1
|
Macedo-da-Silva J, Mule SN, Rosa-Fernandes L, Palmisano G. A computational pipeline elucidating functions of conserved hypothetical Trypanosoma cruzi proteins based on public proteomic data. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 138:401-428. [PMID: 38220431 DOI: 10.1016/bs.apcsb.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The proteome is complex, dynamic, and functionally diverse. Functional proteomics aims to characterize the functions of proteins in biological systems. However, there is a delay in annotating the function of proteins, even in model organisms. This gap is even greater in other organisms, including Trypanosoma cruzi, the causative agent of the parasitic, systemic, and sometimes fatal disease called Chagas disease. About 99.8% of Trypanosoma cruzi proteome is not manually annotated (unreviewed), among which>25% are conserved hypothetical proteins (CHPs), calling attention to the knowledge gap on the protein content of this organism. CHPs are conserved proteins among different species of various evolutionary lineages; however, they lack functional validation. This study describes a bioinformatics pipeline applied to public proteomic data to infer possible biological functions of conserved hypothetical Trypanosoma cruzi proteins. Here, the adopted strategy consisted of collecting differentially expressed proteins between the epimastigote and metacyclic trypomastigotes stages of Trypanosoma cruzi; followed by the functional characterization of these CHPs applying a manifold learning technique for dimension reduction and 3D structure homology analysis (Spalog). We found a panel of 25 and 26 upregulated proteins in the epimastigote and metacyclic trypomastigote stages, respectively; among these, 18 CHPs (8 in the epimastigote stage and 10 in the metacyclic stage) were characterized. The data generated corroborate the literature and complement the functional analyses of differentially regulated proteins at each stage, as they attribute potential functions to CHPs, which are frequently identified in Trypanosoma cruzi proteomics studies. However, it is important to point out that experimental validation is required to deepen our understanding of the CHPs.
Collapse
Affiliation(s)
- Janaina Macedo-da-Silva
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil
| | - Simon Ngao Mule
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil
| | - Livia Rosa-Fernandes
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil; Centre for Motor Neuron Disease Research, Faculty of Medicine, Health & Human Sciences, Macquarie Medical School, Sydney, NSW, Australia
| | - Giuseppe Palmisano
- GlycoProteomics Laboratory, Department of Parasitology, ICB, University of São Paulo, Sao Paulo, Brazil; School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
2
|
Ramírez JL. The Elusive Trypanosoma cruzi Disperse Gene Protein Family (DGF-1). Pathogens 2023; 12:pathogens12020292. [PMID: 36839564 PMCID: PMC9967923 DOI: 10.3390/pathogens12020292] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 01/31/2023] [Accepted: 02/04/2023] [Indexed: 02/12/2023] Open
Abstract
Chagas disease, caused by Trypanosoma cruzi infections, is included in the group of neglected diseases, and efforts to develop new therapeutic or immunoprevention approaches have not been successful. After the publication of the T. cruzi genome, the number of molecular and biochemical studies on this parasite has increased considerably, many of which are focused on families of variant surface proteins, especially trans-sialidases, mucins, and mucin-associated proteins. The disperse gene protein 1 family (DGF-1) is one of the most abundant families in the T. cruzi genome; however, the large gene size, high copy numbers, and low antibody titers detected in infected humans make it an unattractive study target. However, here we argue that given the ubiquitous presence in all T. cruzi species, and physicochemical characteristics, the DGF-1 gene family may play and important role in host-parasite interactions.
Collapse
Affiliation(s)
- José Luis Ramírez
- Instituto de Estudios Avanzados, Caracas, Venezuela and Universidad Central de Venezuela, Caracas 1080, Venezuela
| |
Collapse
|
3
|
Teixeira TL, Chiurillo MA, Lander N, Rodrigues CC, Onofre TS, Ferreira ÉR, Yonamine CM, Santos JDG, Mortara RA, da Silva CV, da Silveira JF. Ablation of the P21 Gene of Trypanosoma cruzi Provides Evidence of P21 as a Mediator in the Control of Epimastigote and Intracellular Amastigote Replication. Front Cell Infect Microbiol 2022; 12:799668. [PMID: 35252026 PMCID: PMC8895596 DOI: 10.3389/fcimb.2022.799668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/25/2022] [Indexed: 11/23/2022] Open
Abstract
P21 is an immunomodulatory protein expressed throughout the life cycle of Trypanosoma cruzi, the etiologic agent of Chagas disease. In vitro and in vivo studies have shown that P21 plays an important role in the invasion of mammalian host cells and establishment of infection in a murine model. P21 functions as a signal transducer, triggering intracellular cascades in host cells and resulting in the remodeling of the actin cytoskeleton and parasite internalization. Furthermore, in vivo studies have shown that P21 inhibits angiogenesis, induces inflammation and fibrosis, and regulates intracellular amastigote replication. In this study, we used the CRISPR/Cas9 system for P21 gene knockout and investigated whether the ablation of P21 results in changes in the phenotypes associated with this protein. Ablation of P21 gene resulted in a lower growth rate of epimastigotes and delayed cell cycle progression, accompanied by accumulation of parasites in G1 phase. However, P21 knockout epimastigotes were viable and able to differentiate into metacyclic trypomastigotes, which are infective to mammalian cells. In comparison with wild-type parasites, P21 knockout cells showed a reduced cell invasion rate, demonstrating the role of this protein in host cell invasion. However, there was a higher number of intracellular amastigotes per cell, suggesting that P21 is a negative regulator of amastigote proliferation in mammalian cells. Here, for the first time, we demonstrated the direct correlation between P21 and the replication of intracellular amastigotes, which underlies the chronicity of T. cruzi infection.
Collapse
Affiliation(s)
- Thaise Lara Teixeira
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Miguel Angel Chiurillo
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - Noelia Lander
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | | | - Thiago Souza Onofre
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Éden Ramalho Ferreira
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Camila Miyagui Yonamine
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | | | - Renato Arruda Mortara
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Claudio Vieira da Silva
- Laboratório de Tripanosomatídeos, Universidade Federal de Uberlândia, Uberlândia, Brazil
- *Correspondence: Claudio Vieira da Silva, ; José Franco da Silveira,
| | - José Franco da Silveira
- Departmento de Microbiologia, Imunologia e Parasitologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
- *Correspondence: Claudio Vieira da Silva, ; José Franco da Silveira,
| |
Collapse
|