1
|
Hamer GL, Fimbres-Macias JP, Juarez JG, Downs CH, Carbajal E, Melo M, Garza DY, Killets KC, Wilkerson GK, Carrera-Treviño R, Corona-Barrera E, Tello-Campa AA, Rojas-Mesta MR, Borden JH, Banfield MG, Hamer SA. Development of an operational trap for collection, killing, and preservation of triatomines (Hemiptera: Reduviidae): the kissing bug kill trap. JOURNAL OF MEDICAL ENTOMOLOGY 2024:tjae087. [PMID: 39024462 DOI: 10.1093/jme/tjae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/12/2024] [Accepted: 07/02/2024] [Indexed: 07/20/2024]
Abstract
Surveillance of triatomines or kissing bugs (Hemiptera: Reduviidae: Triatominae), the insect vectors of Trypanosoma cruzi, a Chagas disease agent, is hindered by the lack of an effective trap. To develop a kissing bug trap, we made iterative improvements over 3 years on a basic design resulting in 7 trap prototypes deployed across field sites in Texas, United States and Northern Mexico, yielding the capture of 325 triatomines of 4 species (Triatoma gerstaeckeri [Stål], T. sanguisuga [LeConte], T. neotomae [Neiva], and T. rubida [Uhler]). We began in 2019 with vertical transparent tarpaulin panel traps illuminated with artificial light powered by AC current, which were successful in autonomous trapping of flying triatomines, but were expensive, labor-intensive, and fragile. In 2020, we switched to white LED lights powered by a solar cell. We tested a scaled-down version of the vertical panel traps, a commercial cross-vane trap, and a multiple-funnel trap. The multiple-funnel traps captured 2.6× more kissing bugs per trap-day than cross-vane traps and approached the performance of the vertical panel traps in number of triatomines captured, number of triatomines per trap-day and triatomines per arthropod bycatch. Multiple-funnel traps required the least labor, were more durable, and had the highest triatomines per day per cost. Propylene glycol in the collection cups effectively preserved captured triatomines allowing for molecular detection of T. cruzi. The trapping experiments established dispersal patterns for the captured species. We conclude that multiple-funnel traps with solar-powered LED lights should be considered for adoption as surveillance and potentially mass-trapping management tools for triatomines.
Collapse
Affiliation(s)
- Gabriel L Hamer
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Juan P Fimbres-Macias
- Veterinary Integrative Biosciences, Texas A&M School of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Jose G Juarez
- Department of Entomology, Texas A&M University, College Station, TX, USA
- Centro de Estudios en Salud, Universidad del Valle de Guatemala, Ciudad de Guatemala, Guatemala
| | - Christopher H Downs
- Department of Entomology, Texas A&M University, College Station, TX, USA
- BanfieldBio, Inc., Woodinville, WA, USA
| | | | | | - Danya Y Garza
- Department of Entomology, Texas A&M University, College Station, TX, USA
| | - Keswick C Killets
- Veterinary Integrative Biosciences, Texas A&M School of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| | - Gregory K Wilkerson
- MD Anderson Cancer Center, Michale E. Keeling Center for Comparative Medicine and Research, Bastrop, TX, USA
- Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill NC, USA
| | - Rogelio Carrera-Treviño
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, General Escobedo, México
| | - Enrique Corona-Barrera
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Ciudad Victoria, México
| | - Arturo Arabied Tello-Campa
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, General Escobedo, México
| | - Martha Rocío Rojas-Mesta
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Nuevo León, General Escobedo, México
| | | | | | - Sarah A Hamer
- Veterinary Integrative Biosciences, Texas A&M School of Veterinary Medicine & Biomedical Sciences, College Station, TX, USA
| |
Collapse
|
2
|
Viana MC, Alves-Pereira A, Oliveira MAP, Valença-Barbosa C, Folly-Ramos E, Souza AP, Takiya DM, Almeida CE. Population genetics and genomics of Triatoma brasiliensis (Hemiptera, Reduviidae) in an area of high pressure of domiciliary infestation in Northeastern Brazil. Acta Trop 2024; 252:107144. [PMID: 38336343 DOI: 10.1016/j.actatropica.2024.107144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/12/2024]
Abstract
Understanding the population dynamics of vectors is crucial for effective control of vector-borne diseases. In the Northeastern Brazilian semi-arid region, Triatoma brasiliensis persists as the most significant Chagas disease vector, frequently displaying recurrent domiciliary infestations. This situation raises relevant public health concerns in the municipality of Currais Novos in the state of Rio Grande do Norte. This area has experienced a high prevalence of peridomiciliary re-infestations by T. brasiliensis, coupled with elevated rates of Trypanosoma cruzi infection. Therefore, we assessed the distribution of genetic variation via mitochondrial Cytochrome b gene (MT-CYB) sequencing (n = 109) and single nucleotide polymorphisms (SNPs, n = 86) to assess the gene flow among distinct populations distributed in varied geographic spots and environments, mainly sylvatic and peridomiciliary. Insects were collected from rural communities at Currais Novos, enclosed within a 16 km radius. Sampling included 13 populations: one intradomiciliary, eight peridomiciliary, and four sylvatic. Furthermore, an external population located 220 km from Currais Novos was also included in the study. The method employed to obtain SNP information relied on ddRAD-seq genotyping-by-sequencing (GBS), enabling a genome-wide analysis to infer genetic variation. Through AMOVA analysis of MT-CYB gene variation, we identified four distinct population groups with statistical significance (FCT= 0.42; p<0.05). We identified a total of 3,013 SNPs through GBS, with 11 loci showing putative signs of being under selection. The variation based on 3,002 neutral loci evidenced low genetic structuration based on low FST values (p>0.05), indicating local panmixia. However, resampling algorithms pointed out that three samples from the external population were assigned (>98 %) in a cluster contrasting from the ones putatively under local panmixia - validating the newly applied genome-wide marker for studies on the population genetics at finer-scale resolution for T. brasiliensis. The presence of population structuring in some of the sampled points, as suggested by the mitochondrial marker, leads us to assume that infestations were probably initiated by small populations of females - demographic event poses a risk for rapid re-infestations. The local panmictic pattern revealed by the GBS marker poses a challenge for vector control measures, as re-infestation foci may be distributed over a wide geographical and ecological range. In such instances, vectors exhibit reduced susceptibility to conventional insecticide spraying operations since sylvatic populations are beyond the reach of these interventions. The pattern of infestation exhibited by T. brasiliensis necessitates integrating innovative strategies into the existing control framework, holding the potential to create a more resilient and adaptive vector control program. In our dataset, the results demonstrated that the genetic signals from both markers were complementary. Therefore, it is essential to consider the nature and inheritance pattern of each marker when inferring the pattern of re-infestations.
Collapse
Affiliation(s)
- Maria Carolina Viana
- Instituto de Biologia (IB), Universidade de Campinas - UNICAMP, Campinas, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, IB, UNICAMP; Coordenação de Prevenção e Vigilância do Câncer (CONPREV), Instituto Nacional de Câncer, Rio de Janeiro, Brazil
| | | | - Marcelo A P Oliveira
- Programa de Pós-Graduação em Genética- IB, Universidade Federal do Rio de Janeiro - UFRJ, Rio de Janeiro, Brazil
| | - Carolina Valença-Barbosa
- Instituto de Biologia (IB), Universidade de Campinas - UNICAMP, Campinas, Brazil; Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Fiocruz, Brazil
| | | | | | | | - Carlos E Almeida
- Instituto de Biologia (IB), Universidade de Campinas - UNICAMP, Campinas, Brazil; Programa de Pós-Graduação em Genética e Biologia Molecular, IB, UNICAMP; Laboratorio de Entomologia, Instituto de Biologia, UFRJ.
| |
Collapse
|
3
|
Gürtler RE, Enriquez GF, Gaspe MS, Macchiaverna NP, del Pilar Fernández M, Rodríguez-Planes LI, Provecho YM, Cardinal MV. The Pampa del Indio project: sustainable vector control and long-term declines in the prevalence and abundance of Triatoma infestans infected with Trypanosoma cruzi in the Argentine Chaco. Parasit Vectors 2023; 16:258. [PMID: 37528423 PMCID: PMC10394798 DOI: 10.1186/s13071-023-05861-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 06/30/2023] [Indexed: 08/03/2023] Open
Abstract
BACKGROUND The Gran Chaco region is a major hotspot of Chagas disease. We implemented a 9-year program aimed at suppressing house infestation with Triatoma infestans and stopping vector-borne transmission to creole and indigenous (Qom) residents across Pampa del Indio municipality (Argentine Chaco). The aim of the present study was to assess the intervention effects on parasite-based transmission indices and the spatial distribution of the parasite, and test whether house-level variations in triatomine infection with Trypanosoma cruzi declined postintervention and were influenced by household ethnicity, persistent infestation linked to pyrethroid resistance and other determinants of bug infection. METHODS This longitudinal study assessed house infestation and bug infection with T. cruzi before and after spraying houses with pyrethroids and implemented systematic surveillance-and-response measures across four operational areas over the period 2007-2016. Live triatomines were individually examined for infection by optical microscopy or kinetoplast DNA (kDNA)-PCR and declared to be infected with T. cruzi when assessed positive by either method. RESULTS The prevalence of infection with T. cruzi was 19.4% among 6397 T. infestans examined. Infection ranged widely among the study areas (12.5-26.0%), household ethnicity (15.3-26.9%), bug ecotopes (1.8-27.2%) and developmental stages (5.9-27.6%), and decreased from 24.1% (baseline) to 0.9% (endpoint). Using random-intercept multiple logistic regression, the relative odds of bug infection strongly decreased as the intervention period progressed, and increased with baseline domestic infestation and bug stage and in Qom households. The abundance of infected bugs and the proportion of houses with ≥ 1 infected bug remained depressed postintervention and were more informative of area-wide risk status than the prevalence of bug infection. Global spatial analysis revealed sharp changes in the aggregation of bug infection after the attack phase. Baseline domestic infestation and baseline bug infection strongly predicted the future occurrence of bug infection, as did persistent domestic infestation in the area with multiple pyrethroid-resistant foci. Only 19% of houses had a baseline domestic infestation and 56% had ever had ≥ 1 infected bug. CONCLUSIONS Persistent bug infection postintervention was closely associated with persistent foci generated by pyrethroid resistance. Postintervention parasite-based indices closely agreed with human serosurveys at the study endpoint, suggesting transmission blockage. The program identified households and population subgroups for targeted interventions and opened new opportunities for risk prioritization and sustainable vector control and disease prevention.
Collapse
Affiliation(s)
- Ricardo Esteban Gürtler
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Fabián Enriquez
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Sol Gaspe
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | - Lucía Inés Rodríguez-Planes
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina
| | - Yael Mariana Provecho
- Ministerio de Salud de la Nación, Dirección de Control de Enfermedades Transmitidas por Vectores, Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
- Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
4
|
Sampaio GHF, da Silva ANB, de Negreiros CCA, Honorato NRM, Martins RR, Aguiar LMA, Sales LML, Brito CRDN, Guedes PMDM, da Câmara ACJ, Galvão LMDC. Temporal assessment of entomological surveillance of Trypanosoma cruzi vectors in an endemic area of northeastern Brazil. PLoS One 2023; 18:e0287260. [PMID: 37319301 PMCID: PMC10270571 DOI: 10.1371/journal.pone.0287260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Entomological surveillance is essential for the control of triatomines and the prevention of Trypanosoma cruzi infection in humans and domestic animals. Thus, the objective of this study was to evaluate entomological indicators and triatomine control during the period from 2005 to 2015 in an endemic area in the state of Rio Grande do Norte, Brazil. This observational and retrospective study was developed based on data analysis related to active entomological surveillance activities and chemical control of infested housing units (HU) in the Agreste mesoregion of the state of Rio Grande do Norte, Brazil, in the period between 2005 to 2015. The quantitative analysis of housing units surveyed for entomological indicators was performed by linear regression of random effects (p < 0.05). The effect of the number of HU surveyed on the entomological indicators was analyzed by fitting a linear random effects regression model and an increasing intradomiciliary colonization rate was significant. In the period evaluated 92,156 housing units were investigated and the presence of triatomines was reported in 4,639 (5.0%). A total of 4,653 specimens of triatomines were captured and the species recorded were Triatoma pseudomaculata (n = 1,775), Triatoma brasiliensis (n = 1,569), Rhodnius nasutus (n = 741) and Panstrongylus lutzi (n = 568), with an index of natural infection by T. cruzi of 2.2%. Only 53.1% of the infested HU were subjected to chemical control. Moreover, there was a decrease in the total number of HU surveyed over time associated with an increase in the index of intradomiciliary colonization (p = 0.004). These data demonstrated that entomological surveillance and control of vectors in the Agreste mesoregion of the state has been discontinued, emphasizing the need for more effective public policies to effectively control the vectors, in order to avoid the exposure of humans and domestic animals to the risk of T. cruzi infection.
Collapse
Affiliation(s)
- George Harisson Felinto Sampaio
- Programa de Pós-Graduação em Ciências da Saúde, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Andressa Noronha Barbosa da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | | | - Nathan Ravi Medeiros Honorato
- Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Rand Randall Martins
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | | | - Letícia Mikardya Lima Sales
- Curso de Graduação em Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Carlos Ramon do Nascimento Brito
- Programa de Pós-Graduação em Biologia Parasitária, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Paulo Marcos da Matta Guedes
- Programa de Pós-Graduação em Biologia Parasitária, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Antonia Claudia Jácome da Câmara
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
- Programa de Pós-Graduação em Biologia Parasitária, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
| | - Lúcia Maria da Cunha Galvão
- Programa de Pós-Graduação em Ciências da Saúde, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
- Programa de Pós-Graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Natal, RN, Brasil
- Programa de Pós-Graduação em Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| |
Collapse
|
5
|
Alejandra A, Sol GM, Fabián EG, Paula MN, Esteban GR, Victoria CM. Marginal risk of domestic vector-borne Trypanosoma cruzi transmission after improved vector control of Triatoma infestans across a rural-to-urban gradient in the Argentine Chaco. Acta Trop 2023; 243:106933. [PMID: 37119837 DOI: 10.1016/j.actatropica.2023.106933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/24/2023] [Accepted: 04/26/2023] [Indexed: 05/01/2023]
Abstract
The interruption of domestic vector-borne transmission of Trypanosoma cruzi in the Americas remains one of the main goals of the World Health Organization 2021-2030 road map for neglected tropical diseases. We implemented a longitudinal intervention program over 2015-2022 to suppress (peri)domestic Triatoma infestans in the municipality of Avia Terai, Chaco Province, Argentina and found that house infestation (3851 houses inspected) and triatomine abundance decreased over the first 2 years post-intervention (YPI), and remained stable thereafter associated to moderate pyrethroid resistant foci. Here we assessed selected components of transmission risk after interventions across the rural-to-urban gradient. We used multistage random sampling to select a municipality-wide sample of T. infestans. We examined 356 insects collected in 87 houses for T. cruzi infection using kDNA-PCR and identified their bloodmeal sources using an indirect ELISA. The overall prevalence of T. cruzi infection post-intervention was 1.7% (95% CI 0.7-3.6). Few houses (5.7%) (95% CI 2.5-12.8) harbored infected triatomines across the gradient. Infected triatomines were found in 5 peri-urban or rural dwellings over 1-4 years post-intervention. No infected insect was found in the urban area. The human blood index decreased from 66.2 at baseline to 42.8 at 1YPI and then increased to 92.9 at 4-5 YPI in the few infested domiciles detected. The percentage of houses with human-fed bugs displayed a similar temporal trend. Our results indicate marginal risks of domestic vector-borne transmission across the district after implementation of the intervention program. Ensuring sustainable vector surveillance coupled with human etiological diagnosis and treatment in hiperendemic areas like the Gran Chaco region, is urgently needed. 252 words.
Collapse
Affiliation(s)
- Alvedro Alejandra
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Gaspe María Sol
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Enriquez Gustavo Fabián
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Macchiaverna Natalia Paula
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Gürtler Ricardo Esteban
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Cardinal Marta Victoria
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Laboratorio de Eco-Epidemiología. Intendente Güiraldes 2160, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina; CONICET-Universidad de Buenos Aires. Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|
6
|
Gürtler RE, Gaspe MS, Macchiaverna NP, Enriquez GF, Rodríguez-Planes LI, Fernández MDP, Provecho YM, Cardinal MV. The Pampa del Indio project: District-wide quasi-elimination of Triatoma infestans after a 9-year intervention program in the Argentine Chaco. PLoS Negl Trop Dis 2023; 17:e0011252. [PMID: 37093886 PMCID: PMC10159358 DOI: 10.1371/journal.pntd.0011252] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/04/2023] [Accepted: 03/19/2023] [Indexed: 04/25/2023] Open
Abstract
BACKGROUND The elimination of Triatoma infestans, the main domestic vector of Trypanosoma cruzi, is lagging behind expectations in the Gran Chaco region. We implemented an insecticide-based intervention program and assessed its long-term effects on house infestation and bug abundance in a resource-constrained municipality (Pampa del Indio, northeastern Argentina) inhabited by creole and the Qom indigenous people (2007-2016). Key questions were whether district-wide data integration revealed patterns concealed at lower spatial levels; to what extent preintervention infestation and pyrethroid resistance challenged the effectiveness of insecticide-based control efforts, and how much control effort was needed to meet defined targets. METHODS Supervised vector control teams i) georeferenced every housing unit at baseline (1,546); ii) evaluated house infestation using timed-manual searches with a dislodging aerosol across four rural areas designated for district-wide scaling up; iii) sprayed with pyrethroid insecticide 92.7% of all houses; iv) periodically monitored infestation and promoted householder-based surveillance, and v) selectively sprayed the infested houses, totaling 1,823 insecticide treatments throughout the program. RESULTS Baseline house infestation (mean, 26.8%; range, 14.4-41.4%) and bug abundance plummeted over the first year postintervention (YPI). Timed searches at baseline detected 61.4-88.0% of apparent infestations revealed by any of the methods used. Housing dynamics varied widely among areas and between Qom and creole households. Preintervention triatomine abundance and the cumulative frequency of insecticide treatments were spatially aggregated in three large clusters overlapping with pyrethroid resistance, which ranged from susceptible to high. Persistent foci were suppressed with malathion. Aggregation occurred mainly at house compound or village levels. Preintervention domestic infestation and abundance were much greater in Qom than in creole households, whereas the reverse was recorded in peridomestic habitats. House infestation, rare (1.9-3.7%) over 2-6 YPI, averaged 0.66% (95% confidence interval, 0.28-1.29%) at endpoint. CONCLUSIONS Upscale integration revealed multiple coupled heterogeneities (spatial, sociodemographic and biological) that reflect large inequalities, hamper control efforts, and provide opportunities for targeted, sustainable disease control. High-coverage, professional insecticide spraying combined with systematic surveillance-and-response were essential ingredients to achieve the quasi-elimination of T. infestans within 5 YPI and concomitant transmission blockage despite various structural threats and constraints.
Collapse
Affiliation(s)
- Ricardo Esteban Gürtler
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - María Sol Gaspe
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Gustavo Fabián Enriquez
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| | - Lucía Inés Rodríguez-Planes
- Instituto de Ciencias Polares, Ambiente y Recursos Naturales, Universidad Nacional de Tierra del Fuego, Ushuaia, Argentina
| | - María Del Pilar Fernández
- Paul G. Allen School for Global Animal Health, Washington State University, Pullman, Washington, United States of America
| | - Yael Mariana Provecho
- Ministerio de Salud de la Nación, Dirección de Control de Enfermedades Transmitidas por Vectores, Buenos Aires, Argentina
| | - Marta Victoria Cardinal
- Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales, Laboratorio de Eco-Epidemiología, Buenos Aires, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Ecología, Genética y Evolución de Buenos Aires (IEGEBA), Buenos Aires, Argentina
| |
Collapse
|
7
|
Valença-Barbosa C, Finamore-Araujo P, Moreira OC, Alvarez MVN, Borges-Veloso A, Barbosa SE, Diotaiuti L, de Souza RDCM. High Parasitic Loads Quantified in Sylvatic Triatoma melanica, a Chagas Disease Vector. Pathogens 2022; 11:1498. [PMID: 36558833 PMCID: PMC9785645 DOI: 10.3390/pathogens11121498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022] Open
Abstract
Triatoma melanica is a sylvatic vector species in Brazil. In We aimed to characterize the Trypanosoma cruzi discrete typing units (DTUs), the parasitic loads, and the blood meal sources of insects collected in rocky outcrops in rural areas in the state of Minas Gerais. An optical microscope (OM) and kDNA-PCR were used to examine natural infection by T. cruzi, and positive samples were genotyped by conventional multilocus PCR. Quantification of the T. cruzi load was performed using qPCR, and the blood meal sources were identified by Sanger sequencing the 12S rRNA gene. A total of 141 T. melanica were captured. Of these, ~55% (61/111) and ~91% (63/69) were positive by OM and KDNA-PCR, respectively. We genotyped ~89% (56/63) of the T. cruzi-positive triatomines, with TcI (~55%, 31/56) being the most prevalent DTU, followed by TcIII (~20%, 11/56) and TcII (~7%, 4/56). Only TcI+TcIII mixed infections were detected in 10 (~18%) specimens. A wide range of variation in the parasitic loads of T. melanica was observed, with an overall median value of 104 parasites/intestine, with females having higher T. cruzi loads than N2, N4, and N5. TcII showed lower parasitic loads compared to TcI and TcIII. The OM positive diagnosis odds ratio between T. cruzi infection when the parasite load is 107 compared to 103 was approximately 29.1. The most frequent blood meal source was Kerodon rupestris (~58%), followed by Thrichomys apereoides (~18%), Wiedomys cerradensis (~8%), Galactis cuja (~8%) and Gallus gallus (~8%). Our findings characterize biological and epidemiological aspects of the sylvatic population of T. melanica in the study area, highlighting the need to extend surveillance and control to this vector.
Collapse
Affiliation(s)
- Carolina Valença-Barbosa
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Paula Finamore-Araujo
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil
| | - Otacílio Cruz Moreira
- Plataforma de PCR em Tempo Real RPT09A, Laboratório de Virologia Molecular, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro 21040-360, Brazil
| | | | - André Borges-Veloso
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Silvia Ermelinda Barbosa
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | - Liléia Diotaiuti
- Grupo Triatomíneos, Instituto René Rachou-Fiocruz Minas Gerais, Belo Horizonte, Minas Gerais 30190-002, Brazil
| | | |
Collapse
|
8
|
Gorla DE, Xiao-Nong Z, Diotaiuti L, Khoa PT, Waleckx E, de Souza RDCM, Qin L, Lam TX, Freilij H. Different profiles and epidemiological scenarios: past, present and future. Mem Inst Oswaldo Cruz 2022; 117:e200409. [PMID: 35613154 PMCID: PMC9126320 DOI: 10.1590/0074-02760200409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/13/2021] [Indexed: 11/22/2022] Open
Abstract
The multiplicity of epidemiological scenarios shown by Chagas Disease, derived from multiple transmission routes of the aetiological agent, occurring on multiple geo-ecobiosocial settings determines the complexity of the disease and reveal the difficulties for its control. From the first description of the link between the parasite, the vector and its domestic habitat and the disease that Carlos Chagas made in 1909, the epidemiological scenarios of the American Trypanosomiasis has shown a dynamic increasing complexity. These scenarios changed with time and geography because of new understandings of the disease from multiple studies, because of policies change at the national and international levels and because human movements brought the parasite and vectors to new geographies. Paradigms that seemed solid at a time were broken down, and we learnt about the global dispersion of Trypanosoma cruzi infection, the multiplicity of transmission routes, that the infection can be cured, and that triatomines are not only a health threat in Latin America. We consider the multiple epidemiological scenarios through the different T. cruzi transmission routes, with or without the participation of a Triatominae vector. We then consider the scenario of regions with vectors without the parasite, to finish with the consideration of future prospects.
Collapse
Affiliation(s)
- David E Gorla
- Universidad Nacional de Córdoba, Instituto de Diversidad y Ecología Animal, CONICET, Córdoba, Argentina
| | - Zhou Xiao-Nong
- Shanghai Jiao Tong University, Chinese Centre for Tropical Diseases Research, National Institute of Parasitic Diseases, One Health Centre, Shanghai, China
| | - Lileia Diotaiuti
- Fundação Oswaldo Cruz-Fiocruz, Instituto René Rachou, Belo Horizonte, MG, Brasil
| | - Pham Thi Khoa
- Science Services of Insect Joint Stock Company, Nam Tu Liem district, Ha Noi, Viet Nam
| | - Etienne Waleckx
- Université de Montpellier, Institut de Recherche pour le Développement, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Unité Mixte de Recherche, Interactions in the Neglected Tropical Diseases due to Trypanosomatids, Montpellier, France
- Universidad Autónoma de Yucatán, Centro de Investigaciones Regionales Hideyo Noguchi, Mérida, Yucatán, México
| | | | - Liu Qin
- Shanghai Jiao Tong University, Chinese Centre for Tropical Diseases Research, National Institute of Parasitic Diseases, One Health Centre, Shanghai, China
| | - Truong Xuan Lam
- Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Hector Freilij
- Hospital de Niños Ricardo Gutiérrez, Servicio de Parasitología y Chagas, Buenos Aires, Argentina
| |
Collapse
|
9
|
Rojas de Arias A, Messenger LA, Rolon M, Vega MC, Acosta N, Villalba C, Marcet PL. Dynamics of Triatoma infestans populations in the Paraguayan Chaco: Population genetic analysis of household reinfestation following vector control. PLoS One 2022; 17:e0263465. [PMID: 35143523 PMCID: PMC8830694 DOI: 10.1371/journal.pone.0263465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/19/2022] [Indexed: 11/28/2022] Open
Abstract
Background Although domestic infestations by Triatoma infestans have been successfully controlled across Latin America, in areas of the Gran Chaco region, recurrent post-spraying house colonization continues to be a significant challenge, jeopardizing Chagas disease vector control and maintaining active Trypanosoma cruzi transmission. Methodology/Principal findings To investigate the dynamics of triatomine reinfestation in a rural area of the Paraguayan Chaco, genetic characterization (based on 10 microsatellite loci and cytochrome B sequence polymorphisms) was performed on baseline and reinfestant T. infestans (n = 138) from four indigenous communities and adjacent sylvatic sites. House quality and basic economic activities were assessed across the four communities. Significant genetic differentiation was detected among all baseline triatomine populations. Faster reinfestation was observed in the communities with higher infestation rates pre-spraying. Baseline and reinfestant populations from the same communities were not genetically different, but two potentially distinct processes of reinfestation were evident. In Campo Largo, the reinfestant population was likely founded by domestic survivor foci, with reduced genetic diversity relative to the baseline population. However, in 12 de Junio, reinfestant bugs were likely derived from different sources, including survivors from the pre-spraying population and sympatric sylvatic bugs, indicative of gene-flow between these habitats, likely driven by high human mobility and economic activities in adjacent sylvatic areas. Conclusions/Significance Our results demonstrate that sylvatic T. infestans threatens vector control strategies, either as a reinfestation source or by providing a temporary refuge during insecticide spraying. Passive anthropogenic importation of T. infestans and active human interactions with neighboring forested areas also played a role in recolonization. Optimization of spraying, integrated community development and close monitoring of sylvatic areas should be considered when implementing vector control activities in the Gran Chaco.
Collapse
Affiliation(s)
- Antonieta Rojas de Arias
- Centro para el Desarrollo de la Investigación Científica (CEDIC/Díaz Gill Medicina Laboratorial /FMB), Asunción, Paraguay
- * E-mail:
| | - Louisa Alexandra Messenger
- Division of Parasitic Diseases and Malaria (DPDM), Centers for Diseases Control and Prevention (CDC), Entomology Branch, Atlanta, GA, United States of America
- American Society for Microbiology, NW Washington, DC, United States of America
- Department of Disease Control, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Miriam Rolon
- Centro para el Desarrollo de la Investigación Científica (CEDIC/Díaz Gill Medicina Laboratorial /FMB), Asunción, Paraguay
| | - María Celeste Vega
- Centro para el Desarrollo de la Investigación Científica (CEDIC/Díaz Gill Medicina Laboratorial /FMB), Asunción, Paraguay
| | - Nidia Acosta
- Departamento de Medicina Tropical, Instituto de Investigaciones en Ciencias de la Salud, UNA, Asuncion, Paraguay
| | - Cesia Villalba
- Programa Nacional de Control de la Enfermedad de Chagas (SENEPA), Asunción, Paraguay
| | - Paula L. Marcet
- Division of Parasitic Diseases and Malaria (DPDM), Centers for Diseases Control and Prevention (CDC), Entomology Branch, Atlanta, GA, United States of America
| |
Collapse
|
10
|
Souza RDCMD, Gorla DE, Chame M, Jaramillo N, Monroy C, Diotaiuti L. Chagas disease in the context of the 2030 agenda: global warming and vectors. Mem Inst Oswaldo Cruz 2022; 117:e200479. [PMID: 35649048 PMCID: PMC9150778 DOI: 10.1590/0074-02760200479] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/13/2021] [Indexed: 11/24/2022] Open
Abstract
The 2030 Agenda for Sustainable Development is a plan of action for people, planet and prosperity. Thousands of years and centuries of colonisation have passed the precarious housing conditions, food insecurity, lack of sanitation, the limitation of surveillance, health care programs and climate change. Chagas disease continues to be a public health problem. The control programs have been successful in many countries in reducing transmission by T. cruzi; but the results have been variable. WHO makes recommendations for prevention and control with the aim of eliminating Chagas disease as a public health problem. Climate change, deforestation, migration, urbanisation, sylvatic vectors and oral transmission require integrating the economic, social, and environmental dimensions of sustainable development, as well as the links within and between objectives and sectors. While the environment scenarios change around the world, native vector species pose a significant public health threat. The man-made atmosphere change is related to the increase of triatomines’ dispersal range, or an increase of the mobility of the vectors from their sylvatic environment to man-made constructions, or humans getting into sylvatic scenarios, leading to an increase of Chagas disease infection. Innovations with the communities and collaborations among municipalities, International cooperation agencies, local governmental agencies, academic partners, developmental agencies, or environmental institutions may present promising solutions, but sustained partnerships, long-term commitment, and strong regional leadership are required. A new world has just opened up for the renewal of surveillance practices, but the lessons learned in the past should be the basis for solutions in the future.
Collapse
|
11
|
Valença-Barbosa C, Finamore-Araujo P, Moreira OC, Vergara-Meza JG, Alvarez MVN, Nascimento JR, Borges-Veloso A, Viana MC, Lilioso M, Miguel DC, Gadelha FR, Teixeira MMG, Almeida CE. Genotypic Trypanosoma cruzi distribution and parasite load differ ecotypically and according to parasite genotypes in Triatoma brasiliensis from endemic and outbreak areas in Northeastern Brazil. Acta Trop 2021; 222:106054. [PMID: 34273309 DOI: 10.1016/j.actatropica.2021.106054] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/09/2021] [Accepted: 07/10/2021] [Indexed: 12/13/2022]
Abstract
This study aimed to identify the Trypanosoma cruzi genotypes and their relationship with parasitic load in distinct geographic and ecotypic populations of Triatoma brasiliensis in two sites, including one where a Chagas disease (ChD) outbreak occurred in Rio Grande do Norte state, Brazil. Triatomine captures were performed in peridomestic and sylvatic ecotopes in two municipalities: Marcelino Vieira - affected by the outbreak; and Currais Novos - where high pressure of peridomestic triatomine infestation after insecticide spraying have been reported. The kDNA-PCR was used to select 124 T. cruzi positive triatomine samples, of which 117 were successfully genotyped by fluorescent fragment length barcoding (FFLB). Moreover, the T. cruzi load quantification was performed using a multiplex TaqMan qPCR. Our findings showed a clear ecotypic segregation between TcI and TcII harboured by T. brasiliensis (p<0.001). Although no genotypes were ecotypically exclusive, TcI was predominant in peridomestic ecotopes (86%). In general, T. brasiliensis from Rio Grande do Norte had a higher T. cruzi load varying from 3.94 to 7.66 x 106T. cruzi per insect. Additionally, TcII (median value=299,504 T. cruzi/intestine unit equivalents) had more than twice (p=0.1) the parasite load of TcI (median value=149,077 T. cruzi/intestine unit equivalents), which can be attributed to a more ancient co-evolution with T. brasiliensis. The higher prevalence of TcII in the sylvatic T. brasiliensis (70%) could be associated with a more diversified source of bloodmeals for wild insect populations. Either TcI or TcII may have been responsible for the ChD outbreak that occurred in the city of Marcelino Vieira. On the other hand, a smaller portion of T. brasiliensis was infected by TcIII (3%) in the peridomicile, in addition to T. rangeli genotype A (1%), often found in mixed infections. Our results highlight the need of understanding the patterns of T. cruzi genotype´s development and circulation in insect vectors and reservoirs as a mode of tracking situations of epidemiologic importance, as the ChD outbreak recently recorded for Northeastern Brazil.
Collapse
Affiliation(s)
- Carolina Valença-Barbosa
- Instituto de Biologia, Universidade de Campinas - UNICAMP, São Paulo, Brazil; Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz - Fiocruz, Belo Horizonte, Minas Gerais, Brazil.
| | - Paula Finamore-Araujo
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | - Otacilio C Moreira
- Laboratório de Biologia Molecular e Doenças Endêmicas, Instituto Oswaldo Cruz/Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | - André Borges-Veloso
- Instituto de Biologia, Universidade de Campinas - UNICAMP, São Paulo, Brazil; Grupo Triatomíneos, Instituto René Rachou, Fundação Oswaldo Cruz - Fiocruz, Belo Horizonte, Minas Gerais, Brazil
| | | | - Maurício Lilioso
- Instituto de Biologia, Universidade de Campinas - UNICAMP, São Paulo, Brazil
| | | | | | | | - Carlos Eduardo Almeida
- Instituto de Biologia, Universidade de Campinas - UNICAMP, São Paulo, Brazil; Instituto de Biologia, Universidade Federal da Bahia, Brazil
| |
Collapse
|
12
|
Gaspe MS, Cardinal MV, Fernández MDP, Vassena CV, Santo-Orihuela PL, Enriquez GF, Alvedro A, Laiño MA, Nattero J, Alvarado-Otegui JA, Macchiaverna NP, Cecere MC, Freilij H, Gürtler RE. Improved vector control of Triatoma infestans limited by emerging pyrethroid resistance across an urban-to-rural gradient in the Argentine Chaco. Parasit Vectors 2021; 14:437. [PMID: 34454569 PMCID: PMC8401064 DOI: 10.1186/s13071-021-04942-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 08/10/2021] [Indexed: 11/25/2022] Open
Abstract
Background The sustainable elimination of Triatoma infestans in the Gran Chaco region represents an enduring challenge. Following the limited effects of a routine pyrethroid insecticide spraying campaign conducted over 2011–2013 (first period) in Avia Terai, an endemic municipality with approximately 2300 houses, we implemented a rapid-impact intervention package to suppress house infestation across the urban-to-rural gradient over 2015–2019 (second period). Here, we assess their impacts and whether persisting infestations were associated with pyrethroid resistance. Methods The 2011–2013 campaign achieved a limited detection and spray coverage across settings (< 68%), more so during the surveillance phase. Following community mobilization and school-based interventions, the 2015–2019 program assessed baseline house infestation using a stratified sampling strategy; sprayed all rural houses with suspension concentrate beta-cypermethrin, and selectively sprayed infested and adjacent houses in urban and peri-urban settings; and monitored house infestation and performed selective treatments over the follow-up. Results Over the first period, house infestation returned to pre-intervention levels within 3–4 years. The adjusted relative odds of house infestation between 2011–2013 and 2015–2016 differed very little (adj. OR: 1.17, 95% CI 0.91–1.51). Over the second period, infestation decreased significantly between 0 and 1 year post-spraying (YPS) (adj. OR: 0.36, 95% CI 0.28–0.46), with heterogeneous effects across the gradient. Mean bug abundance also dropped between 0 and 1 YPS and thereafter remained stable in rural and peri-urban areas. Using multiple regression models, house infestation and bug abundance at 1 YPS were 3–4 times higher if the house had been infested before treatment, or was scored as high-risk or non-participating. No low-risk house was ever infested. Persistent foci over two successive surveys increased from 30.0 to 59.3% across the gradient. Infestation was more concentrated in peridomestic rather than domestic habitats. Discriminating-dose bioassays showed incipient or moderate pyrethroid resistance in 7% of 28 triatomine populations collected over 2015–2016 and in 83% of 52 post-spraying populations. Conclusions The intervention package was substantially more effective than the routine insecticide spraying campaign, though the effects were lower than predicted due to unexpected incipient or moderate pyrethroid resistance. Increased awareness and diagnosis of vector control failures in the Gran Chaco, including appropriate remedial actions, are greatly needed. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04942-9.
Collapse
Affiliation(s)
- María Sol Gaspe
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina. .,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| | - Marta Victoria Cardinal
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - María Del Pilar Fernández
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.,Washington State University, Paul G. Allen School for Global Animal Health, Allen Center, 1155 College Ave., Pullman, WA, 99164, USA
| | - Claudia Viviana Vassena
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN, CONICET/UNIDEF/CITEDEF), Juan Bautista La Salle 4397, Villa Martelli, CP 1603, Buenos Aires, Argentina.,Universidad Nacional de San Martín, Buenos Aires, Argentina
| | - Pablo Luis Santo-Orihuela
- Centro de Investigaciones de Plagas e Insecticidas (CIPEIN, CONICET/UNIDEF/CITEDEF), Juan Bautista La Salle 4397, Villa Martelli, CP 1603, Buenos Aires, Argentina.,Cátedra de Química Analítica Instrumental, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gustavo Fabián Enriquez
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Alejandra Alvedro
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Mariano Alberto Laiño
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Julieta Nattero
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Julián Antonio Alvarado-Otegui
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Natalia Paula Macchiaverna
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - María Carla Cecere
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina
| | - Héctor Freilij
- Servicio de Parasitología, Hospital de Niños Ricardo Gutiérrez, Instituto Multidisciplinario de Investigación en Patologías Pediátricas, CONICET-GCBA, Buenos Aires, Argentina
| | - Ricardo Esteban Gürtler
- Laboratorio de Eco-Epidemiología, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina. .,Instituto de Ecología, Genética y Evolución de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Universitaria, C1428EHA, Buenos Aires, Argentina.
| |
Collapse
|