1
|
Tenywa FSC, Kibondo UA, Entwistle J, Dogan O, Haruna M, Phisoo RP, Moore J, Machange JJ, Makame H, Tripet F, Müller P, Mondy M, Nimmo D, Stevenson JC, Moore SJ. Bioassays for the evaluation of the attractiveness of attractive targeted sugar bait (ATSB) against Anopheles mosquitoes in controlled semi-field systems. Parasit Vectors 2025; 18:38. [PMID: 39905480 DOI: 10.1186/s13071-024-06653-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 12/27/2024] [Indexed: 02/06/2025] Open
Abstract
BACKGROUND Sugar feeding is an essential aspect of mosquito biology that may be exploited for mosquito control by adding insecticides to sugar attractants, so-called 'attractive targeted sugar baits' (ATSBs). To optimize their effectiveness, ATSB products need to be maximally attractive at both short and long range and induce high levels of feeding. This study aimed to assess the attractiveness and feeding success of Anopheles mosquitoes exposed to attractive sugar baits (ASBs). METHOD Experiments were conducted in 2 × 5 × 2-m cages constructed within the semi-field systems (SFS) at Ifakara Health Institute, Bagamoyo, Tanzania. Male and female Anopheles gambiae s.s. and An. funestus s.s. mosquitoes were exposed to either 20% sucrose or different ASB station prototypes produced by Westham Co. in either (1) no-choice experiments or (2) choice experiments. Mosquitoes were exposed overnight and assessed for intrinsic or relative olfactory attraction using fluorescent powder markers dusted over the ASB stations and 20% sucrose and for feeding using uranine incorporated within the bait station and food dye in 20% sucrose controls. RESULTS Both male and female An. gambiae and An. funestus mosquitoes were attracted to the ASBs, with no significant difference between the sexes for each of the experiments conducted. Older mosquitoes (3-5 days) were more attracted to the ASBs (OR = 8.3, [95% CI 6.6-10.5] P < 0.001) than younger mosquitoes (0-1 day). Similarly, older mosquitoes responded more to 20% sucrose (OR = 4.6, [3.7-5.8], P < 0.001) than newly emerged Anopheles. Of the four prototypes tested, the latest iteration, ASB prototype v1.2.1, showed the highest intrinsic attraction of both Anopheles species, attracting 91.2% [95% CI 87.9-94.5%]. Relative to ATSB v1.1.1, the latest prototype, v.1.2.1, had higher attraction (OR = 1.19 [95% CI 1.07-1.33], P < 0.001) and higher feeding success (OR = 1.71 [95% CI 1.33-2.18], P < 0.001). CONCLUSIONS Data from these experiments support using ASBs v1.2.1, deployed in large-scale epidemiological trials, as it is the most attractive and shows the highest feeding success of the Westham prototypes tested. The findings indicate that future bioassays to evaluate ATSBs should use mosquitoes of both sexes, aged 3-5 days, include multiple species in the same cage or chamber, and utilize both non-choice and choice tests with a standard comparator.
Collapse
Affiliation(s)
- Frank S C Tenywa
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania.
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland.
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland.
| | - Ummi A Kibondo
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Julian Entwistle
- Liverpool School of Tropical Medicine, The Innovative Vector Control Consortium, Pembroke Place, Liverpool, L3 5QA, UK
| | - Osward Dogan
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Mapipi Haruna
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Restuta P Phisoo
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Jason Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
| | - Jane J Machange
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| | - Haji Makame
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
| | - Frederic Tripet
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Newcastle, Staffordshire, ST5 5BG, UK
| | - Pie Müller
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Mathias Mondy
- Liverpool School of Tropical Medicine, The Innovative Vector Control Consortium, Pembroke Place, Liverpool, L3 5QA, UK
| | - Derric Nimmo
- Liverpool School of Tropical Medicine, The Innovative Vector Control Consortium, Pembroke Place, Liverpool, L3 5QA, UK
| | - Jennifer C Stevenson
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
| | - Sarah J Moore
- Vector Control Product Testing Unit, Environmental Health and Ecological Sciences, Ifakara Health Institute, P.O. Box 74, Bagamoyo, Tanzania
- Swiss Tropical and Public Health Institute, Kreuzstrasse 2, 4123, Allschwil, Switzerland
- University of Basel, Petersplatz 1, 4001, Basel, Switzerland
- Nelson Mandela African Institute of Science and Technology (NM-AIST), P.O. Box 447, Tengeru, Tanzania
| |
Collapse
|
2
|
Mysore K, Oxley JD, Duckham C, Castilla-Gutierrez C, Stewart ATM, Winter N, Feng RS, Singh S, James LD, Mohammed A, Severson DW, Duman-Scheel M. Development of a controlled-release mosquito RNAi yeast larvicide suitable for the sustained control of large water storage containers. Sci Rep 2024; 14:30186. [PMID: 39632972 PMCID: PMC11618383 DOI: 10.1038/s41598-024-81800-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024] Open
Abstract
Large household water storage containers are among the most productive habitats for Aedes aegypti (Linnaeus, 1762), the primary mosquito vector for dengue and other arboviral pathogens. Increasing concerns for insecticide resistance and larvicide safety are limiting the successful treatment of large household water storage containers, which are among the most productive habitats for Aedes juveniles. The recent development of species-specific RNAi-based yeast larvicides could help overcome these problems, particularly if shelf stable ready-to-use formulations with significant residual activity in water can be developed. Here we examine the hypothesis that development of a shelf-stable controlled-release RNAi yeast formulation can facilitate lasting control of A. aegypti juveniles in large water storage containers. In this study, a dried inactivated yeast was incorporated into a biodegradable matrix containing a mixture of polylactic acid, a preservative, and UV protectants. The formulation was prepared using food-grade level components to prevent toxicity to humans or other organisms. Both floating and sinking versions of the tablets were prepared for treatment of various sized water containers, including household water storage tank-sized containers. The tablets passed accelerated storage tests of shelf life stability and demonstrated up to six months residual activity in water. The yeast performed well in both small and large containers, including water barrels containing 20-1000 larvae each, and in outdoor barrel trials. Future studies will include the evaluation of the yeast larvicide in larger operational field trials that will further assess the potential for incorporating this new technology into integrated mosquito control programs worldwide.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN, USA
| | - James D Oxley
- Southwest Research Institute, San Antonio, TX, 78238, USA
| | | | | | - Akilah T M Stewart
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN, USA
| | - Nikhella Winter
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad and Tobago
| | - Rachel Shui Feng
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad and Tobago
| | - Satish Singh
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad and Tobago
| | - Lester D James
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad and Tobago
| | - Azad Mohammed
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad and Tobago
| | - David W Severson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN, USA
- Department of Life Sciences, Faculty of Science and Technology, The University of the West Indies, St. Augustine Campus, Port of Spain, Trinidad and Tobago
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN, USA.
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
3
|
Adedeji EO, Beder T, Damiani C, Cappelli A, Accoti A, Tapanelli S, Ogunlana OO, Fatumo S, Favia G, Koenig R, Adebiyi E. Combination of computational techniques and RNAi reveal targets in Anopheles gambiae for malaria vector control. PLoS One 2024; 19:e0305207. [PMID: 38968330 PMCID: PMC11226046 DOI: 10.1371/journal.pone.0305207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 05/25/2024] [Indexed: 07/07/2024] Open
Abstract
Increasing reports of insecticide resistance continue to hamper the gains of vector control strategies in curbing malaria transmission. This makes identifying new insecticide targets or alternative vector control strategies necessary. CLassifier of Essentiality AcRoss EukaRyote (CLEARER), a leave-one-organism-out cross-validation machine learning classifier for essential genes, was used to predict essential genes in Anopheles gambiae and selected predicted genes experimentally validated. The CLEARER algorithm was trained on six model organisms: Caenorhabditis elegans, Drosophila melanogaster, Homo sapiens, Mus musculus, Saccharomyces cerevisiae and Schizosaccharomyces pombe, and employed to identify essential genes in An. gambiae. Of the 10,426 genes in An. gambiae, 1,946 genes (18.7%) were predicted to be Cellular Essential Genes (CEGs), 1716 (16.5%) to be Organism Essential Genes (OEGs), and 852 genes (8.2%) to be essential as both OEGs and CEGs. RNA interference (RNAi) was used to validate the top three highly expressed non-ribosomal predictions as probable vector control targets, by determining the effect of these genes on the survival of An. gambiae G3 mosquitoes. In addition, the effect of knockdown of arginase (AGAP008783) on Plasmodium berghei infection in mosquitoes was evaluated, an enzyme we computationally inferred earlier to be essential based on chokepoint analysis. Arginase and the top three genes, AGAP007406 (Elongation factor 1-alpha, Elf1), AGAP002076 (Heat shock 70kDa protein 1/8, HSP), AGAP009441 (Elongation factor 2, Elf2), had knockdown efficiencies of 91%, 75%, 63%, and 61%, respectively. While knockdown of HSP or Elf2 significantly reduced longevity of the mosquitoes (p<0.0001) compared to control groups, Elf1 or arginase knockdown had no effect on survival. However, arginase knockdown significantly reduced P. berghei oocytes counts in the midgut of mosquitoes when compared to LacZ-injected controls. The study reveals HSP and Elf2 as important contributors to mosquito survival and arginase as important for parasite development, hence placing them as possible targets for vector control.
Collapse
Affiliation(s)
- Eunice O. Adedeji
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
- Department of Biology, University of York, York, United Kingdom
| | - Thomas Beder
- Medical Department II, Hematology and Oncology, University Medical Center Schleswig-Holstein, Kiel, Germany
- University Cancer Center Schleswig-Holstein, University Medical Center Schleswig-Holstein, Kiel and Lübeck, Germany
- Institute for Infectious Diseases and Infection Control (IIMK, RG Systemsbiology), Jena University Hospital, Jena, Germany
| | - Claudia Damiani
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Alessia Cappelli
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Anastasia Accoti
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Sofia Tapanelli
- Department of Life Sciences, Imperial College, London, United Kingdom
| | - Olubanke O. Ogunlana
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- Department of Biochemistry, Covenant University, Ota, Ogun State, Nigeria
- African Center of Excellence in Bioinformatics & Data Intensive Science, Makerere University, Kampala, Uganda
| | - Segun Fatumo
- Department of Non-Communicable Disease Epidemiology, London School of Hygiene & Tropical Medicine, London, United Kingdom
| | - Guido Favia
- School of Biosciences & Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Rainer Koenig
- Institute for Infectious Diseases and Infection Control (IIMK, RG Systemsbiology), Jena University Hospital, Jena, Germany
| | - Ezekiel Adebiyi
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Ogun State, Nigeria
- African Center of Excellence in Bioinformatics & Data Intensive Science, Makerere University, Kampala, Uganda
- Division of Applied Bioinformatics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
4
|
Stewart ATM, Mysore K, Njoroge TM, Winter N, Feng RS, Singh S, James LD, Singkhaimuk P, Sun L, Mohammed A, Oxley JD, Duckham C, Ponlawat A, Severson DW, Duman-Scheel M. Demonstration of RNAi Yeast Insecticide Activity in Semi-Field Larvicide and Attractive Targeted Sugar Bait Trials Conducted on Aedes and Culex Mosquitoes. INSECTS 2023; 14:950. [PMID: 38132622 PMCID: PMC10743515 DOI: 10.3390/insects14120950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/04/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Eco-friendly new mosquito control innovations are critical for the ongoing success of global mosquito control programs. In this study, Sh.463_56.10R, a robust RNA interference (RNAi) yeast insecticide strain that is suitable for scaled fermentation, was evaluated under semi-field conditions. Inactivated and dried Sh.463_56.10R yeast induced significant mortality of field strain Aedes aegypti, Aedes albopictus, and Culex quinquefasciatus larvae in semi-field larvicide trials conducted outdoors in St. Augustine, Trinidad, where 100% of the larvae were dead within 24 h. The yeast was also stably suspended in commercial bait and deployed as an active ingredient in miniature attractive targeted sugar bait (ATSB) station sachets. The yeast ATSB induced high levels of Aedes and Culex mosquito morbidity in semi-field trials conducted in Trinidad, West Indies, as well as in Bangkok, Thailand, in which the consumption of the yeast resulted in adult female mosquito death within 48 h, faster than what was observed in laboratory trials. These findings support the pursuit of large-scale field trials to further evaluate the Sh.463_56.10R insecticide, a member of a promising new class of species-specific RNAi insecticides that could help combat insecticide resistance and support effective mosquito control programs worldwide.
Collapse
Affiliation(s)
- Akilah T. M. Stewart
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN 46617, USA; (A.T.M.S.); (K.M.); (T.M.N.); (L.S.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN 46617, USA; (A.T.M.S.); (K.M.); (T.M.N.); (L.S.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Teresia M. Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN 46617, USA; (A.T.M.S.); (K.M.); (T.M.N.); (L.S.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Nikhella Winter
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago; (N.W.); (R.S.F.); (S.S.); (L.D.J.); (A.M.)
| | - Rachel Shui Feng
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago; (N.W.); (R.S.F.); (S.S.); (L.D.J.); (A.M.)
| | - Satish Singh
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago; (N.W.); (R.S.F.); (S.S.); (L.D.J.); (A.M.)
| | - Lester D. James
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago; (N.W.); (R.S.F.); (S.S.); (L.D.J.); (A.M.)
| | - Preeraya Singkhaimuk
- Department of Entomology, US Army Medical Directorate–Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok 10400, Thailand; (P.S.); (A.P.)
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN 46617, USA; (A.T.M.S.); (K.M.); (T.M.N.); (L.S.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Azad Mohammed
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago; (N.W.); (R.S.F.); (S.S.); (L.D.J.); (A.M.)
| | - James D. Oxley
- Southwest Research Institute, San Antonio, TX 78238, USA;
| | | | - Alongkot Ponlawat
- Department of Entomology, US Army Medical Directorate–Armed Forces Research Institute of Medical Sciences (USAMD-AFRIMS), Bangkok 10400, Thailand; (P.S.); (A.P.)
| | - David W. Severson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN 46617, USA; (A.T.M.S.); (K.M.); (T.M.N.); (L.S.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago; (N.W.); (R.S.F.); (S.S.); (L.D.J.); (A.M.)
- Department of Biological Sciences, College of Science, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, IN 46617, USA; (A.T.M.S.); (K.M.); (T.M.N.); (L.S.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, College of Science, The University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
5
|
Mysore K, Njoroge TM, Stewart ATM, Winter N, Hamid-Adiamoh M, Sun L, Feng RS, James LD, Mohammed A, Severson DW, Duman-Scheel M. Characterization of a novel RNAi yeast insecticide that silences mosquito 5-HT1 receptor genes. Sci Rep 2023; 13:22511. [PMID: 38110471 PMCID: PMC10728091 DOI: 10.1038/s41598-023-49799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
G protein-coupled receptors (GPCRs), which regulate numerous intracellular signaling cascades that mediate many essential physiological processes, are attractive yet underexploited insecticide targets. RNA interference (RNAi) technology could facilitate the custom design of environmentally safe pesticides that target GPCRs in select target pests yet are not toxic to non-target species. This study investigates the hypothesis that an RNAi yeast insecticide designed to silence mosquito serotonin receptor 1 (5-HTR1) genes can kill mosquitoes without harming non-target arthropods. 5-HTR.426, a Saccharomyces cerevisiae strain that expresses an shRNA targeting a site specifically conserved in mosquito 5-HTR1 genes, was generated. The yeast can be heat-inactivated and delivered to mosquito larvae as ready-to-use tablets or to adult mosquitoes using attractive targeted sugar baits (ATSBs). The results of laboratory and outdoor semi-field trials demonstrated that consumption of 5-HTR.426 yeast results in highly significant mortality rates in Aedes, Anopheles, and Culex mosquito larvae and adults. Yeast consumption resulted in significant 5-HTR1 silencing and severe neural defects in the mosquito brain but was not found to be toxic to non-target arthropods. These results indicate that RNAi insecticide technology can facilitate selective targeting of GPCRs in intended pests without impacting GPCR activity in non-targeted organisms. In future studies, scaled production of yeast expressing the 5-HTR.426 RNAi insecticide could facilitate field trials to further evaluate this promising new mosquito control intervention.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Teresia M Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Akilah T M Stewart
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Nikhella Winter
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - Majidah Hamid-Adiamoh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Rachel Shui Feng
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - Lester D James
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - Azad Mohammed
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
| | - David W Severson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
- Department of Life Sciences, Faculty of Science & Technology, The University of the West Indies, St. Augustine Campus, Trinidad and Tobago, Spain
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.
- The University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA.
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN, USA.
| |
Collapse
|
6
|
Brizzee C, Mysore K, Njoroge TM, McConnell S, Hamid-Adiamoh M, Stewart ATM, Kinder JT, Crawford J, Duman-Scheel M. Targeting Mosquitoes through Generation of an Insecticidal RNAi Yeast Strain Using Cas-CLOVER and Super PiggyBac Engineering in Saccharomyces cerevisiae. J Fungi (Basel) 2023; 9:1056. [PMID: 37998862 PMCID: PMC10672312 DOI: 10.3390/jof9111056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 09/28/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
The global deployment of RNAi yeast insecticides involves transitioning from the use of laboratory yeast strains to more robust strains that are suitable for scaled fermentation. In this investigation, the RNA-guided Cas-CLOVER system was used in combination with Piggybac transposase to produce robust Saccharomyces cerevisiae strains with multiple integrated copies of the Sh.463 short hairpin RNA (shRNA) insecticide expression cassette. This enabled the constitutive high-level expression of an insecticidal shRNA corresponding to a target sequence that is conserved in mosquito Shaker genes, but which is not found in non-target organisms. Top-expressing Cas-CLOVER strains performed well in insecticide trials conducted on Aedes, Culex, and Anopheles larvae and adult mosquitoes, which died following consumption of the yeast. Scaled fermentation facilitated the kilogram-scale production of the yeast, which was subsequently heat-killed and dried. These studies indicate that RNAi yeast insecticide production can be scaled, an advancement that may one day facilitate the global distribution of this new mosquito control intervention.
Collapse
Affiliation(s)
- Corey Brizzee
- Demeetra Ag Bio, 2277 Thunderstick Dr. Suite 300, Lexington, KY 40505, USA; (C.B.); (S.M.); (J.T.K.)
| | - Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (T.M.N.); (M.H.-A.); (A.T.M.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Teresia M. Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (T.M.N.); (M.H.-A.); (A.T.M.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Seth McConnell
- Demeetra Ag Bio, 2277 Thunderstick Dr. Suite 300, Lexington, KY 40505, USA; (C.B.); (S.M.); (J.T.K.)
| | - Majidah Hamid-Adiamoh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (T.M.N.); (M.H.-A.); (A.T.M.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Akilah T. M. Stewart
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (T.M.N.); (M.H.-A.); (A.T.M.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - J. Tyler Kinder
- Demeetra Ag Bio, 2277 Thunderstick Dr. Suite 300, Lexington, KY 40505, USA; (C.B.); (S.M.); (J.T.K.)
| | - Jack Crawford
- Demeetra Ag Bio, 2277 Thunderstick Dr. Suite 300, Lexington, KY 40505, USA; (C.B.); (S.M.); (J.T.K.)
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (T.M.N.); (M.H.-A.); (A.T.M.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
7
|
Osborne CJ, Cohnstaedt LW, Silver KS. Outlook on RNAi-Based Strategies for Controlling Culicoides Biting Midges. Pathogens 2023; 12:1251. [PMID: 37887767 PMCID: PMC10610143 DOI: 10.3390/pathogens12101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
Culicoides are small biting midges with the capacity to transmit important livestock pathogens around much of the world, and their impacts on animal welfare are likely to expand. Hemorrhagic diseases resulting from Culicoides-vectored viruses, for example, can lead to millions of dollars in economic damages for producers. Chemical insecticides can reduce Culicoides abundance but may not suppress population numbers enough to prevent pathogen transmission. These insecticides can also cause negative effects on non-target organisms and ecosystems. RNA interference (RNAi) is a cellular regulatory mechanism that degrades mRNA and suppresses gene expression. Studies have examined the utility of this mechanism for insect pest control, and with it, have described the hurdles towards producing, optimizing, and applying these RNAi-based products. These methods hold promise for being highly specific and environmentally benign when compared to chemical insecticides and are more transient than engineering transgenic insects. Given the lack of available control options for Culicoides, RNAi-based products could be an option to treat large areas with minimal environmental impact. In this study, we describe the state of current Culicoides control methods, successes and hurdles towards using RNAi for pest control, and the necessary research required to bring an RNAi-based control method to fruition for Culicoides midges.
Collapse
Affiliation(s)
- Cameron J. Osborne
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| | - Lee W. Cohnstaedt
- Foreign Arthropod-Borne Animal Diseases Research Unit, National Bio- and Agro-Defense Facility, Agricultural Research Service, United Stated Department of Agriculture, Manhattan, KS 66502, USA
| | - Kristopher S. Silver
- Department of Entomology, College of Agriculture, Kansas State University, Manhattan, KS 66506, USA;
| |
Collapse
|
8
|
Njoroge TM, Hamid-Adiamoh M, Duman-Scheel M. Maximizing the Potential of Attractive Targeted Sugar Baits (ATSBs) for Integrated Vector Management. INSECTS 2023; 14:585. [PMID: 37504591 PMCID: PMC10380652 DOI: 10.3390/insects14070585] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 07/29/2023]
Abstract
Due to the limitations of the human therapeutics and vaccines available to treat and prevent mosquito-borne diseases, the primary strategy for disease mitigation is through vector control. However, the current tools and approaches used for mosquito control have proven insufficient to prevent malaria and arboviral infections, such as dengue, Zika, and lymphatic filariasis, and hence, these diseases remain a global public health threat. The proven ability of mosquito vectors to adapt to various control strategies through insecticide resistance, invasive potential, and behavioral changes from indoor to outdoor biting, combined with human failures to comply with vector control requirements, challenge sustained malaria and arboviral disease control worldwide. To address these concerns, increased efforts to explore more varied and integrated control strategies have emerged. These include approaches that involve the behavioral management of vectors. Attractive targeted sugar baits (ATSBs) are a vector control approach that manipulates and exploits mosquito sugar-feeding behavior to deploy insecticides. Although traditional approaches have been effective in controlling malaria vectors indoors, preventing mosquito bites outdoors and around human dwellings is challenging. ATSBs, which can be used to curb outdoor biting mosquitoes, have the potential to reduce mosquito densities and clinical malaria incidence when used in conjunction with existing vector control strategies. This review examines the available literature regarding the utility of ATSBs for mosquito control, providing an overview of ATSB active ingredients (toxicants), attractants, modes of deployment, target organisms, and the potential for integrating ATSBs with existing vector control interventions.
Collapse
Affiliation(s)
- Teresia Muthoni Njoroge
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, South Bend, IN 46556, USA
| | - Majidah Hamid-Adiamoh
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, South Bend, IN 46556, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, South Bend, IN 46556, USA
| |
Collapse
|
9
|
Yadav M, Dahiya N, Sehrawat N. Mosquito gene targeted RNAi studies for vector control. Funct Integr Genomics 2023; 23:180. [PMID: 37227504 PMCID: PMC10211311 DOI: 10.1007/s10142-023-01072-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
Vector-borne diseases are serious public health concern. Mosquito is one of the major vectors responsible for the transmission of a number of diseases like malaria, Zika, chikungunya, dengue, West Nile fever, Japanese encephalitis, St. Louis encephalitis, and yellow fever. Various strategies have been used for mosquito control, but the breeding potential of mosquitoes is such tremendous that most of the strategies failed to control the mosquito population. In 2020, outbreaks of dengue, yellow fever, and Japanese encephalitis have occurred worldwide. Continuous insecticide use resulted in strong resistance and disturbed the ecosystem. RNA interference is one of the strategies opted for mosquito control. There are a number of mosquito genes whose inhibition affected mosquito survival and reproduction. Such kind of genes could be used as bioinsecticides for vector control without disturbing the natural ecosystem. Several studies have targeted mosquito genes at different developmental stages by the RNAi mechanism and result in vector control. In the present review, we included RNAi studies conducted for vector control by targeting mosquito genes at different developmental stages using different delivery methods. The review could help the researcher to find out novel genes of mosquitoes for vector control.
Collapse
Affiliation(s)
- Mahima Yadav
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| | - Nisha Dahiya
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| | - Neelam Sehrawat
- Department of Genetics, Maharshi Dayanand University, Rohtak, Haryana India
| |
Collapse
|
10
|
He L, Huang Y, Tang X. RNAi-based pest control: Production, application and the fate of dsRNA. Front Bioeng Biotechnol 2022; 10:1080576. [PMID: 36524052 PMCID: PMC9744970 DOI: 10.3389/fbioe.2022.1080576] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 10/21/2023] Open
Abstract
The limitations of conventional pesticides have raised the demand for innovative and sustainable solutions for plant protection. RNA Interference (RNAi) triggered by dsRNA has evolved as a promising strategy to control insects in a species-specific manner. In this context, we review the methods for mass production of dsRNA, the approaches of exogenous application of dsRNA in the field, and the fate of dsRNA after application. Additionally, we describe the opportunities and challenges of using nanoparticles as dsRNA carriers to control insects. Furthermore, we provide future directions to improve pest management efficiency by utilizing the synergistic effects of multiple target genes. Meanwhile, the establishment of a standardized framework for assessment and regulatory consensus is critical to the commercialization of RNA pesticides.
Collapse
Affiliation(s)
- Li He
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Yanna Huang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| | - Xueming Tang
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
- Key Laboratory of Urban Agriculture, Ministry of Agriculture and Rural Affairs, Shanghai, China
- Shanghai Yangtze River Delta Eco-Environmental Change and Management Observation and Research Station, Ministry of Science and Technology, Ministry of Education, Shanghai, China
| |
Collapse
|
11
|
Barrera R. New tools for Aedes control: mass trapping. CURRENT OPINION IN INSECT SCIENCE 2022; 52:100942. [PMID: 35667560 PMCID: PMC9413017 DOI: 10.1016/j.cois.2022.100942] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 05/10/2022] [Accepted: 05/25/2022] [Indexed: 05/15/2023]
Abstract
Aedes aegypti, the main vector of dengue, chikungunya, and Zika viruses uses artificial containers around homes to undergo immature development, making household-level detection and control extremely difficult in large urban areas. Mass trapping is an emerging methodology to control container-Aedes species such as Aedes aegypti and Aedes albopictus because effective traps for adult stages of these mosquitoes were developed recently. There are three main approaches to mass-trapping these mosquitoes: 1) Pull (attract/kill), 2) push (repel)-pull (attract/kill), and 3) pull (attract/contaminate/infect)-push (fly away). Effective mass-trapping depends on trap quality (capture efficiency, sturdiness, frequency of servicing), trap density and areal coverage, community involvement, and safety. Recent studies showed that Ae. aegypti populations can be sustainably controlled by mass trapping, although more area-wide studies showing effectiveness at preventing disease are needed for all trapping systems. Cost-effectiveness studies are needed for all emerging Aedes control approaches.
Collapse
Affiliation(s)
- Roberto Barrera
- Entomology and Ecology Team, Dengue Branch, DBVD, NCEZID, Centers for Disease Control and Prevention (CDC), 1324 Calle Cañada, San Juan 00920, Puerto Rico.
| |
Collapse
|
12
|
Mysore K, Hapairai LK, Realey JS, Sun L, Roethele JB, Duman-Scheel M. Oral RNAi for Gene Silencing in Mosquitoes: From the Bench to the Field. Cold Spring Harb Protoc 2022; 2022:Pdb.top107690. [PMID: 35135890 PMCID: PMC11041366 DOI: 10.1101/pdb.top107690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
RNA interference (RNAi) has played a key role in the field of insect functional genomics, a discipline that has enhanced the study of developmental, evolutionary, physiological, and molecular biological phenomena in a wide variety of insects, including disease vector mosquitoes. Here we introduce a recently optimized RNAi procedure in which adult mosquitoes are fed with a colored sugar bait containing small interfering RNA (siRNA). This procedure effectively and economically leads to gene silencing, is technically straightforward, and has been successfully used to characterize a number of genes in adult mosquitoes. We also discuss how, in addition to laboratory applications, this oral RNAi procedure might one day be used in the field for controlling insect pests.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana 46617, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Limb K Hapairai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana 46617, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Jacob S Realey
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana 46617, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana 46617, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Joseph B Roethele
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana 46617, USA
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana 46617, USA;
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana 46556, USA
| |
Collapse
|
13
|
Mysore K, Sun L, Li P, Roethele JB, Misenti JK, Kosmach J, Igiede J, Duman-Scheel M. A Conserved Female-Specific Requirement for the GGT Gene in Mosquito Larvae Facilitates RNAi-Mediated Sex Separation in Multiple Species of Disease Vector Mosquitoes. Pathogens 2022; 11:169. [PMID: 35215113 PMCID: PMC8879970 DOI: 10.3390/pathogens11020169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/05/2023] Open
Abstract
Although several emerging mosquito control technologies are dependent on mass releases of adult males, methods of sex-sorting that can be implemented globally have not yet been established. RNAi screens led to the discovery of siRNA, which targets gamma-glutamyl transpeptidase (GGT), a gene which is well conserved in multiple species of mosquitoes and located at the sex-determining M locus region in Aedes aegypti. Silencing the A. aegypti, Aedes albopictus, Anopheles gambiae, Culex pipiens, and Culex quinquefasciatus GGT genes resulted in female larval death, with no significant impact on male survival. Generation of yeast strains that permitted affordable expression and oral delivery of shRNA corresponding to mosquito GGT genes facilitated larval target gene silencing and generated significantly increased 5 males:1 female adult ratios in each species. Yeast targeting a conserved sequence in Culex GGT genes was incorporated into a larval mass-rearing diet, permitting the generation of fit adult male C. pipiens and C. quinquefasciatus, two species for which labor-intensive manual sex separation had previously been utilized. The results of this study indicate that female-specific yeast-based RNAi larvicides may facilitate global implementation of population-based control strategies that require releases of sterile or genetically modified adult males, and that yeast RNAi strategies can be utilized in various species of mosquitoes that have progressed to different stages of sex chromosome evolution.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Ping Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joseph B. Roethele
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joi K. Misenti
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - John Kosmach
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jessica Igiede
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (P.L.); (J.B.R.); (J.K.M.); (J.K.); (J.I.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA
| |
Collapse
|
14
|
Mysore K, Sun L, Hapairai LK, Wang CW, Igiede J, Roethele JB, Scheel ND, Scheel MP, Li P, Wei N, Severson DW, Duman-Scheel M. A Yeast RNA-Interference Pesticide Targeting the Irx Gene Functions as a Broad-Based Mosquito Larvicide and Adulticide. INSECTS 2021; 12:insects12110986. [PMID: 34821787 PMCID: PMC8622680 DOI: 10.3390/insects12110986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 10/28/2021] [Accepted: 10/28/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary It is critical that we identify new methods of preventing mosquito-borne infectious diseases, which threaten millions of people worldwide. In this investigation, we describe characterization of a new insecticide that turns off the mosquito Iroquois (Irx) gene, which is required for mosquito survival. The pesticide is synthesized in yeast, which can be fed to adult mosquitoes in a sugar bait solution or to juvenile mosquitoes that eat the yeast when it is placed in water where mosquitoes breed. Although the yeast kills several different types of mosquitoes, it was not found to affect the survival of other types of arthropods that consumed the yeast. These results indicate that yeast insecticides could one day be used for environmentally friendly mosquito control and disease prevention. Abstract Concerns for widespread insecticide resistance and the unintended impacts of insecticides on nontarget organisms have generated a pressing need for mosquito control innovations. A yeast RNAi-based insecticide that targets a conserved site in mosquito Irx family genes, but which has not yet been identified in the genomes of nontarget organisms, was developed and characterized. Saccharomyces cerevisiae constructed to express short hairpin RNA (shRNA) matching the target site induced significant Aedes aegypti larval death in both lab trials and outdoor semi-field evaluations. The yeast also induced high levels of mortality in adult females, which readily consumed yeast incorporated into an attractive targeted sugar bait (ATSB) during simulated field trials. A conserved requirement for Irx function as a regulator of proneural gene expression was observed in the mosquito brain, suggesting a possible mode of action. The larvicidal and adulticidal properties of the yeast were also verified in Aedes albopictus, Anopheles gambiae, and Culexquinquefasciatus mosquitoes, but the yeast larvicide was not toxic to other nontarget arthropods. These results indicate that further development and evaluation of this technology as an ecofriendly control intervention is warranted, and that ATSBs, an emerging mosquito control paradigm, could potentially be enriched through the use of yeast-based RNAi technology.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (L.K.H.); (J.B.R.); (M.P.S.); (P.L.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA; (C.-W.W.); (J.I.); (N.D.S.); (N.W.)
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (L.K.H.); (J.B.R.); (M.P.S.); (P.L.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA; (C.-W.W.); (J.I.); (N.D.S.); (N.W.)
| | - Limb K. Hapairai
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (L.K.H.); (J.B.R.); (M.P.S.); (P.L.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA; (C.-W.W.); (J.I.); (N.D.S.); (N.W.)
| | - Chien-Wei Wang
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA; (C.-W.W.); (J.I.); (N.D.S.); (N.W.)
- Department of Civil and Environmental Engineering and Earth Sciences, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Jessica Igiede
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA; (C.-W.W.); (J.I.); (N.D.S.); (N.W.)
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Joseph B. Roethele
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (L.K.H.); (J.B.R.); (M.P.S.); (P.L.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA; (C.-W.W.); (J.I.); (N.D.S.); (N.W.)
| | - Nicholas D. Scheel
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA; (C.-W.W.); (J.I.); (N.D.S.); (N.W.)
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - Max P. Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (L.K.H.); (J.B.R.); (M.P.S.); (P.L.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA; (C.-W.W.); (J.I.); (N.D.S.); (N.W.)
| | - Ping Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (L.K.H.); (J.B.R.); (M.P.S.); (P.L.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA; (C.-W.W.); (J.I.); (N.D.S.); (N.W.)
| | - Na Wei
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA; (C.-W.W.); (J.I.); (N.D.S.); (N.W.)
- Department of Civil and Environmental Engineering and Earth Sciences, The University of Notre Dame, Notre Dame, IN 46556, USA
| | - David W. Severson
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (L.K.H.); (J.B.R.); (M.P.S.); (P.L.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA; (C.-W.W.); (J.I.); (N.D.S.); (N.W.)
- Department of Biological Sciences, The University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Life Sciences, The University of the West Indies, St. Augustine, Trinidad, Trinidad and Tobago
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN 46617, USA; (K.M.); (L.S.); (L.K.H.); (J.B.R.); (M.P.S.); (P.L.); (D.W.S.)
- Eck Institute for Global Health, The University of Notre Dame, Notre Dame, IN 46556, USA; (C.-W.W.); (J.I.); (N.D.S.); (N.W.)
- Correspondence:
| |
Collapse
|
15
|
A Broad-Based Mosquito Yeast Interfering RNA Pesticide Targeting Rbfox1 Represses Notch Signaling and Kills Both Larvae and Adult Mosquitoes. Pathogens 2021; 10:pathogens10101251. [PMID: 34684200 PMCID: PMC8541554 DOI: 10.3390/pathogens10101251] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/23/2021] [Indexed: 12/03/2022] Open
Abstract
Prevention of mosquito-borne infectious diseases will require new classes of environmentally safe insecticides and novel mosquito control technologies. Saccharomyces cerevisiae was engineered to express short hairpin RNA (shRNA) corresponding to mosquito Rbfox1 genes. The yeast induced target gene silencing, resulting in larval death that was observed in both laboratory and outdoor semi-field trials conducted on Aedes aegypti. High levels of mortality were also observed during simulated field trials in which adult females consumed yeast delivered through a sugar bait. Mortality correlated with defects in the mosquito brain, in which a role for Rbfox1 as a positive regulator of Notch signaling was identified. The larvicidal and adulticidal activities of the yeast were subsequently confirmed in trials conducted on Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus, yet the yeast had no impact on survival of select non-target arthropods. These studies indicate that yeast RNAi pesticides targeting Rbfox1 could be further developed as broad-based mosquito larvicides and adulticides for deployment in integrated biorational mosquito control programs. These findings also suggest that the species-specificity of attractive targeted sugar baits, a new paradigm for vector control, could potentially be enhanced through RNAi technology, and specifically through the use of yeast-based interfering RNA pesticides.
Collapse
|
16
|
Winter N, Stewart ATM, Igiede J, Wiltshire RM, Hapairai LK, James LD, Mohammed A, Severson DW, Duman-Scheel M. Assessment of Trinidad community stakeholder perspectives on the use of yeast interfering RNA-baited ovitraps for biorational control of Aedes mosquitoes. PLoS One 2021; 16:e0252997. [PMID: 34185784 PMCID: PMC8241094 DOI: 10.1371/journal.pone.0252997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 05/26/2021] [Indexed: 11/19/2022] Open
Abstract
Dengue, Zika, chikungunya and yellow fever viruses continue to be a major public health burden. Aedes mosquitoes, the primary vectors responsible for transmitting these viral pathogens, continue to flourish due to local challenges in vector control management. Yeast interfering RNA-baited larval lethal ovitraps are being developed as a novel biorational control tool for Aedes mosquitoes. This intervention circumvents increasing issues with insecticide resistance and poses no known threat to non-target organisms. In an effort to create public awareness of this alternative vector control strategy, gain stakeholder feedback regarding product design and acceptance of the new intervention, and build capacity for its potential integration into existing mosquito control programs, this investigation pursued community stakeholder engagement activities, which were undertaken in Trinidad and Tobago. Three forms of assessment, including paper surveys, community forums, and household interviews, were used with the goal of evaluating local community stakeholders' knowledge of mosquitoes, vector control practices, and perceptions of the new technology. These activities facilitated evaluation of the hypothesis that the ovitraps would be broadly accepted by community stakeholders as a means of biorational control for Aedes mosquitoes. A comparison of the types of stakeholder input communicated through use of the three assessment tools highlighted the utility and merit of using each tool for assessing new global health interventions. Most study participants reported a general willingness to purchase an ovitrap on condition that it would be affordable and safe for human health and the environment. Stakeholders provided valuable input on product design, distribution, and operation. A need for educational campaigns that provide a mechanism for educating stakeholders about vector ecology and management was highlighted. The results of the investigation, which are likely applicable to many other Caribbean nations and other countries with heavy arboviral disease burdens, were supportive of supplementation of existing vector control strategies through the use of the yeast RNAi-based ovitraps.
Collapse
Affiliation(s)
- Nikhella Winter
- Department of Life Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Akilah T. M. Stewart
- Department of Life Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Jessica Igiede
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Rachel M. Wiltshire
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Limb K. Hapairai
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Lester D. James
- Department of Life Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - Azad Mohammed
- Department of Life Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
| | - David W. Severson
- Department of Life Sciences, The University of the West Indies, St. Augustine Campus, St. Augustine, Trinidad and Tobago
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
| | - Molly Duman-Scheel
- Eck Institute for Global Health, University of Notre Dame, Notre Dame, Indiana, United States of America
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, South Bend, Indiana, United States of America
- * E-mail:
| |
Collapse
|
17
|
Mysore K, Sun L, Roethele JB, Li P, Igiede J, Misenti JK, Duman-Scheel M. A conserved female-specific larval requirement for MtnB function facilitates sex separation in multiple species of disease vector mosquitoes. Parasit Vectors 2021; 14:338. [PMID: 34174948 PMCID: PMC8234664 DOI: 10.1186/s13071-021-04844-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 11/28/2022] Open
Abstract
Background Clusters of sex-specific loci are predicted to shape the boundaries of the M/m sex-determination locus of the dengue vector mosquito Aedes aegypti, but the identities of these genes are not known. Identification and characterization of these loci could promote a better understanding of mosquito sex chromosome evolution and lead to the elucidation of new strategies for male mosquito sex separation, a requirement for several emerging mosquito population control strategies that are dependent on the mass rearing and release of male mosquitoes. This investigation revealed that the methylthioribulose-1-phosphate dehydratase (MtnB) gene, which resides adjacent to the M/m locus and encodes an evolutionarily conserved component of the methionine salvage pathway, is required for survival of female larvae. Results Larval consumption of Saccharomyces cerevisiae (yeast) strains engineered to express interfering RNA corresponding to MtnB resulted in target gene silencing and significant female death, yet had no impact on A. aegypti male survival or fitness. Integration of the yeast larvicides into mass culturing protocols permitted scaled production of fit adult male mosquitoes. Moreover, silencing MtnB orthologs in Aedes albopictus, Anopheles gambiae, and Culex quinquefasciatus revealed a conserved female-specific larval requirement for MtnB among different species of mosquitoes. Conclusions The results of this investigation, which may have important implications for the study of mosquito sex chromosome evolution, indicate that silencing MtnB can facilitate sex separation in multiple species of disease vector insects. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-021-04844-w.
Collapse
Affiliation(s)
- Keshava Mysore
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Longhua Sun
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Joseph B Roethele
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Ping Li
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Jessica Igiede
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Joi K Misenti
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA.,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA
| | - Molly Duman-Scheel
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Raclin-Carmichael Hall, 1234 Notre Dame Ave., South Bend, IN, 46617, USA. .,University of Notre Dame Eck Institute for Global Health, Notre Dame, IN, USA.
| |
Collapse
|
18
|
A functional requirement for sex-determination M/m locus region lncRNA genes in Aedes aegypti female larvae. Sci Rep 2021; 11:10657. [PMID: 34017069 PMCID: PMC8137943 DOI: 10.1038/s41598-021-90194-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 04/30/2021] [Indexed: 01/25/2023] Open
Abstract
Although many putative long non-coding RNA (lncRNA) genes have been identified in insect genomes, few of these genes have been functionally validated. A screen for female-specific larvicides that facilitate Aedes aegypti male sex separation uncovered multiple interfering RNAs with target sites in lncRNA genes located in the M/m locus region, including loci within or tightly linked to the sex determination locus. Larval consumption of a Saccharomyces cerevisiae (yeast) strain engineered to express interfering RNA corresponding to lncRNA transcripts resulted in significant female death, yet had no impact on male survival or fitness. Incorporation of the yeast larvicides into mass culturing protocols facilitated scaled production and separation of fit adult males, indicating that yeast larvicides could benefit mosquito population control strategies that rely on mass releases of male mosquitoes. These studies functionally verified a female-specific developmental requirement for M/m locus region lncRNA genes, suggesting that sexually antagonistic lncRNA genes found within this highly repetitive pericentromeric DNA sequence may be contributing to the evolution of A. aegypti sex chromosomes.
Collapse
|