1
|
Loup-Forest J, Matuchet M, Schnitzler C, Pichard S, Poterszman A. A Time and Cost-Effective Pipeline for Expression Screening and Protein Production in Insect Cells Based on the HR-Bac Toolbox to Generate Recombinant Baculoviruses. Methods Mol Biol 2024; 2829:21-48. [PMID: 38951325 DOI: 10.1007/978-1-0716-3961-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
Abstract
The baculovirus expression vector system (BEVS) is recognized as a powerful platform for producing challenging proteins and multiprotein complexes both in academia and industry. Since a baculovirus was first used to produce heterologous human IFN-β protein in insect cells, the BEVS has continuously been developed and its applications expanded. We have recently established a multigene expression toolbox (HR-bac) composed of a set of engineered bacmids expressing a fluorescent marker to monitor virus propagation and a library of transfer vectors. Unlike platforms that rely on Tn7-medidated transposition for the construction of baculoviruses, HR-bac relies on homologous recombination, which allows to evaluate expression constructs in 2 weeks and is thus perfectly adapted to parallel expression screening. In this chapter, we detail our standard operating procedures for the preparation of the reagents, the construction and evaluation of baculoviruses, and the optimization of protein production for both intracellularly expressed and secreted proteins.
Collapse
Affiliation(s)
- Jules Loup-Forest
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Integrated Structural Biology Department, Center for Integrated Structural Biology (CBI), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Equipe labellisée Ligue Contre le Cancer, BP, Illkirch, France
| | - Manon Matuchet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Integrated Structural Biology Department, Center for Integrated Structural Biology (CBI), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Equipe labellisée Ligue Contre le Cancer, BP, Illkirch, France
| | - Charlotte Schnitzler
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Integrated Structural Biology Department, Center for Integrated Structural Biology (CBI), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Equipe labellisée Ligue Contre le Cancer, BP, Illkirch, France
| | - Simon Pichard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Integrated Structural Biology Department, Center for Integrated Structural Biology (CBI), Illkirch, France
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France
- Université de Strasbourg, Equipe labellisée Ligue Contre le Cancer, BP, Illkirch, France
| | - Arnaud Poterszman
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Integrated Structural Biology Department, Center for Integrated Structural Biology (CBI), Illkirch, France.
- Centre National de la Recherche Scientifique, UMR7104, Institut National de la Santé et de la Recherche Médicale, U1258, Illkirch, France.
- Université de Strasbourg, Equipe labellisée Ligue Contre le Cancer, BP, Illkirch, France.
| |
Collapse
|
2
|
Njume FN, Razzauti A, Soler M, Perschin V, Fazeli G, Bourez A, Delporte C, Ghogomu SM, Poelvoorde P, Pichard S, Birck C, Poterszman A, Souopgui J, Van Antwerpen P, Stigloher C, Vanhamme L, Laurent P. A lipid transfer protein ensures nematode cuticular impermeability. iScience 2022; 25:105357. [PMID: 36339267 PMCID: PMC9626681 DOI: 10.1016/j.isci.2022.105357] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 07/20/2022] [Accepted: 10/11/2022] [Indexed: 11/19/2022] Open
Abstract
The cuticle of C. elegans is impermeable to chemicals, toxins, and pathogens. However, increased permeability is a desirable phenotype because it facilitates chemical uptake. Surface lipids contribute to the permeability barrier. Here, we identify the lipid transfer protein GMAP-1 as a critical element setting the permeability of the C. elegans cuticle. A gmap-1 deletion mutant increases cuticular permeability to sodium azide, levamisole, Hoechst, and DiI. Expressing GMAP-1 in the hypodermis or transiently in the adults is sufficient to rescue this gmap-1 permeability phenotype. GMAP-1 protein is secreted from the hypodermis to the aqueous fluid filling the space between collagen fibers of the cuticle. In vitro, GMAP-1 protein binds phosphatidylserine and phosphatidylcholine while in vivo, GMAP-1 sets the surface lipid composition and organization. Altogether, our results suggest GMAP-1 secreted by hypodermis shuttles lipids to the surface to form the permeability barrier of C. elegans. GMAP-1 is secreted by the hypodermis toward the cuticle of Caenorhabditis elegans GMAP-1 binds and shuttle phosphoglycerides GMAP-1 sets the lipid composition of the cuticle While healthy, gmap-1 mutant displays high cuticular permeability
Collapse
Affiliation(s)
- Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Adria Razzauti
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Miguel Soler
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Veronika Perschin
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Gholamreza Fazeli
- Imaging Core Facility, Biocenter, University of Würzburg, Würzburg, Germany
| | - Axelle Bourez
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | - Cedric Delporte
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | - Stephen M. Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea, Cameroon
| | - Philippe Poelvoorde
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Simon Pichard
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Catherine Birck
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Arnaud Poterszman
- Department of Integrated Structural Biology, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Strasbourg, France
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Pierre Van Antwerpen
- RD3-Pharmacognosy, Bioanalysis and Drug Discovery and Analytical Platform of the Faculty of Pharmacy, Universite libre de Bruxelles, Bruxelles, Belgium
| | | | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Bruxelles, Belgium
| | - Patrick Laurent
- Laboratory of Neurophysiology, ULB Institute for Neuroscience, Université Libre de Bruxelles, Bruxelles, Belgium
- Corresponding author
| |
Collapse
|
3
|
Wu YZ, Jiang HS, Han HF, Li PH, Lu MR, Tsai IJ, Wu YC. C. elegans BLMP-1 controls apical epidermal cell morphology by repressing expression of mannosyltransferase bus-8 and molting signal mlt-8. Dev Biol 2022; 486:96-108. [DOI: 10.1016/j.ydbio.2022.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/26/2022]
|
4
|
Brattig NW, Cheke RA, Garms R. Onchocerciasis (river blindness) - more than a century of research and control. Acta Trop 2021; 218:105677. [PMID: 32857984 DOI: 10.1016/j.actatropica.2020.105677] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 08/06/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
This review summarises more than a century of research on onchocerciasis, also known as river blindness, and its control. River blindness is an infection caused by the tissue filaria Onchocerca volvulus affecting the skin, subcutaneous tissue and eyes and leading to blindness in a minority of infected persons. The parasite is transmitted by its intermediate hosts Simulium spp. which breed in rivers. Featured are history and milestones in onchocerciasis research and control, state-of-the-art data on the parasite, its endobacteria Wolbachia, on the vectors, previous and current prevalence of the infection, its diagnostics, the interaction between the parasite and its host, immune responses and the pathology of onchocerciasis. Detailed information is documented on the time course of control programmes in the afflicted countries in Africa and the Americas, a long road from previous programmes to current successes in control of the transmission of this infectious disease. By development, adjustment and optimization of the control measures, transmission by the vector has been interrupted in foci of countries in the Americas, in Uganda, in Sudan and elsewhere, followed by onchocerciasis eliminations. The current state and future perspectives for control, elimination and eradication within the next 20-30 years are described and discussed. This review contributes to a deeper comprehension of this disease by a tissue-dwelling filaria and it will be helpful in efforts to control and eliminate other filarial infections.
Collapse
|
5
|
Hotterbeekx A, Perneel J, Vieri MK, Colebunders R, Kumar-Singh S. The Secretome of Filarial Nematodes and Its Role in Host-Parasite Interactions and Pathogenicity in Onchocerciasis-Associated Epilepsy. Front Cell Infect Microbiol 2021; 11:662766. [PMID: 33996633 PMCID: PMC8113626 DOI: 10.3389/fcimb.2021.662766] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/13/2021] [Indexed: 12/16/2022] Open
Abstract
Filarial nematodes secrete bioactive molecules which are of interest as potential mediators for manipulating host biology, as they are readily available at the host-parasite interface. The adult parasites can survive for years in the mammalian host, due to their successful modulation of the host immune system and most of these immunomodulatory strategies are based on soluble mediators excreted by the parasite. The secretome of filarial nematodes is a key player in both infection and pathology, making them an interesting target for further investigation. This review summarises the current knowledge regarding the components of the excretory-secretory products (ESPs) of filarial parasites and their bioactive functions in the human host. In addition, the pathogenic potential of the identified components, which are mostly proteins, in the pathophysiology of onchocerciasis-associated epilepsy is discussed.
Collapse
Affiliation(s)
- An Hotterbeekx
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Jolien Perneel
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Melissa Krizia Vieri
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium.,Global Health Institute, University of Antwerp, Antwerp, Belgium
| | | | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology and Histology, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
6
|
Shey RA, Ghogomu SM, Shintouo CM, Nkemngo FN, Nebangwa DN, Esoh K, Yaah NE, Manka’aFri M, Nguve JE, Ngwese RA, Njume FN, Bertha FA, Ayong L, Njemini R, Vanhamme L, Souopgui J. Computational Design and Preliminary Serological Analysis of a Novel Multi-Epitope Vaccine Candidate against Onchocerciasis and Related Filarial Diseases. Pathogens 2021; 10:99. [PMID: 33494344 PMCID: PMC7912539 DOI: 10.3390/pathogens10020099] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/14/2021] [Accepted: 01/18/2021] [Indexed: 11/16/2022] Open
Abstract
: Onchocerciasis is a skin and eye disease that exerts a heavy socio-economic burden, particularly in sub-Saharan Africa, a region which harbours greater than 96% of either infected or at-risk populations. The elimination plan for the disease is currently challenged by many factors including amongst others; the potential emergence of resistance to the main chemotherapeutic agent, ivermectin (IVM). Novel tools, including preventative and therapeutic vaccines, could provide additional impetus to the disease elimination tool portfolio. Several observations in both humans and animals have provided evidence for the development of both natural and artificial acquired immunity. In this study, immuno-informatics tools were applied to design a filarial-conserved multi-epitope subunit vaccine candidate, (designated Ov-DKR-2) consisting of B-and T-lymphocyte epitopes of eight immunogenic antigens previously assessed in pre-clinical studies. The high-percentage conservation of the selected proteins and epitopes predicted in related nematode parasitic species hints that the generated chimera may be instrumental for cross-protection. Bioinformatics analyses were employed for the prediction, refinement, and validation of the 3D structure of the Ov-DKR-2 chimera. In-silico immune simulation projected significantly high levels of IgG1, T-helper, T-cytotoxic cells, INF-γ, and IL-2 responses. Preliminary immunological analyses revealed that the multi-epitope vaccine candidate reacted with antibodies in sera from both onchocerciasis-infected individuals, endemic normals as well as loiasis-infected persons but not with the control sera from European individuals. These results support the premise for further characterisation of the engineered protein as a vaccine candidate for onchocerciasis.
Collapse
Affiliation(s)
- Robert Adamu Shey
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies Campus, 6040 Gosselies, Belgium;
| | - Stephen Mbigha Ghogomu
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
| | - Cabirou Mounchili Shintouo
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Francis Nongley Nkemngo
- Department of Microbiology and Parasitology, Faculty of Science, University of Buea, Buea 99999, Cameroon;
- Centre for Research in Infectious Diseases (CRID), Department of Parasitology and Medical Entomology, Yaounde BP 13591, Cameroon
| | - Derrick Neba Nebangwa
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
| | - Kevin Esoh
- Division of Human Genetics, Health Sciences Campus, Department of Pathology, University of Cape Town, Anzio Rd, Observatory, Cape Town 7925, South Africa;
| | - Ntang Emmaculate Yaah
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
| | - Muyanui Manka’aFri
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
| | - Joel Ebai Nguve
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
| | - Roland Akwelle Ngwese
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
| | - Ferdinand Ngale Njume
- Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea 99999, Cameroon; (R.A.S.); (S.M.G.); (C.M.S.); (D.N.N.); (N.E.Y.); (M.M.); (J.E.N.); (R.A.N.); (F.N.N.)
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies Campus, 6040 Gosselies, Belgium;
| | - Fru Asa Bertha
- Department of Public Health and Hygiene, Faculty of Health Science, University of Buea, Buea 99999, Cameroon;
| | - Lawrence Ayong
- Malaria Research Unit, Centre Pasteur Cameroon, Yaoundé Rue 2005, Cameroon;
| | - Rose Njemini
- Frailty in Ageing Research Group, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium;
- Department of Gerontology, Faculty of Medicine and Pharmacy, Vrije Universiteit Brussel, Laarbeeklaan 103, B-1090 Brussels, Belgium
| | - Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies Campus, 6040 Gosselies, Belgium;
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Gosselies Campus, 6040 Gosselies, Belgium;
| |
Collapse
|
7
|
Vanhamme L, Souopgui J, Ghogomu S, Ngale Njume F. The Functional Parasitic Worm Secretome: Mapping the Place of Onchocerca volvulus Excretory Secretory Products. Pathogens 2020; 9:pathogens9110975. [PMID: 33238479 PMCID: PMC7709020 DOI: 10.3390/pathogens9110975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 01/15/2023] Open
Abstract
Nematodes constitute a very successful phylum, especially in terms of parasitism. Inside their mammalian hosts, parasitic nematodes mainly dwell in the digestive tract (geohelminths) or in the vascular system (filariae). One of their main characteristics is their long sojourn inside the body where they are accessible to the immune system. Several strategies are used by parasites in order to counteract the immune attacks. One of them is the expression of molecules interfering with the function of the immune system. Excretory-secretory products (ESPs) pertain to this category. This is, however, not their only biological function, as they seem also involved in other mechanisms such as pathogenicity or parasitic cycle (molting, for example). We will mainly focus on filariae ESPs with an emphasis on data available regarding Onchocerca volvulus, but we will also refer to a few relevant/illustrative examples related to other worm categories when necessary (geohelminth nematodes, trematodes or cestodes). We first present Onchocerca volvulus, mainly focusing on the aspects of this organism that seem relevant when it comes to ESPs: life cycle, manifestations of the sickness, immunosuppression, diagnosis and treatment. We then elaborate on the function and use of ESPs in these aspects.
Collapse
Affiliation(s)
- Luc Vanhamme
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Correspondence:
| | - Jacob Souopgui
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
| | - Stephen Ghogomu
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| | - Ferdinand Ngale Njume
- Department of Molecular Biology, Institute of Biology and Molecular Medicine, IBMM, Université Libre de Bruxelles, Rue des Professeurs Jeener et Brachet 12, 6041 Gosselies, Belgium; (J.S.); (F.N.N.)
- Molecular and Cell Biology Laboratory, Biotechnology Unit, University of Buea, Buea P.O Box 63, Cameroon;
| |
Collapse
|
8
|
Entomological Assessment of Onchocerca Species Transmission by Black Flies in Selected Communities in the West Region of Cameroon. Pathogens 2020; 9:pathogens9090722. [PMID: 32887231 PMCID: PMC7559537 DOI: 10.3390/pathogens9090722] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 08/29/2020] [Accepted: 08/31/2020] [Indexed: 12/20/2022] Open
Abstract
The enormity of the public health burden of onchocerciasis motivated the creation of various large-scale control programs that have depended principally on mass treatment of endemic communities with ivermectin for the elimination of the disease. Parasitological evaluation of Onchocerca species in the West Region of Cameroon indicates significant progress in the interruption of parasite transmission in some communities under ivermectin treatment. However, to verify the complete elimination of onchocerciasis, entomological assessment through O-150 PCR poolscreen of black flies is mandatory. Thus, in the present study, we assessed transmission of Onchocerca species using an O-150 PCR technique to screen pools of black flies—in seven onchocerciasis endemic communities (Makouopsap, Bankambe, Lemgo, Tsesse, Ndionzou, Kouffen, and Bayon) in Cameroon. Two thousand black flies were assessed—in each community—for the presence of Onchocerca species DNA. Our results show that the frequency of infective flies was 0.6% in Makouopsap and 0.0% in the other communities. On the other hand, the frequency of infected flies was 0.8% in Makouopsap, 0.2% in Bankambe, 0.1% in Bayon, and 0.0% in Lemgo, Tsesse, Ndionzou, and Kouffen. These results provide entomologic evidence for continuous transmission of Onchocerca species in Makouopsap, risk of active transmission in Bankambe, and Bayon, and a suppressed transmission in the four other studied communities.
Collapse
|
9
|
In Silico Design and Validation of OvMANE1, a Chimeric Antigen for Human Onchocerciasis Diagnosis. Pathogens 2020; 9:pathogens9060495. [PMID: 32580355 PMCID: PMC7350323 DOI: 10.3390/pathogens9060495] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/12/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
The public health goal of onchocerciasis in Africa has advanced from control to elimination. In this light, accurate diagnosis is necessary to determine treatment endpoints and confirm elimination, as well as to conduct surveillance for the identification of any possible recrudescence of the disease. Currently, the monitoring of onchocerciasis elimination relies on the Ov-16 test. However, this test is unable to discriminate between past and active infections. Furthermore, about 15-25% of infected persons are reported to be negative for the Ov-16 test, giving a misleading sense of security to false-negative individuals who might continue to serve as reservoirs for infections. Therefore, we opted to design and validate a more sensitive and specific chimeric antigen (OvMANE1) for onchocerciasis diagnosis, using previously reported immunodominant peptides of O. volvulus, the parasite responsible for the disease. In silico analysis of OvMANE1 predicted it to be more antigenic than its individual peptides. We observed that OvMANE1 reacts specifically and differentially with sera from O. volvulus infected and non-infected individuals, as well as with sera from communities of different levels of endemicity. Moreover, we found that total IgG, unlike IgG4 subclass, positively responded to OvMANE1, strongly suggesting its complementarity to the Ov-16 diagnostic tool, which detects Ov-16 IgG4 antibodies. Overall, OvMANE1 exhibited the potential to be utilized in the development of specific diagnostic tools-based on both antibody capture and antigen capture reactions-which are indispensable to monitor the progress of onchocerciasis elimination programs.
Collapse
|