1
|
He R, Xu L, Guo M, Cheng K, Song Z, Xie Y, Wang H, Zhou X, Gu X, Xu J, Deng H, Yang G. Histone deacetylase 2 and 3 of Sarcoptes scabiei: characterization of a potential drug target. Microbiol Spectr 2024:e0073724. [PMID: 39436071 DOI: 10.1128/spectrum.00737-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/18/2024] [Indexed: 10/23/2024] Open
Abstract
Scabies is a contagious zoonotic parasitic disease that causes a substantial risk to both human and animal health and results in significant financial losses. No vaccine is available for scabies, and drug resistance to the conventional treatment for the disease has increased. Histone deacetylase (HDAC) modifies proteins by removing acetyl moieties from histones, regulates transcription, and is crucial for the immune system and apoptotic processes. This study aimed to clone, express, and determine the immunoreactivity of HDAC-2 and HDAC-3 of scabies mites to investigate their potential as scabies drug targets. The effects of inhibitors on recombinant Sarcoptes scabiei HDAC-2 (rSsHDAC-2) and rSsHDAC-3, as well as on the survival rate and ultrastructure of scabies mites in vitro, were also verified. The findings showed that the inhibitors reduced the acetylase activity of rSsHDAC-2 and rSsHDAC-3. Additionally, these inhibitors could significantly reduce the survival rate of scabies mites, making structural alterations in the mites such as mitochondrial pyknosis and cytoplasmic vacuoles and reaching a fatality rate of 76.7% after 24 h of action. In conclusion, HDAC-2 and HDAC-3 were critical to the survival of scabies mites and might be targeted by medications. Furthermore, the effect of inhibitors on the survival rate and structure of isolated scabies mites provides a new direction for developing therapeutic drugs for scabies.IMPORTANCEIn this study, we successfully cloned and expressed recombinant SsHDAC-2 and SsHDAC-3 in a prokaryotic system and confirmed their acetylation-deacetylase activities. These results provide a solid experimental foundation for subsequent research on SsHDAC-2 and SsHDAC-3. Furthermore, we report for the first time the use of SsHDAC-2 and SsHDAC-3 as drug targets. We demonstrated that the inhibition of these HDACs by pharmacological agents can lead to structural damage in the parasite, thereby impacting the survival activity of the scabies mite. This finding opens up a novel therapeutic avenue for the treatment of scabies.
Collapse
Affiliation(s)
- Ran He
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Luyang Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Maochuan Guo
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Kai Cheng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ziyi Song
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yue Xie
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Hui Wang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xuan Zhou
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobin Gu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Jing Xu
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Huidan Deng
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangyou Yang
- Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
2
|
Cevasco Contreras MDP, Borgo J, Celentano AM, Elso OG, Bach H, Catalán CAN, Bivona AE, Vaca HR, Rosenzvit MC, Sülsen VP. Extracts and Terpenoids from Stevia Species as Potential Anthelmintics for Neglected Tropical Diseases Caused by Cestode Parasites. Molecules 2024; 29:4430. [PMID: 39339424 PMCID: PMC11433760 DOI: 10.3390/molecules29184430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Cestodes are etiological agents of neglected diseases such as echinococcosis and cysticercosis, which are major public health problems. Antiparasitic treatment relies on a small number of approved drugs, which are often only partially effective, poorly tolerated and require prolonged administration. Thus, the discovery of novel potential treatments is critical. The Stevia genus (Asteraceae) includes species that are recognized as a source of bioactive compounds, with many species associated with medicinal uses. In this study, the cestocidal activity of four South American Stevia species that previously showed antiprotozoal activity was analyzed using a motility assay on the laboratory cestode model, Mesocestoides vogae. The four Stevia extracts showed cestocidal activity, with S. alpina var. alpina as the most active. The sesquiterpene lactones estafietin and eupatoriopicrin were purified from S. alpina var. alpina and S. maimarensis, respectively, and tested on M. vogae. Estafietin showed cestocidal activity, inhibiting parasite viability in a dose-dependent manner, even from the first day of incubation. Consistent with the motility effects, the extract of S. alpina var. alpina and estafietin induced marked alterations in the morphology of the parasite. The results of this report show that Stevia species represent a source of new molecules with potential for the treatment of neglected tropical diseases caused by cestodes.
Collapse
Affiliation(s)
- María del Pilar Cevasco Contreras
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina; (M.d.P.C.C.); (A.M.C.); (H.R.V.)
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM) (UBA-CONICET), Universidad de Buenos Aires, Paraguay 2155, Piso 13, Buenos Aires C1113AAD, Argentina
| | - Jimena Borgo
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA) (UBA-CONICET), Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina;
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina;
| | - Ana María Celentano
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina; (M.d.P.C.C.); (A.M.C.); (H.R.V.)
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM) (UBA-CONICET), Universidad de Buenos Aires, Paraguay 2155, Piso 13, Buenos Aires C1113AAD, Argentina
| | - Orlando Germán Elso
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina;
- Unidad de Microanálisis y Métodos Físicos Aplicados a Química Orgánica (UMYMFOR) (UBA-CONICET), Ciudad Universitaria, Pabellón 2, Piso 3, Buenos Aires C1428EGA, Argentina
| | - Hernán Bach
- Instituto Nacional de Tecnología Agropecuaria, Nicolas Repetto y De los Reseros s/n, Hurlingham, Buenos Aires B1686IQN, Argentina;
| | - Cesar Atilio Nazareno Catalán
- Instituto de Química Orgánica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, San Miguel de Tucumán T4000INI, Argentina;
| | - Augusto Ernesto Bivona
- Instituto de Estudios de la Inmunidad Humoral (IDEHU) (UBA-CONICET), Junín 956, Piso 4, Buenos Aires C1113AAD, Argentina;
| | - Hugo Rolando Vaca
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina; (M.d.P.C.C.); (A.M.C.); (H.R.V.)
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM) (UBA-CONICET), Universidad de Buenos Aires, Paraguay 2155, Piso 13, Buenos Aires C1113AAD, Argentina
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, CNRS, INSERM, UMR 7104, U 1258, 67404 Illkirch, France
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires C1113AAD, Argentina; (M.d.P.C.C.); (A.M.C.); (H.R.V.)
- Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM) (UBA-CONICET), Universidad de Buenos Aires, Paraguay 2155, Piso 13, Buenos Aires C1113AAD, Argentina
| | - Valeria Patricia Sülsen
- Instituto de Química y Metabolismo del Fármaco (IQUIMEFA) (UBA-CONICET), Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina;
- Cátedra de Farmacognosia, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, Piso 2, Buenos Aires C1113AAD, Argentina;
| |
Collapse
|
3
|
Zhou C, Zhao D, Wu C, Wu Z, Zhang W, Chen S, Zhao X, Wu S. Role of histone deacetylase inhibitors in non-neoplastic diseases. Heliyon 2024; 10:e33997. [PMID: 39071622 PMCID: PMC11283006 DOI: 10.1016/j.heliyon.2024.e33997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Background Epigenetic dysregulation has been implicated in the development and progression of a variety of human diseases, but epigenetic changes are reversible, and epigenetic enzymes and regulatory proteins can be targeted using small molecules. Histone deacetylase inhibitors (HDACis), as a class of epigenetic drugs, are widely used to treat various cancers and other diseases involving abnormal gene expression. Results Specially, HDACis have emerged as a promising strategy to enhance the therapeutic effect of non-neoplastic conditions, including neurological disorders, cardiovascular diseases, renal diseases, autoimmune diseases, inflammatory diseases, infectious diseases and rare diseases, along with their related mechanisms. However, their clinical efficacy has been limited by drug resistance and toxicity. Conclusions To date, most clinical trials of HDAC inhibitors have been related to the treatment of cancer rather than the treatment of non-cancer diseases, for which experimental studies are gradually underway. Discussions regarding non-neoplastic diseases often concentrate on specific disease types. Therefore, this review highlights the development of HDACis and their potential therapeutic applications in non-neoplastic diseases, either as monotherapy or in combination with other drugs or therapies.
Collapse
Affiliation(s)
- Chunxiao Zhou
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Dengke Zhao
- Harbin Medical University, Harbin, 150000, China
| | - Chunyan Wu
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Zhimin Wu
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Wen Zhang
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Shilv Chen
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Xindong Zhao
- College of Medicine, Qingdao University, Qingdao, 266000, China
| | - Shaoling Wu
- Department of Hematology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, China
| |
Collapse
|
4
|
Shalaby NE, Shoheib ZS, Yassin NA, El-Kaliny HH, Hasby Saad MA. Pyroptosis Tuning in Intestinal Cryptosporidiosis via the Natural Histone Deacetylase Inhibitor Romidepsin. Parasite Immunol 2024; 46:e13032. [PMID: 38497997 DOI: 10.1111/pim.13032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 03/19/2024]
Abstract
Cryptosporidium is an opportunistic protozoan, with many species of cross-human infectivity. It causes life-threatening diarrhoea in children and CD4-defective patients. Despite its limited efficacy, nitazoxanide remains the primary anti-cryptosporidial drug. Cryptosporidium infects the intestinal brush border (intracellular-extracytoplasmic) and down-regulates pyroptosis to prevent expulsion. Romidepsin is a natural histone deacetylase inhibitor that triggers pyroptosis. Romidepsin's effect on cryptosporidiosis was assessed in immunocompromised mice via gasdermin-D (GSDM-D) immunohistochemical expression, IFN-γ, IL-1β and IL-18 blood levels by ELISA, and via parasite scanning by modified Ziehl-Neelsen staining and scanning electron microscopy (SEM). Oocyst deformity and local cytokines were also assessed in ex vivo ileal explants. Following intraperitoneal injection of romidepsin, oocyst shedding significantly reduced at the 9th, 12th and 15th d.p.i. compared with infected-control and drug-control (nitazoxanide-treated) mice. H&E staining of intestinal sections from romidepsin-treated mice showed significantly low intestinal scoring with marked reduction in epithelial hyperplasia, villous blunting and cellular infiltrate. SEM revealed marked oocyst blebbing and paucity (in vivo and ex vivo) after romidepsin compared with nitazoxanide. Regarding pyroptosis, romidepsin triggered significantly higher intestinal GSDM-D expression in vivo, and higher serum/culture IFN-γ, IL-1β and IL-18 levels in romidepsin-treated mice than in the control groups. Collectively, in cryptosporidiosis, romidepsin succeeded in enhancing pyroptosis in the oocysts and infected epithelium, reducing infection and shifting the brush border towards normalisation.
Collapse
Affiliation(s)
- Noha E Shalaby
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Zeinab S Shoheib
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Nabila A Yassin
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Heba H El-Kaliny
- Histology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
- Anatomy and Histology Department, Mutah University, Mutah, Jordan
| | - Marwa A Hasby Saad
- Medical Parasitology Department, Faculty of Medicine, Tanta University, Tanta, Egypt
| |
Collapse
|
5
|
Chiodini PL. Medical management of cystic echinococcosis. Curr Opin Infect Dis 2023; 36:303-307. [PMID: 37593991 DOI: 10.1097/qco.0000000000000947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
PURPOSE OF REVIEW Cystic echinococcosis is a neglected zoonosis for which humans are dead end hosts. It is not only widely distributed in sheep rearing areas of low-income and middle-income countries but also has a significant presence in wealthy countries, for example, in Europe. It results in considerable morbidity, and its current management is far from optimal. Medical management is with a benzimidazole, with the addition of praziquantel under some circumstances. RECENT FINDINGS Interest in mebendazole as an anticancer drug has stimulated research into new drug formulations to improve bioavailability and possibly reduce inter-individual variability in in-vivo drug levels, which may help its activity against cystic echinococcosis. Further evidence to support administration of albendazole with a fatty meal has been provided. GlaxoSmithKilne (GSK) has agreed to extend its albendazole donation programme to include echinococcosis. The search for new drugs has focussed on natural products, such as essential oils and on repurposing of existing drugs licensed for human use against other conditions. SUMMARY The medical treatment of cystic echinococcosis remains sorely neglected, with no new drugs for almost 40 years. We need a better understanding of how to use the drugs we do have, whilst seeking new ones. Drug repurposing may be the best pathway.
Collapse
Affiliation(s)
- Peter L Chiodini
- Faculty of Infectious and Tropical Diseases, The London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
6
|
Laohapaisan P, Reamtong O, Tummatorn J, Thongsornkleeb C, Thaenkham U, Adisakwattana P, Ruchirawat S. Discovery of N-methylbenzo[d]oxazol-2-amine as new anthelmintic agent through scalable protocol for the synthesis of N-alkylbenzo[d]oxazol-2-amine and N-alkylbenzo[d]thiazol-2-amine derivatives. Bioorg Chem 2023; 131:106287. [PMID: 36455482 DOI: 10.1016/j.bioorg.2022.106287] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/07/2022] [Accepted: 11/19/2022] [Indexed: 11/27/2022]
Abstract
We discovered a lead compound, N-methylbenzo[d]oxazol-2-amine (2a), which had comparable potency to albendazole, an orally administered anthelminticdrug, against Gnathostoma spinigerum, Caenorhabditis elegans and Trichinella spiralis. Compound 2a showed about 10 times lower cytotoxicity towards normal human cell line (HEK293) than albendazole. Moreover, we have developed new processes for the synthesis of N-alkylbenzo[d]oxazol-2-amine and N-alkylbenzo[d]thiazol-2-amine derivatives via metal-free conditions. This protocol could serve as a robust and scalable method, especially, to synthesize N-methylbenzo[d]oxazol-2-amine and N-methylbenzo[d]thiazol-2-amine derivatives which were difficult to prepare using other metal-free conditions. The method employed benzoxazole-2-thiol or benzothiazole-2-thiol as the substrate. The reaction was triggered by methylation of the thiol functional group to form the methyl sulfide intermediate, a crucial tactic, which facilitated in a smooth nucleophilic addition-elimination reaction with gaseous methylamine generated in situ from N-methylformamide. In addition, the proteomic analysis of compound 2a was also studied in this work.
Collapse
Affiliation(s)
- Pavitra Laohapaisan
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Onrapak Reamtong
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jumreang Tummatorn
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand; Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand.
| | - Charnsak Thongsornkleeb
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand; Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| | - Urusa Thaenkham
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Poom Adisakwattana
- Department of Helminthology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Somsak Ruchirawat
- Program on Chemical Sciences, Chulabhorn Graduate Institute, Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand; Chulabhorn Research Institute, 54 Kamphaeng Phet 6, Laksi, Bangkok 10210, Thailand
| |
Collapse
|
7
|
Groth B, Huang CC, Lin SJ. The histone deacetylases Rpd3 and Hst1 antagonistically regulate de novo NAD + metabolism in the budding yeast Saccharomyces cerevisiae. J Biol Chem 2022; 298:102410. [PMID: 36007612 PMCID: PMC9486569 DOI: 10.1016/j.jbc.2022.102410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/05/2022] Open
Abstract
NAD+ is a cellular redox cofactor involved in many essential processes. The regulation of NAD+ metabolism and the signaling networks reciprocally interacting with NAD+-producing metabolic pathways are not yet fully understood. The NAD+-dependent histone deacetylase (HDAC) Hst1 has been shown to inhibit de novo NAD+ synthesis by repressing biosynthesis of nicotinic acid (BNA) gene expression. Here, we alternatively identify HDAC Rpd3 as a positive regulator of de novo NAD+ metabolism in the budding yeast Saccharomyces cerevisiae. We reveal that deletion of RPD3 causes marked decreases in the production of de novo pathway metabolites, in direct contrast to deletion of HST1. We determined the BNA expression profiles of rpd3Δ and hst1Δ cells to be similarly opposed, suggesting the two HDACs may regulate the BNA genes in an antagonistic fashion. Our chromatin immunoprecipitation analysis revealed that Rpd3 and Hst1 mutually influence each other’s binding distribution at the BNA2 promoter. We demonstrate Hst1 to be the main deacetylase active at the BNA2 promoter, with hst1Δ cells displaying increased acetylation of the N-terminal tail lysine residues of histone H4, H4K5, and H4K12. Conversely, we show that deletion of RPD3 reduces the acetylation of these residues in an Hst1-dependent manner. This suggests that Rpd3 may function to oppose spreading of Hst1-dependent heterochromatin and represents a unique form of antagonism between HDACs in regulating gene expression. Moreover, we found that Rpd3 and Hst1 also coregulate additional targets involved in other branches of NAD+ metabolism. These findings help elucidate the complex interconnections involved in effecting the regulation of NAD+ metabolism.
Collapse
Affiliation(s)
- Benjamin Groth
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA
| | - Chi-Chun Huang
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA
| | - Su-Ju Lin
- Department of Microbiology and Molecular Genetics, College of Biological Sciences, University of California, Davis, California, USA.
| |
Collapse
|
8
|
Epigenetics of Autism Spectrum Disorder: Histone Deacetylases. Biol Psychiatry 2022; 91:922-933. [PMID: 35120709 DOI: 10.1016/j.biopsych.2021.11.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 01/08/2023]
Abstract
The etiology of autism spectrum disorder (ASD) remains unknown, but gene-environment interactions, mediated through epigenetic mechanisms, are thought to be a key contributing factor. Prenatal environmental factors have been shown to be associated with both increased risk of ASD and altered histone deacetylases (HDACs) or acetylation levels. The relationship between epigenetic changes and gene expression in ASD suggests that alterations in histone acetylation, which lead to changes in gene transcription, may play a key role in ASD. Alterations in the acetylome have been demonstrated for several genes in ASD, including genes involved in synaptic function, neuronal excitability, and immune responses, which are mechanisms previously implicated in ASD. We review preclinical and clinical studies that investigated HDACs and autism-associated behaviors and discuss risk genes for ASD that code for proteins associated with HDACs. HDACs are also implicated in neurodevelopmental disorders with a known genetic etiology, such as 15q11-q13 duplication and Phelan-McDermid syndrome, which share clinical features and diagnostic comorbidities (e.g., epilepsy, anxiety, and intellectual disability) with ASD. Furthermore, we highlight factors that affect the behavioral phenotype of acetylome changes, including sensitive developmental periods and brain region specificity in the context of epigenetic programming.
Collapse
|
9
|
de Siqueira CDM, Fragoso MSI, Severo VR, Biembengut IV, Nardelli SC, de Souza TDACB. Targeting HDACs of apicomplexans: structural insights for a better treatment. Parasitology 2022; 149:1-37. [PMID: 35356851 DOI: 10.1017/s0031182022000427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractAetiologic agents of diseases such as malaria and toxoplasmosis are found in representatives of the phylum Apicomplexa. Therefore, apicomplexan parasites are known to have a significant impact on public health. Epigenetic factors such as histone acetylation/deacetylation are among the main mechanisms of gene regulation in these parasites. Histone deacetylases (HDACs) have aroused a great deal of interest over the past 20 years for being promising targets in the development of drugs for treating several diseases such as cancer. In addition, they have also been shown to be effective for parasitic diseases. However, little is known about the structure of these proteins, as well as their interactions with specific ligands. In this paper, we modelled 14 HDACs from different apicomplexan parasites and performed molecular docking with 12 ligands analogous to the HDAC inhibitors FR235222 and apicidin, which had previously been tested againstToxoplasma gondiiandPlasmodium falciparum. In thisin silicostudy, we were able to gather relevant structural data regarding these proteins as well as insights into protein–ligand interactions for testing and developing drugs for these diseases.
Collapse
|
10
|
Vaca HR, Celentano AM, Toscanini MA, Hauser AT, Macchiaroli N, Cuestas ML, Nusblat AD, Sippl W, Elissondo MC, Jung M, Camicia F, Rosenzvit MC. Identification and characterization of sirtuin enzymes in cestodes and evaluation of sirtuin inhibitors as new cestocidal molecules. Int J Parasitol 2022; 52:317-329. [PMID: 35150663 DOI: 10.1016/j.ijpara.2021.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/14/2021] [Accepted: 12/14/2021] [Indexed: 11/05/2022]
Abstract
Anti-parasitic treatment of neglected tropical diseases (NTDs) caused by cestodes such as echinococcosis and cysticercosis relies on a small number of approved anthelmintic drugs. Furthermore, the treatment is usually prolonged and often partially effective and not well tolerated by some patients. Therefore, the identification of novel drug targets and their associated compounds is critical. In this study, we identified and characterized sirtuin (SIRT) enzymes in cestodes and evaluated the cestocidal potential of SIRT inhibitors. SIRTs are a highly conserved family of nicotinamide-adenine dinucleotide (NAD+)-lysine deacylases involved in multiple cellular functions. Here, we described the full repertoire of SIRT-encoding genes in several cestode species. We identified six SIRT-encoding genes that were classified into SIRTs Class I (SIRT1, SIRT2, and SIRT3), Class III (SIRT5), and Class IV (SIRT6 and SIRT7). In Echinococcus spp., SIRT genes showed transcriptional expression throughout several developmental stages, SIRT2 being the most expressed. To evaluate the potential of SIRT inhibitors as new cestocidal molecules, we determined the in vitro effect of several Class I SIRT inhibitors by motility assay. Of those, the selective SIRT2 inhibitor Mz25 showed a strong cestocidal activity in Mesocestoides vogae (syn. Mesocestoides corti) tetrathyridia at various concentrations. The Mz25 cestocidal activity was time- and dose-dependent with a half-maximal inhibitory concentration (IC50) value significantly lower than that of albendazole. Additionally, Mz25 induced extensive damage in the general morphology with marked alterations in the tegument and ultrastructural features. By homology modeling, we found that cestode SIRT2s showed a high conservation of the canonical SIRT structure as well as in the residues related to Mz25 binding. Interestingly, some non-conservative mutations were found on the selectivity pocket (an Mz25-induced structural rearrangement on the active site), which represent a promising lead for developing selective cestode SIRT2 inhibitors derived from Mz25. Nevertheless, the Mz25 molecular target in M. vogae is unknown and remains to be determined. This report provides the basis for further studies of SIRTs to understand their roles in cestode biology and to develop selective SIRT inhibitors to treat these parasitic NTDs.
Collapse
Affiliation(s)
- Hugo Rolando Vaca
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Ciudad Autónoma de Buenos Aires, Argentina
| | - Ana María Celentano
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Ciudad Autónoma de Buenos Aires, Argentina
| | - María Agustina Toscanini
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), CONICET, Instituto de Nanobiotecnología (NANOBIOTEC), Ciudad Autónoma de Buenos Aires, Argentina
| | | | - Natalia Macchiaroli
- Laboratorio de Genómica y Bioinformática de Patógenos, Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - María Luján Cuestas
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandro David Nusblat
- Universidad de Buenos Aires (UBA), CONICET, Instituto de Nanobiotecnología (NANOBIOTEC), Ciudad Autónoma de Buenos Aires, Argentina
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, Halle(Saale), Germany
| | - María Celina Elissondo
- Instituto de Investigaciones en Producción Sanidad y Ambiente (IIPROSAM CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales - UNMdP, Centro Científico Tecnológico Mar del Plata - CONICET, Centro de Asociación Simple CIC PBA, Mar del Plata, Argentina; Laboratorio de Zoonosis Parasitarias, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, Mar del Plata, Argentina
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, Freiburg, Germany
| | - Federico Camicia
- Laboratorio de Toxinopatología, Centro de Patología Experimental y Aplicada, Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina.
| | - Mara Cecilia Rosenzvit
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires (UBA), CONICET, Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
11
|
Galow AM, Peleg S. How to Slow down the Ticking Clock: Age-Associated Epigenetic Alterations and Related Interventions to Extend Life Span. Cells 2022; 11:468. [PMID: 35159278 PMCID: PMC8915189 DOI: 10.3390/cells11030468] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic alterations pose one major hallmark of organismal aging. Here, we provide an overview on recent findings describing the epigenetic changes that arise during aging and in related maladies such as neurodegeneration and cancer. Specifically, we focus on alterations of histone modifications and DNA methylation and illustrate the link with metabolic pathways. Age-related epigenetic, transcriptional and metabolic deregulations are highly interconnected, which renders dissociating cause and effect complicated. However, growing amounts of evidence support the notion that aging is not only accompanied by epigenetic alterations, but also at least in part induced by those. DNA methylation clocks emerged as a tool to objectively determine biological aging and turned out as a valuable source in search of factors positively and negatively impacting human life span. Moreover, specific epigenetic signatures can be used as biomarkers for age-associated disorders or even as targets for therapeutic approaches, as will be covered in this review. Finally, we summarize recent potential intervention strategies that target epigenetic mechanisms to extend healthy life span and provide an outlook on future developments in the field of longevity research.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Institute of Neuroregeneration and Neurorehabilitation of Qingdao University, Qingdao 266071, China
| |
Collapse
|
12
|
Ghazy E, Abdelsalam M, Robaa D, Pierce RJ, Sippl W. Histone Deacetylase (HDAC) Inhibitors for the Treatment of Schistosomiasis. Pharmaceuticals (Basel) 2022; 15:ph15010080. [PMID: 35056137 PMCID: PMC8779837 DOI: 10.3390/ph15010080] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/18/2022] Open
Abstract
Schistosomiasis is a major neglected parasitic disease that affects more than 240 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. Schistosomes display morphologically distinct stages during their life cycle and the transformations between stages are controlled by epigenetic mechanisms. The targeting of epigenetic actors might therefore represent the parasites’ Achilles’ heel. Specifically, histone deacetylases have been recently characterized as drug targets for the treatment of schistosomiasis. This review focuses on the recent development of inhibitors for schistosome histone deacetylases. In particular, advances in the development of inhibitors of Schistosoma mansoni histone deacetylase 8 have indicated that targeting this enzyme is a promising approach for the treatment of this infection.
Collapse
Affiliation(s)
- Ehab Ghazy
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Mohamed Abdelsalam
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Dina Robaa
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
| | - Raymond J. Pierce
- Centre d’Infection et d’Immunité de Lille, U1019—UMR9017—CIIL, Institute Pasteur de Lille, CNRS, Inserm, CHU Lille, Univ. Lille, F-59000 Lille, France;
| | - Wolfgang Sippl
- Department of Medicinal Chemistry, Institute of Pharmacy, Martin-Luther-University of Halle-Wittenberg, 06120 Halle (Saale), Germany; (E.G.); (M.A.); (D.R.)
- Correspondence:
| |
Collapse
|
13
|
Ghazy E, Heimburg T, Lancelot J, Zeyen P, Schmidtkunz K, Truhn A, Darwish S, Simoben CV, Shaik TB, Erdmann F, Schmidt M, Robaa D, Romier C, Jung M, Pierce R, Sippl W. Synthesis, structure-activity relationships, cocrystallization and cellular characterization of novel smHDAC8 inhibitors for the treatment of schistosomiasis. Eur J Med Chem 2021; 225:113745. [PMID: 34392190 DOI: 10.1016/j.ejmech.2021.113745] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/21/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023]
Abstract
Schistosomiasis is a major neglected parasitic disease that affects more than 265 million people worldwide and for which the control strategy consists of mass treatment with the only available drug, praziquantel. In this study, we chemically optimized our previously reported benzhydroxamate-based inhibitors of Schistosoma mansoni histone deacetylase 8 (smHDAC8). Crystallographic analysis provided insights into the inhibition mode of smHDAC8 activity by the highly potent inhibitor 5o. Structure-based optimization of the novel inhibitors was carried out using the available crystal structures as well as docking studies on smHDAC8. The compounds were evaluated in screens for inhibitory activity against schistosome and human HDACs (hHDAC). The in vitro and docking results were used for detailed structure activity relationships. The synthesized compounds were further investigated for their lethality against the schistosome larval stage using a fluorescence-based assay. The most promising inhibitor 5o showed significant dose-dependent killing of the schistosome larvae and markedly impaired egg laying of adult worm pairs maintained in culture.
Collapse
Affiliation(s)
- Ehab Ghazy
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Tino Heimburg
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Julien Lancelot
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017- CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Patrik Zeyen
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Karin Schmidtkunz
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Anne Truhn
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Salma Darwish
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Conrad V Simoben
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Tajith B Shaik
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Biologie Structurale Intégrative, 67404, Illkirch Cedex, France
| | - Frank Erdmann
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Matthias Schmidt
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Dina Robaa
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120, Halle/Saale, Germany
| | - Christophe Romier
- Université de Strasbourg, CNRS, INSERM, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Département de Biologie Structurale Intégrative, 67404, Illkirch Cedex, France
| | - Manfred Jung
- Institute of Pharmaceutical Sciences, University of Freiburg, 79104, Freiburg, Germany
| | - Raymond Pierce
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017- CIIL - Centre d'Infection et d'Immunité de Lille, F-59000, Lille, France
| | - Wolfgang Sippl
- Institute of Pharmacy, Martin-Luther University of Halle-Wittenberg, 06120, Halle/Saale, Germany.
| |
Collapse
|