aedes aegypti and Aedes albopictus are two important vectors of several important arboviruses, including the dengue, chikungunya, and Zika viruses. Insecticide application is an important approach to reduce vector abundance during Aedes spp.-borne outbreaks in the absence of effective vaccines and treatments. However, insecticide overuse can result in the development of resistance, and careful monitoring of resistance markers is required. Methods: This meta-analysis and systematic review explored the spatial and temporal patterns of insecticide resistance in Asia from 2000 to 2021. PubMed, Scopus, EbscoHost, and Embase were used to enhance the search capability. The random-effects model was applied for the 94 studies that met our inclusion criteria for qualitative synthesis and meta-analysis. Results: Four major insecticides were studied (malathion, dichlorodiphenyltrichloroethane, permethrin, and deltamethrin). Dichlorodiphenyltrichloroethane resistance rates were high in both Ae. aegypti and Ae. albopictus (68% and 64%, respectively). Conversely, malathion resistance was less prevalent in Ae. aegypti (3%), and deltamethrin resistance was less common in Ae. albopictus (2%). Ae. aegypti displayed consistently high resistance rates (35%) throughout the study period, whereas the rate of insecticide resistance in Ae. albopictus increased from 5% to 12%. The rates of the major kdr mutations F1534C, V1016G, and S989P were 29%, 26%, and 22%, respectively. Conclusions: Insecticide resistance in both Ae. aegypti and Ae. albopictus is widespread in Asia, although the rates vary by country. Continuous monitoring of the resistance markers and modification of the control strategies will be important for preventing unexpected outbreaks. This systematic review and meta-analysis provided up-to-date information on insecticide resistance in dengue-endemic countries in Asia.
Collapse
|
17
|
Chung HH, Tsai CH, Teng HJ, Tsai KH. The role of voltage-gated sodium channel genotypes in pyrethroid resistance in Aedes aegypti in Taiwan. PLoS Negl Trop Dis 2022; 16:e0010780. [PMID: 36137080 PMCID: PMC9531798 DOI: 10.1371/journal.pntd.0010780] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 10/04/2022] [Accepted: 09/01/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aedes aegypti is the major vector of dengue that threatens public health in tropical and subtropical regions. Pyrethroid-based control strategies effectively control this vector, but the repeated usage of the same insecticides leads to resistance and hampers control efforts. Therefore, efficient and prompt monitoring of insecticide resistance in local mosquito populations is critical for dengue control. Methodology/Principal finding We collected Ae. aegypti in southern Taiwan in March and October 2016. We analyzed the voltage-gated sodium channel (vgsc) genotypes of parentals (G0) and G1 adults after cypermethrin insecticide bioassay. Our results showed that four VGSC mutations (S989P, V1016G, F1534C, and D1763Y) associated with resistance were commonly detected in field-collected Ae. aegypti. The frequencies of these four mutations in the local mosquito population were significantly higher in October (0.29, 0.4, 0.27 and 0.11) than in March (0.09, 0.16, 0.18 and 0.03). Specific vgsc combined genotypes composed of the one to four such mutations (SGFY/SGFY, SVCD/SVCD, SGFY/PGFD, SVCD/SGFY, PGFD/PGFD, and SVCD/PGFD) shifted towards higher frequencies in October, implying their resistance role. In addition, the cypermethrin exposure bioassay data supported the field observations. Moreover, our study observed an association between the resistance level and the proportion of resistance genotypes in the population. Conclusions/Significance This is the first study to demonstrate the role of four-locus vgsc genotypes in resistance evaluation in a local Ae. aegypti population in Taiwan. This alternative method using resistance-associated genotypes as an indicator of practically insecticide resistance monitoring is a useful tool for providing precise and real-time information for decision makers. Dengue outbreaks occur annually in Taiwan, and pyrethroid insecticides are commonly used to reduce mosquito density. Insecticide resistance of mosquitoes is commonly observed in the field and threatens vector control programs. Here, we analyzed the association between the combined vgsc genotype and resistance phenotype based on field surveillance data in March and October and a cypermethrin exposure bioassay. Resistance-attributable specific vgsc genotypes were proposed. Using the combined vgsc genotype rather than each vgsc allele is recommended for better resistance prediction to provide real-time information for control program managers.
Collapse
Affiliation(s)
- Han-Hsuan Chung
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
| | - Cheng-Hui Tsai
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
| | - Hwa-Jen Teng
- Center for Diagnostics and Vaccine Development, Centers for Disease Control, Ministry of Health and Welfare, Taipei, Taiwan
- * E-mail: (HJT); (KHT)
| | - Kun-Hsien Tsai
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei, Taiwan
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan
- * E-mail: (HJT); (KHT)
| |
Collapse
|
18
|
Chen H, Zhou Q, Dong H, Yuan H, Bai J, Gao J, Tao F, Ma H, Li X, Peng H, Ma Y. The pattern of kdr mutations correlated with the temperature in field populations of Aedes albopictus in China. Parasit Vectors 2021; 14:406. [PMID: 34399821 PMCID: PMC8365938 DOI: 10.1186/s13071-021-04906-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 07/30/2021] [Indexed: 11/10/2022] Open
Abstract
Background Aedes albopictus is the primary vector of dengue fever in China. This mosquito species has a wide distribution range in China and can be found in the tropical climate zones of southern provinces through to temperate climate zones of northern provinces. Insecticides are an important control method, especially during outbreaks of dengue fever, but increasing insecticide resistance raises the risk of failure to control vector-borne diseases. Knockdown resistance (kdr) caused by point mutations in the voltage-gated sodium channel (VGSC) gene is a key mechanism that confers resistance to pyrethroids. In this study we explored the characteristics and possible evolutionary trend of kdr mutation in Ae. albopictus based on analysis of the kdr mutations in field populations of mosquitoes in China. Methods A total of 1549 adult Ae. albopictus were collected from 18 sites in China from 2017 to 2019 and 50 individuals from three sites in the 1990s. A fragment of approximately 350 bp from part of the S6 segment in the VGSC gene domain III was amplified and sequenced. Using TCS software version 1.21A, we constructed haplotypes of the VGSC gene network and calculated outgroup probability of the haplotypes. Data of annual average temperatures (AAT) of the collection sites were acquired from the national database. The correlation between AAT of the collection site and the kdr mutation rate was analyzed by Pearson correlation using SPSS software version 21.0. Results The overall frequency of mutant allele F1534 was 45.6%. Nine mutant alleles were detected at codon 1534 in 15 field populations, namely TCC/TCG (S) (38.9%), TTG/CTG/CTC/TTA (L) (3.7%), TGC (C) (2.9%), CGC (R) (0.3%) and TGG (W) (0.1%). Only one mutant allele, ACC (T), was found at codon 1532, with a frequency of 6.4% in ten field populations. Moreover, multiple mutations at alleles I1532 and F1534 in a sample appeared in five populations. The 1534 mutation rate was significantly positively related to AAT (Pearson correlation: r(18) = 0.624, P = 0.0056), while the 1532 mutation rate was significantly negatively related to AAT (Pearson correlation: r(18) = − 0.645, P = 0.0038). Thirteen haplotypes were inferred, in which six mutant haplotypes were formed by one step, and one additional mutation formed the other six haplotypes. In the samples from the 1990s, no mutant allele was detected at codon 1532 of the VGSC gene. However, F1534S/TCC was found in HNHK94 with an unexpected frequency of 100%. Conclusions Kdr mutations are widespread in the field populations of Ae. albopictus in China. Two novel mutant alleles, F1534W/TGG and F1534R/CGC, were detected in this study. The 1534 kdr mutation appeared in the population of Ae. albopictus no later than the 1990s. The F1534 mutation rate was positively correlated with AAT, while the I1532 mutation rate was negatively correlated with AAT. These results indicate that iInsecticide usage should be carefully managed to slow down the spread of highly resistant Ae. albopictus populations, especially in the areas with higher AAT. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04906-z.
Collapse
Affiliation(s)
- Hanming Chen
- College of Naval Medicine, Naval Medical University, Shanghai, China
| | - Qiuming Zhou
- College of Naval Medicine, Naval Medical University, Shanghai, China
| | - Haowei Dong
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Hao Yuan
- College of Naval Medicine, Naval Medical University, Shanghai, China
| | - Jie Bai
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Jingpeng Gao
- College of Naval Medicine, Naval Medical University, Shanghai, China
| | - Feng Tao
- College of Naval Medicine, Naval Medical University, Shanghai, China
| | - Hui Ma
- Sixth Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiangyu Li
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China
| | - Heng Peng
- Department of Medical Microbiology and Parasitology, College of Basic Medical Sciences, Naval Medical University, Shanghai, China.
| | - Yajun Ma
- College of Naval Medicine, Naval Medical University, Shanghai, China.
| |
Collapse
|
19
|
Fang Y, Tambo E, Xue JB, Zhang Y, Zhou XN, Khater EIM. Molecular Analysis of Targeted Insecticide Resistance Gene Mutations in Field-Caught Mosquitos of Medical Importance From Saudi Arabia. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:1839-1848. [PMID: 33864372 PMCID: PMC8285008 DOI: 10.1093/jme/tjab048] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Indexed: 05/11/2023]
Abstract
Gene mutations on target sites can be a valuable indicator of the status of insecticide resistance. Jeddah, a global commercial and major port-of-entry city, is bearing the brunt of dengue disease burden in Saudi Arabia. In the current study, six genotypes of three codon combinations (989, 1016, and 1534) were observed on voltage-gated sodium channel (VGSC) gene in Jeddah's Aedes aegypti population, with PGF/PGC as the dominant one. Two types of introns between exon 20 and 21 on VGSC have been identified for the first time in Ae. aegypti in Saudi Arabia. Statistical and phylogenetic analyses showed that the intron type was significantly associated with the 1016 allele and may reflect the history of insecticide treatment in different continents. In addition, fixation of the L1014F allele on VGSC and G119S on acetylcholinesterase 1 gene was detected in local Culex quinquefasciatus populations, with frequencies of 95.24 and 100%, respectively. To the best of our knowledge, this is the first report of resistant-associated mutations in field-caught Cx. quinquefasciatus in Saudi Arabia. The high prevalence of insecticide resistance gene mutations in local primary mosquito vector species highlights the urgent need to carry out comprehensive insecticide resistance surveillance in Saudi Arabia.
Collapse
Affiliation(s)
- Yuan Fang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
- Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention–Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Ernest Tambo
- Public Health Pests Laboratory, Municipality of Jeddah Governorate, Jeddah 21577, Saudi Arabia
| | - Jing-Bo Xue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
- Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention–Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
- Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention–Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention, Shanghai 200025, China
- Chinese Center for Tropical Diseases Research, Shanghai 200025, China
- WHO Collaborating Centre for Tropical Diseases, Shanghai 200025, China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology, Shanghai 200025, China
- Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai 200025, China
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention–Shenzhen Center for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai 200025, China
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Emad I M Khater
- Public Health Pests Laboratory, Municipality of Jeddah Governorate, Jeddah 21577, Saudi Arabia
- Department of Entomology, Faculty of Science, Ain Shams University, Cairo 12413, Egypt
| |
Collapse
|
20
|
Endersby-Harshman NM, Ali A, Alhumrani B, Alkuriji MA, Al-Fageeh MB, Al-Malik A, Alsuabeyl MS, Elfekih S, Hoffmann AA. Voltage-sensitive sodium channel (Vssc) mutations associated with pyrethroid insecticide resistance in Aedes aegypti (L.) from two districts of Jeddah, Kingdom of Saudi Arabia: baseline information for a Wolbachia release program. Parasit Vectors 2021; 14:361. [PMID: 34247634 PMCID: PMC8273952 DOI: 10.1186/s13071-021-04867-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 06/30/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Dengue suppression often relies on control of the mosquito vector, Aedes aegypti, through applications of insecticides of which the pyrethroid group has played a dominant role. Insecticide resistance is prevalent in Ae. aegypti around the world, and the resulting reduction of insecticide efficacy is likely to exacerbate the impact of dengue. Dengue has been a public health problem in Saudi Arabia, particularly in Jeddah, since its discovery there in the 1990s, and insecticide use for vector control is widespread throughout the city. An alternative approach to insecticide use, based on blocking dengue transmission in mosquitoes by the endosymbiont Wolbachia, is being trialed in Jeddah following the success of this approach in Australia and Malaysia. Knowledge of insecticide resistance status of mosquito populations in Jeddah is a prerequisite for establishing a Wolbachia-based dengue control program as releases of Wolbachia mosquitoes succeed when resistance status of the release population is similar to that of the wild population. METHODS WHO resistance bioassays of mosquitoes with deltamethrin, permethrin and DDT were used in conjunction with TaqMan® SNP Genotyping Assays to characterize mutation profiles of Ae. aegypti. RESULTS Screening of the voltage-sensitive sodium channel (Vssc), the pyrethroid target site, revealed mutations at codons 989, 1016 and 1534 in Ae. aegypti from two districts of Jeddah. The triple mutant homozygote (1016G/1534C/989P) was confirmed from Al Safa and Al Rawabi. Bioassays with pyrethroids (Type I and II) and DDT showed that mosquitoes were resistant to each of these compounds based on WHO definitions. An association between Vssc mutations and resistance was established for the Type II pyrethroid, deltamethrin, with one genotype (989P/1016G/1534F) conferring a survival advantage over two others (989S/1016V/1534C and the triple heterozygote). An indication of synergism of Type I pyrethroid activity with piperonyl butoxide suggests that detoxification by cytochrome P450s accounts for some of the pyrethroid resistance response in Ae. aegypti populations from Jeddah. CONCLUSIONS The results provide a baseline for monitoring and management of resistance as well as knowledge of Vssc genotype frequencies required in Wolbachia release populations to ensure homogeneity with the target field population. Vssc mutation haplotypes observed show some similarity with those from Ae. aegypti in southeast Asia and the Indo-Pacific, but the presence of the triple mutant haplotype in three genotypes indicates that the species in this region may have a unique population history.
Collapse
Affiliation(s)
- Nancy M Endersby-Harshman
- PEARG, School of BioSciences, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC, Australia.
| | - AboElgasim Ali
- King Abdul-Aziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | - Basim Alhumrani
- King Abdul-Aziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | | | | | - Abdulaziz Al-Malik
- King Abdul-Aziz City for Science and Technology (KACST), Riyadh, Saudi Arabia
| | | | - Samia Elfekih
- PEARG, School of BioSciences, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC, Australia
- CSIRO, Australian Centre for Disease Preparedness, Geelong, VIC, Australia
| | - Ary A Hoffmann
- PEARG, School of BioSciences, Bio21 Institute, The University of Melbourne, 30 Flemington Rd, Parkville, VIC, Australia
| |
Collapse
|
21
|
Smith LB, Silva JJ, Chen C, Harrington LC, Scott JG. Fitness costs of individual and combined pyrethroid resistance mechanisms, kdr and CYP-mediated detoxification, in Aedes aegypti. PLoS Negl Trop Dis 2021; 15:e0009271. [PMID: 33760828 PMCID: PMC7990171 DOI: 10.1371/journal.pntd.0009271] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/25/2021] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Aedes aegypti is an important vector of many human diseases and a serious threat to human health due to its wide geographic distribution and preference for human hosts. A. aegypti also has evolved widespread resistance to pyrethroids due to the extensive use of this insecticide class over the past decades. Mutations that cause insecticide resistance result in fitness costs in the absence of insecticides. The fitness costs of pyrethroid resistance mutations in A. aegypti are still poorly understood despite their implications for arbovirus transmission. METHODOLOGY/PRINCIPLE FINDINGS We evaluated fitness based both on allele-competition and by measuring specific fitness components (i.e. life table and mating competition) to determine the costs of the different resistance mechanisms individually and in combination. We used four congenic A. aegypti strains: Rockefeller (ROCK) is susceptible to insecticides; KDR:ROCK (KR) contains only voltage-sensitive sodium channel (Vssc) mutations S989P+V1016G (kdr); CYP:ROCK (CR) contains only CYP-mediated resistance; and CYP+KDR:ROCK (CKR) contains both CYP-mediated resistance and kdr. The kdr allele frequency decreased over nine generations in the allele-competition study regardless of the presence of CYP-mediated resistance. Specific fitness costs were variable by strain and component measured. CR and CKR had a lower net reproductive rate (R0) than ROCK or KR, and KR was not different than ROCK. There was no correlation between the level of permethrin resistance conferred by the different mechanisms and their fitness cost ratio. We also found that CKR males had a reduced mating success relative to ROCK males when attempting to mate with ROCK females. CONCLUSIONS/SIGNIFICANCE Both kdr and CYP-mediated resistance have a fitness cost affecting different physiological aspects of the mosquito. CYP-mediated resistance negatively affected adult longevity and mating competition, whereas the specific fitness costs of kdr remains elusive. Understanding fitness costs helps us determine whether and how quickly resistance will be lost after pesticide application has ceased.
Collapse
Affiliation(s)
- Letícia B. Smith
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Juan J. Silva
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Connie Chen
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Laura C. Harrington
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Jeffrey G. Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
22
|
Yu JJ, Bong LJ, Panthawong A, Chareonviriyaphap T, Neoh KB. Repellency and Contact Irritancy Responses of Aedes aegypti (Diptera: Culicidae) Against Deltamethrin and Permethrin: A Cross-Regional Comparison. JOURNAL OF MEDICAL ENTOMOLOGY 2021; 58:379-389. [PMID: 32876326 DOI: 10.1093/jme/tjaa172] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Indexed: 06/11/2023]
Abstract
Control strategies exploiting the innate response of mosquitoes to chemicals are urgently required to complement existing traditional approaches. We therefore examined the behavioral responses of 16 field strains of Aedes aegypti (L.) from two countries, to deltamethrin and permethrin by using an excito-repellency (ER) test system. The result demonstrated that the escape percentage of Ae. aegypti exposed to pyrethroids did not vary significantly between the two countries in both contact and noncontact treatment despite the differing epidemiological patterns. Deltamethrin (contact: 3.57 ± 2.06% to 31.20 ± 10.71%; noncontact: 1.67 ± 1.67% to 17.31 ± 14.85%) elicited relatively lower responses to field mosquitoes when compared with permethrin (contact: 16.15 ± 4.07% to 74.19 ± 4.69%; noncontact: 3.45 ± 2.00% to 41.59 ± 6.98%) in contact and noncontact treatments. Compared with field strains, the mean percentage of escaping laboratory susceptible strain individuals were significantly high after treatments (deltamethrin contact: 72.26 ± 6.95%, noncontact: 61.10 ± 12.31%; permethrin contact: 78.67 ± 9.67%, noncontact: 67.07 ± 7.02%) and the escaped individuals spent significantly shorter time escaping from the contact and noncontact chamber. The results indicated a significant effect of resistance ratio on mean escape percentage, but some strains varied idiosyncratically compared to the increase in insecticide resistance. The results also illustrated that the resistance ratio had a significant effect on the mortality in treatments. However, the mortality in field mosquitoes that prematurely escaped from the treated contact chamber or in mosquitoes that stayed up to the 30-min experimental period showed no significant difference.
Collapse
Affiliation(s)
- Jin-Jia Yu
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Lee-Jin Bong
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| | - Amonrat Panthawong
- Department of Entomology, Faculty of Agriculture, Kasetsart University, Bangkok, Thailand
| | | | - Kok-Boon Neoh
- Department of Entomology, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
23
|
Jagadeesan R, Schlipalius DI, Singarayan VT, Nath NS, Nayak MK, Ebert PR. Unique genetic variants in dihydrolipoamide dehydrogenase (dld) gene confer strong resistance to phosphine in the rusty grain beetle, Cryptolestes ferrugineus (Stephens). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 171:104717. [PMID: 33357567 DOI: 10.1016/j.pestbp.2020.104717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 09/23/2020] [Accepted: 09/23/2020] [Indexed: 06/12/2023]
Abstract
The rusty grain beetle, Cryptolestes ferrugineus, a major pest of stored commodities, has developed very high levels (>1000×) of resistance to the fumigant phosphine. Resistance in this species is remarkably stronger than reported in any other stored product pests demanding the need to understand the molecular basis of this trait. Previous genetic studies in other grain insect pests identified specific variants in two major genes, rph1 and rph2 in conferring the strong resistance trait. However, in C. ferrugineus, although the gene, rph1 was identified as cytochrome-b5-fatty acid desaturase, the rph2 gene has not been reported so far. We tested the candidate gene for rph2, dihydrolipoamide dehydrogenase (dld) using the recently published transcriptome of C. ferrugineus and identified three variants, L73N and A355G + D360H, a haplotype, conferring resistance in this species. Our sequence analysis in resistant strain and phosphine selected resistant survivors indicates that these variants occur either alone as a homozygote or a mixture of heterozygotes (i.e complex heterozygotes) both conferring strong resistance. We also found that one of the three variants, possibly L73N expressing "dominant" trait at low frequency in resistant insects. Comparison of dld sequences between Australian and Chinese resistant strain of this species confirmed that the identified variants are highly conserved. Our fitness analysis indicated that resistant insects may not incur significant biological costs in the absence of phosphine selection for 19 generations. Thus, we propose that the observed high levels of resistance in C. ferrugineus could be primarily due to the characteristics of three unique variants, L73N and A355G + D360H within dld.
Collapse
Affiliation(s)
- Rajeswaran Jagadeesan
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, Queensland, Australia.
| | - David I Schlipalius
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Virgine T Singarayan
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Nisa S Nath
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Manoj K Nayak
- Department of Agriculture and Fisheries, Ecosciences Precinct, Dutton Park, Queensland, Australia
| | - Paul R Ebert
- School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
24
|
Pinch M, Rodriguez SD, Mitra S, Kandel Y, Moore E, Hansen IA. Low Levels of Pyrethroid Resistance in Hybrid Offspring of a Highly Resistant and a More Susceptible Mosquito Strain. JOURNAL OF INSECT SCIENCE (ONLINE) 2020; 20:5866135. [PMID: 32610346 PMCID: PMC7329315 DOI: 10.1093/jisesa/ieaa060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 04/30/2023]
Abstract
The use of insecticides has been a central approach to control disease-transmitting mosquitoes for the last century. The high prevalence of pyrethroid use as public health insecticides has resulted in the evolution of pyrethroid resistance in many populations of Aedes aegypti (Linnaeus) (Diptera: Culicidae), throughout its global distribution range. Insecticide resistance is often correlated with an associated fitness cost. In this project, we studied the phenotypes of hybrid mosquitoes derived from crossing a pyrethroid-resistant strain of Ae. aegypti (Puerto Rico [PR]) with a more susceptible one (Rockefeller [ROCK]). We first sequenced and compared the para gene of both original strains. We then crossed males from one strain with females of the other, creating two hybrids (Puertofeller, Rockorico). We used a Y-tube choice assay to measure the attraction of these strains towards a human host. We then compared the levels of pyrethroid resistance in the different strains. We found three known resistance mutations in the para gene sequence of the PR strain. In our attraction assays, PR females showed lower attraction to humans, than the ROCK females. Both hybrid strains showed strong attraction to a human host. In the insecticide resistance bottle assays, both hybrid strains showed marginal increases in resistance to permethrin compared to the more susceptible ROCK strain. These results suggest that hybrids of sensitive and permethrin-resistant mosquitoes have an incremental advantage compared to more susceptible mosquitoes when challenged with permethrin. This explains the rapid spread of permethrin resistance that was observed many times in the field.
Collapse
Affiliation(s)
- Matthew Pinch
- Department of Biology, New Mexico State University, Las Cruces, NM
- Corresponding author, e-mail:
| | | | - Soumi Mitra
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Yashoda Kandel
- Department of Biology, New Mexico State University, Las Cruces, NM
| | - Emily Moore
- Department of Biology, New Mexico State University, Las Cruces, NM
- Current address: Department of Pediatrics – Occupational Therapy, University of New Mexico School of Medicine, Albuquerque, NM 87106
| | - Immo A Hansen
- Department of Biology, New Mexico State University, Las Cruces, NM
- Institute of Applied Biosciences, New Mexico State University, Las Cruces, NM
| |
Collapse
|
25
|
Villanueva-Segura K, Ponce-Garcia G, Lopez-Monroy B, Mora-Jasso E, Perales L, Gonzalez-Santillan FJ, Ontiveros-Zapata K, Davila-Barboza JA, Flores AE. Multiplex PCR for simultaneous genotyping of kdr mutations V410L, V1016I and F1534C in Aedes aegypti (L.). Parasit Vectors 2020; 13:325. [PMID: 32586378 PMCID: PMC7318494 DOI: 10.1186/s13071-020-04193-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/17/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Knockdown resistance (kdr) is the main mechanism that confers resistance to pyrethroids and DDT. This is a product of non-synonymous mutations in the voltage-gated sodium channel (vgsc) gene, and these mutations produce a change of a single amino acid which reduces the affinity of the target site for the insecticide molecule. In Mexico, V410L, V1016I and F1534C mutations are common in pyrethroid-resistant Aedes aegypti (L.) populations. METHODS A multiplex PCR was developed to detect the V410L, V1016I and F1534C mutations in Ae. aegypti. The validation of the technique was carried out by DNA sequencing using field populations previously characterized for the three mutations through allele-specific PCR (AS-PCR) and with different levels of genotypic frequencies. RESULTS The standardized protocol for multiplex end-point PCR was highly effective in detecting 15 genotypes considering the three mutations V410L, V1106I and F1534C, in 12 field populations of Ae. aegypti from Mexico. A complete concordance with AS-PCR and DNA sequencing was found for the simultaneous detection of the three kdr mutations. CONCLUSIONS Our diagnostic method is highly effective for the simultaneous detection of V410L, V1016I and F1534C, when they co-occur. This technique represents a viable alternative to complement and strengthen current monitoring and resistance management strategies against Ae. aegypti.
Collapse
Affiliation(s)
- Karina Villanueva-Segura
- Universidad Autonoma de Nuevo Leon (UANL), Av, Universidad s/n Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Gustavo Ponce-Garcia
- Universidad Autonoma de Nuevo Leon (UANL), Av, Universidad s/n Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Beatriz Lopez-Monroy
- Universidad Autonoma de Nuevo Leon (UANL), Av, Universidad s/n Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Esteban Mora-Jasso
- Universidad Autonoma de Nuevo Leon (UANL), Av, Universidad s/n Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Lucia Perales
- Universidad Autonoma de Nuevo Leon (UANL), Av, Universidad s/n Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Francisco J Gonzalez-Santillan
- Universidad Autonoma de Nuevo Leon (UANL), Av, Universidad s/n Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Kevin Ontiveros-Zapata
- Universidad Autonoma de Nuevo Leon (UANL), Av, Universidad s/n Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Jesus A Davila-Barboza
- Universidad Autonoma de Nuevo Leon (UANL), Av, Universidad s/n Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico
| | - Adriana E Flores
- Universidad Autonoma de Nuevo Leon (UANL), Av, Universidad s/n Cd. Universitaria, 66455, San Nicolas de los Garza, N.L., Mexico.
| |
Collapse
|
26
|
Chen M, Du Y, Nomura Y, Zhorov BS, Dong K. Chronology of sodium channel mutations associated with pyrethroid resistance in Aedes aegypti. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2020; 104:e21686. [PMID: 32378259 PMCID: PMC8060125 DOI: 10.1002/arch.21686] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 05/11/2023]
Abstract
Aedes aegypti is the primary mosquito vector of dengue, yellow fever, Zika and chikungunya. Current strategies to control Ae. aegypti rely heavily on insecticide interventions. Pyrethroids are a major class of insecticides used for mosquito control because of their fast acting, highly insecticidal activities and low mammalian toxicity. However, Ae. aegypti populations around the world have begun to develop resistance to pyrethroids. So far, more than a dozen mutations in the sodium channel gene have been reported to be associated with pyrethroid resistance in Ae. aegypti. Co-occurrence of resistance-associated mutations is common in pyrethroid-resistant Ae. aegypti populations. As global use of pyrethroids in mosquito control continues, new pyrethroid-resistant mutations keep emerging. In this microreview, we compile pyrethroid resistance-associated mutations in Ae. aegypti in a chronological order, as they were reported, and summarize findings from functional evaluation of these mutations in an in vitro sodium channel expression system. We hope that the information will be useful for tracing possible evolution of pyrethroid resistance in this important human disease vector, in addition to the development of methods for global monitoring and management of pyrethroid resistance in Ae. aegypti.
Collapse
Affiliation(s)
- Mengli Chen
- Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, College of life sciences, China Jiliang University, Hangzhou, China
| | - Yuzhe Du
- USDA-ARS, Biological Control of Pest Research Unit, 59 Lee Road, Stoneville, MS 38776, USA
| | - Yoshiko Nomura
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| | - Boris S. Zhorov
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8N 3Z5, Canada
- Sechenov Institute of Evolutionary Physiology and Biochemistry, Russian Academy of Sciences, St. Petersburg, 194223, Russia
| | - Ke Dong
- Department of Entomology, Genetics and Neuroscience Programs, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
27
|
Kawada H, Futami K, Higa Y, Rai G, Suzuki T, Rai SK. Distribution and pyrethroid resistance status of Aedes aegypti and Aedes albopictus populations and possible phylogenetic reasons for the recent invasion of Aedes aegypti in Nepal. Parasit Vectors 2020; 13:213. [PMID: 32321546 PMCID: PMC7178601 DOI: 10.1186/s13071-020-04090-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 04/15/2020] [Indexed: 01/03/2023] Open
Abstract
Background When the first systematic list of mosquitoes in Nepal was reported in 1990, there was no description of Aedes aegypti (L.), while Aedes albopictus (Skuse) has been included in the Stegomyia subgroup since the 1950s. The first record of Ae. aegypti in Nepal was reported in 2009, suggesting some coincidence between the invasion of this species and the first record of dengue fever in Nepal in 2006. Results We performed a field survey of the distribution and insecticide susceptibility of Ae. aegypti and Ae. albopictus in Nepal in 2017 and 2018. Mosquito larvae were collected from used tires located along the streets of Kathmandu, Bharatpur and Pokhara, and a simplified bioassay was used to assess the susceptibility of the larvae to pyrethroid insecticides using d-allethrin. The presence or absence of point mutations in the voltage-gated sodium channel was also detected by direct sequencing. V1016G was detected at a high frequency and a strong correlation was observed between the frequencies of V1016G and susceptibility indices in Ae. aegypti populations. F1534C was also detected at a relatively low frequency. In Ae. albopictus populations, susceptibilities to d-allethrin were high and no point mutations were detected. Analysis of the cytochrome c oxidase subunit 1 (cox1) gene was performed for assessing genetic diversity and the existence of two strains were identified in Ae. aegypti populations. One consisted of 9 globally-distributed haplotypes while the other was derived from an African haplotype. Conclusions The high pyrethroid resistance, high V1016G frequency, and relatively low quantity of insecticides used to control dengue vectors in Nepal may have resulted in only weak selection pressure favoring insecticide resistance and could support the hypothesis that this species has recently been introduced from neighboring Asian countries where pyrethroid resistance is relatively widespread.![]()
Collapse
Affiliation(s)
- Hitoshi Kawada
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.
| | - Kyoko Futami
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yukiko Higa
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan.,Departmanet of Medical Entomology, National Institute of Infectious Diseases, Tokyo, Japan
| | - Ganesh Rai
- Shi-Gan International College of Science and Technology, Kathmandu, Nepal
| | - Takashi Suzuki
- Faculty of Health Science, Kobe-Tokiwa University, Kobe, Japan.,Division of Medical Informatics and Bioinformatics, Kobe University Hospital, Kobe, Japan
| | - Shiba Kumar Rai
- Shi-Gan International College of Science and Technology, Kathmandu, Nepal.,Research Division, Nepal Medical College, Gokarneswor, Kathmandu, Nepal
| |
Collapse
|
28
|
Fan Y, O'Grady P, Yoshimizu M, Ponlawat A, Kaufman PE, Scott JG. Evidence for both sequential mutations and recombination in the evolution of kdr alleles in Aedes aegypti. PLoS Negl Trop Dis 2020; 14:e0008154. [PMID: 32302303 PMCID: PMC7164583 DOI: 10.1371/journal.pntd.0008154] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 02/19/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Aedes aegypti is a globally distributed vector of human diseases including dengue, yellow fever, chikungunya, and Zika. Pyrethroid insecticides are the primary means of controlling adult A. aegypti populations to suppress arbovirus outbreaks, but resistance to pyrethroid insecticides has become a global problem. Mutations in the voltage-sensitive sodium channel (Vssc) gene are a major mechanism of pyrethroid resistance in A. aegypti. Vssc resistance alleles in A. aegypti commonly have more than one mutation. However, our understanding of the evolutionary dynamics of how alleles with multiple mutations arose is poorly understood. METHODOLOGY/PRINCIPAL FINDINGS We examined the geographic distribution and association between the common Vssc mutations (V410L, S989P, V1016G/I and F1534C) in A. aegypti by analyzing the relevant Vssc fragments in 25 collections, mainly from Asia and the Americas. Our results showed all 11 Asian populations had two types of resistance alleles: 1534C and 989P+1016G. The 1534C allele was more common with frequencies ranging from 0.31 to 0.88, while the 989P+1016G frequency ranged from 0.13 to 0.50. Four distinct alleles (410L, 1534C, 410L+1534C and 410L+1016I+1534C) were detected in populations from the Americas. The most common was 410L+1016I+1534C with frequencies ranging from 0.50 to 1.00, followed by 1534C with frequencies ranging from 0.13 to 0.50. Our phylogenetic analysis of Vssc supported multiple independent origins of the F1534C mutation. Our results indicated the 410L+1534C allele may have arisen by addition of the V410L mutation to the 1534C allele, or by a crossover event. The 410L+1016I+1534C allele was the result of one or two mutational steps from a 1534C background. CONCLUSIONS/SIGNIFICANCE Our data corroborated previous geographic distributions of resistance mutations and provided evidence for both recombination and sequential accumulation of mutations contributing to the molecular evolution of resistance alleles in A. aegypti.
Collapse
Affiliation(s)
- Yinjun Fan
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Patrick O'Grady
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
| | - Melissa Yoshimizu
- Vector-Borne Disease Section, Division of Communicable Disease Control, Center for Infectious Diseases, California Department of Public Health, Sacramento, California, United States of America
| | | | - Phillip E. Kaufman
- Entomology and Nematology Department, University of Florida, Gainesville, Florida, United States of America
| | - Jeffrey G. Scott
- Department of Entomology, Comstock Hall, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
29
|
Cosme LV, Gloria-Soria A, Caccone A, Powell JR, Martins AJ. Evolution of kdr haplotypes in worldwide populations of Aedes aegypti: Independent origins of the F1534C kdr mutation. PLoS Negl Trop Dis 2020; 14:e0008219. [PMID: 32298261 PMCID: PMC7188295 DOI: 10.1371/journal.pntd.0008219] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 04/28/2020] [Accepted: 03/13/2020] [Indexed: 01/30/2023] Open
Abstract
Aedes aegypti is the primary vector of dengue, chikungunya, Zika, and urban yellow fever. Insecticides are often the most effective tools to rapidly decrease the density of vector populations, especially during arbovirus disease outbreaks. However, the intense use of insecticides, particularly pyrethroids, has selected for resistant mosquito populations worldwide. Mutations in the voltage gated sodium channel (NaV) are among the principal mechanisms of resistance to pyrethroids and DDT, also known as “knockdown resistance,” kdr. Here we report studies on the origin and dispersion of kdr haplotypes in samples of Ae. aegypti from its worldwide distribution. We amplified the IIS6 and IIIS6 NaV segments from pools of Ae. aegypti populations from 15 countries, in South and North America, Africa, Asia, Pacific, and Australia. The amplicons were barcoded and sequenced using NGS Ion Torrent. Output data were filtered and analyzed using the bioinformatic pipeline Seekdeep to determine frequencies of the IIS6 and IIIS6 haplotypes per population. Phylogenetic relationships among the haplotypes were used to infer whether the kdr mutations have a single or multiple origin. We found 26 and 18 haplotypes, respectively for the IIS6 and IIIS6 segments, among which were the known kdr mutations 989P, 1011M, 1016I and 1016G (IIS6), 1520I, and 1534C (IIIS6). The highest diversity of haplotypes was found in African samples. Kdr mutations 1011M and 1016I were found only in American and African populations, 989P + 1016G and 1520I + 1534C in Asia, while 1534C was present in samples from all continents, except Australia. Based primarily on the intron sequence, IIS6 haplotypes were subdivided into two well-defined clades (A and B). Subsequent phasing of the IIS6 + IIIS6 haplotypes indicates two distinct origins for the 1534C kdr mutation. These results provide evidence of kdr mutations arising de novo at specific locations within the Ae. aegypti geographic distribution. In addition, our results suggest that the 1534C kdr mutation had at least two independent origins. We can thus conclude that insecticide selection pressure with DDT and more recently with pyrethroids is selecting for independent convergent mutations in NaV. Insecticide resistance is a global threat for the control of Aedes aegypti, the mosquito vector of aboviruses such as dengue, chikungunya and Zika. Mutations in the voltage gated sodium channel (NaV), known as kdr, are one of the principal mechanisms related to resistance to pyrethroids, the class of insecticide most employed worldwide inside and around residences. We investigate whether the same kdr mutations found in Ae. aegypti populations from distinct regions of the world have a common origin and subsequently dispersed or if they emerged in unrelated populations at distinct moments. By evaluating the sequences of two fragments of the NaV gene, obtained from DNA collections of Ae. aegypti from several countries, we found at least two independent origins for the F1534C kdr mutation in American, African and Asian populations. There was no evidence for multiple origins of the common kdr mutations V1016I and P989S + V1016G, which were exclusive to American and Asian populations. Our results increase our knowledge of insecticide resistance evolution in one of the main arboviral mosquito vectors of major global diseases.
Collapse
Affiliation(s)
| | - Andrea Gloria-Soria
- Yale University, New Haven, CT, United States of America
- Center for Vector Biology & Zoonotic Diseases. The Connecticut Agricultural Experiment Station, New Haven, CT, United States of America
| | | | | | - Ademir Jesus Martins
- Laboratório de Fisiologia e Controle de Artrópodes Vetores, Instituto Oswaldo Cruz/ FIOCRUZ, Av Brasil, Rio de Janeiro, RJ, Brazil
- Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, INCT-EM, UFRJ, Rio de Janeiro, RJ, Brazil
- * E-mail:
| |
Collapse
|
30
|
Biduda S, Lin CH, Saleh F, Konradsen F, Hansson H, Schiøler KL, Alifrangis M. Temporal Pattern of Mutations in the Knockdown Resistance ( kdr) Gene of Aedes aegypti Mosquitoes Sampled from Southern Taiwan. Am J Trop Med Hyg 2020; 101:973-975. [PMID: 31516108 DOI: 10.4269/ajtmh.19-0289] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Aedes mosquitoes are the principal dengue vector in Taiwan, where the use of insecticides is a key element in the national control strategy. However, control efforts are constrained by the development of resistance to most insecticides, including pyrethroids. In this study, mutations in the voltage-gated sodium channel (VGSC) gene resulting in knockdown resistance (kdr) were examined in Aedes aegypti. Fragments of the VGSC gene were polymerase chain reaction (PCR)-amplified followed by restriction fragment length polymorphism analysis in samples from various settings in Southern Taiwan covering dry and wet seasons from 2013 to 2015. Three kdr mutations were identified: V1023G, D1794Y, and F1534C, with observed frequencies of 0.36, 0.55, and 0.33, respectively, in the dry season of 2013-2014. Exploring for temporal changes, the most important observation was the 1534C allele frequency increment in the following season to 0.60 (P < 0.05). This study suggests that continued insecticide pressure is driving the mutational changes, although the selection is ambiguous in the mosquito population.
Collapse
Affiliation(s)
- Sandrine Biduda
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Chia-Hsien Lin
- Department of Public Health, Global Health Section, University of Copenhagen, Copenhagen, Denmark
| | - Fatma Saleh
- Department of Allied Health Sciences, School of Health and Medical Sciences, The State University of Zanzibar, Zanzibar, Tanzania
| | - Flemming Konradsen
- Department of Public Health, Global Health Section, University of Copenhagen, Copenhagen, Denmark
| | - Helle Hansson
- Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | - Karin L Schiøler
- Department of Public Health, Global Health Section, University of Copenhagen, Copenhagen, Denmark
| | - Michael Alifrangis
- Department of Immunology and Microbiology, Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|