1
|
de Araujo FF, Abdeladhim M, Teixeira C, Hummer K, Wilkerson MD, Ressner R, Lakhal-Naouar I, Ellis MW, Meneses C, Nurmukhambetova S, Gomes R, Tolbert WD, Turiansky GW, Pazgier M, Oliveira F, Valenzuela JG, Kamhawi S, Aronson N. Immune response profiles from humans experimentally exposed to Phlebotomus duboscqi bites. Front Immunol 2024; 15:1335307. [PMID: 38633260 PMCID: PMC11021656 DOI: 10.3389/fimmu.2024.1335307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 03/15/2024] [Indexed: 04/19/2024] Open
Abstract
Introduction Cutaneous leishmaniasis is a neglected vector-borne parasitic disease prevalent in 92 countries with approximately one million new infections annually. Interactions between vector saliva and the human host alter the response to infection and outcome of disease. Methods To characterize the human immunological responses developed against saliva of Phlebotomus duboscqi, a Leishmania major (L. major) vector, we repeatedly exposed the arms of 14 healthy U.S volunteers to uninfected P. duboscqi bites. Blood was collected a week after each exposure and used to assess total IgG antibodies against the proteins of P. duboscqi salivary gland homogenate (SGH) and the levels of IFN-gamma and IL-10 from peripheral blood mononuclear cells (PBMCs) stimulated with SGH or recombinant sand fly proteins. We analyzed skin punch biopsies of the human volunteer arms from the insect bite site and control skin site after multiple P. duboscqi exposures (four volunteers) using immunohistochemical staining. Results A variety of immediate insect bite skin reactions were observed. Late skin reactions to insect bites were characterized by macular hyperpigmentation and/or erythematous papules. Hematoxylin and eosin staining showed moderate mononuclear skin infiltrate with eosinophils in those challenged recently (within 2 months), eosinophils were not seen in biopsies with recall challenge (6 month post bites). An increase in plasma antigen-specific IgG responses to SGH was observed over time. Western Blot results showed strong plasma reactivity to five P. duboscqi salivary proteins. Importantly, volunteers developed a cellular immunity characterized by the secretion of IFN-gamma upon PBMC stimulation with P. duboscqi SGH and recombinant antigens. Discussion Our results demonstrate that humans mounted a local and systemic immune response against P. duboscqi salivary proteins. Specifically, PduM02/SP15-like and PduM73/adenosine deaminase recombinant salivary proteins triggered a Th1 type immune response that might be considered in future development of a potential Leishmania vaccine.
Collapse
Affiliation(s)
- Fernanda Fortes de Araujo
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Maha Abdeladhim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Clarissa Teixeira
- Department of Biotechnology, Laboratory of Immunoparasitology, Oswaldo Cruz Foundation, Eusébio, CE, Brazil
| | - Kelly Hummer
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Matthew D. Wilkerson
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Roseanne Ressner
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Center for Infectious Disease Research, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ines Lakhal-Naouar
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | | | - Claudio Meneses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Saule Nurmukhambetova
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Regis Gomes
- Department of Biotechnology, Laboratory of Immunoparasitology, Oswaldo Cruz Foundation, Eusébio, CE, Brazil
| | - W. David Tolbert
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Henry M Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - George W. Turiansky
- Department of Dermatology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Marzena Pazgier
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Jesus G. Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research (LMVR), National Institutes of Allergy and Infectious Diseases, NIH, Rockville, MD, United States
| | - Naomi Aronson
- Infectious Disease Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
2
|
de Araujo FF, Lakhal-Naouar I, Koles N, Raiciulescu S, Mody R, Aronson N. Potential Biomarkers for Asymptomatic Visceral Leishmaniasis among Iraq-Deployed U.S. Military Personnel. Pathogens 2023; 12:pathogens12050705. [PMID: 37242376 DOI: 10.3390/pathogens12050705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023] Open
Abstract
Visceral leishmaniasis (VL) is a chronic infection caused by Leishmania (L.) donovani or L. infantum parasites. Despite having the infection, most individuals never develop the clinical disease and are able to control the parasite and remain asymptomatic. However, some progress to symptomatic VL, leading to death if untreated. The host immune response has a major role in determining the progression and severity of the clinical manifestations in VL; several immune biomarkers of symptomatic VL have been described with interferon-gamma release as a surrogate biomarker of host cellular immunity. However, new biomarkers to identify asymptomatic VL (AVL) are needed for the identification of people at risk for VL activation. In our study, levels of chemokine/cytokine in the supernatants of peripheral mononuclear blood cells (PBMC) from 35 AVL+ Iraq-deployed participants, stimulated in vitro with soluble Leishmania antigen for 72 h, were assessed by a bead-based assay that allows the measurement of multiple analytes. PBMC of AVL-negative military beneficiaries were used as controls. Monocyte Chemoattractant Protein-1, Monokine Induced by Gamma Interferon and Interleukin-8, were detected at high levels in AVL+ stimulated cultures from Iraq deployers compared to uninfected controls. Measurement of chemokine/cytokine levels can identify cellular immune responses in AVL+ asymptomatic individuals.
Collapse
Affiliation(s)
- Fernanda Fortes de Araujo
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Ines Lakhal-Naouar
- Diagnostics and Countermeasures Branch, Walter Reed Army Institute of Research, Silver Spring, MD 20910, USA
| | - Nancy Koles
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD 20817, USA
| | - Sorana Raiciulescu
- Department of Preventive Medicine and Biostatistics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Rupal Mody
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Medicine, William Beaumont Army Medical Center, El Paso, TX 79916, USA
| | - Naomi Aronson
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| |
Collapse
|
3
|
Iniguez E, Saha S, Petrellis G, Menenses C, Herbert S, Gonzalez-Rangel Y, Rowland T, Aronson NE, Rose C, Rafuse Haines L, Acosta-Serrano A, Serafim TD, Oliveira F, Srikantiah S, Bern C, Valenzuela JG, Kamhawi S. A Composite Recombinant Salivary Proteins Biomarker for Phlebotomus argentipes Provides a Surveillance Tool Postelimination of Visceral Leishmaniasis in India. J Infect Dis 2022; 226:1842-1851. [PMID: 36052609 PMCID: PMC10205619 DOI: 10.1093/infdis/jiac354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
Incidence of visceral leishmaniasis (VL) in the Indian subcontinent (ISC) has declined by more than 95% since initiation of the elimination program in 2005. As the ISC transitions to the postelimination surveillance phase, an accurate measurement of human-vector contact is needed to assure long-term success. To develop this tool, we identified PagSP02 and PagSP06 from saliva of Phlebotomus argentipes, the vector of Leishmania donovani in the ISC, as immunodominant proteins in humans. We also established the absence of cross-reactivity with Phlebotomus papatasi saliva, the only other human-biting sand fly in the ISC. Importantly, by combining recombinant rPagSP02 and rPagSP06 we achieved greater antibody recognition and specificity than single salivary proteins. The receiver operating characteristics curve for rPagSP02 + rPagSP06 predicts exposure to Ph. argentipes bites with 90% specificity and 87% sensitivity compared to negative control sera (P >.0001). Overall, rPagSP02 + rPagSP06 provides an effective surveillance tool for monitoring vector control efforts after VL elimination.
Collapse
Affiliation(s)
- Eva Iniguez
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Samiran Saha
- Department of Biotechnology, Institute of Science, Visva Bharati University, Bolpur, West Bengal, India
| | - Georgios Petrellis
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
- Laboratory of Microbiology, Parasitology, and Hygiene, University of Antwerp, Antwerp, Belgium
| | - Claudio Menenses
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Samantha Herbert
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Yvonne Gonzalez-Rangel
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Tobin Rowland
- Entomology Branch, Walter Reed Army Institute of Research, Silver Spring, Maryland, USA
| | - Naomi E Aronson
- Infectious Diseases Division, Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Clair Rose
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Lee Rafuse Haines
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Alvaro Acosta-Serrano
- Department of Parasitology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Tiago D Serafim
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Sridhar Srikantiah
- Bihar Technical Support Program, CARE India Solutions for Sustainable Development, Patna, India
| | - Caryn Bern
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, California, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Shaden Kamhawi
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| |
Collapse
|
4
|
Ecological Survey of the Peridomestic Sand Flies of an Endemic Focus of Zoonotic Cutaneous Leishmaniasis in the South-East of Morocco. ScientificWorldJournal 2022; 2022:5098005. [PMID: 36408197 PMCID: PMC9671726 DOI: 10.1155/2022/5098005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/26/2022] [Accepted: 10/10/2022] [Indexed: 11/12/2022] Open
Abstract
Leishmaniasis is a parasitosis caused by parasites of the genus Leishmania and is transmitted by Phlebotominae sand flies. An entomological survey was carried out in different localities of Zagora Province. Our work allowed us to establish an inventory of sand flies to study potential vectors of leishmaniasis and to compare the composition and the specific abundance of different endemic stations. The sand flies were collected using CDC miniature light traps during the month of July 2019 in the ten studied villages. The results indicate the presence of thirteen species, belonging to the genera Phlebotomus and Sergentomyia. Phlebotomus papatasi was the predominant species (46.65%) followed by Ph. alexandri (17%), Ph. longicuspis (11.55%), Ph. bergeroti (1.53%) and Ph. sergenti (1.27%). Phlebotomus kazeruni (0.03%) was rare, and only one female was captured in Ifred. Sergentomyia schwetzi (8.69%) was the most prevalent species in the Sergentomyia genus followed closely by Se. fallax (6.84%). Sergentomyia africana was present with a proportion of (3.86%) followed by Se. clydei (1.96%). Sergentomyia dreifussi (0.46%), Se. antennata (0.08%), and Se. minuta (0.08%) were very limited. Phlebotomus papatasi, Ph. alexandri, Ph. bergeroti, Ph. longicuspis, Ph. sergenti, Se. schwetzi, Se. clydei, and Se. fallax are constant species, being present at least in 50% of the stations (occurrence> 50%). Common species (25%–49%) were Se. minuta and Se. africana and rare species were Ph. kazeruni and Se. antennata with a very limited distribution (occurrence <12%). The greatest species richness was found in Ksar Mougni and Ifred with the occurrence of 11 species, but overall, it was high (>9 species) in most of the villages. The Shannon–Wiener index was high (H′ > 1) in eight localities (Ksar Mougni, Tassaouante, Bleida, ZaouiteLeftah, Ifred, Timarighine, Ait Oulahyane, and Ait Ali Ouhassou). The high value of this index is in favor of the ZaouiteLeftah locality (Shannon–Wiener index = 1.679) which is explained by the presence of a stand dominated by Ph. papatasi. In order to avoid exposure to infections, a good epidemiological surveillance and vector with rodent control measures must be well maintained. Awareness campaigns are also required and must be conducted for better knowledge of the disease.
Collapse
|
5
|
Carvalho AM, Viana SM, Andrade BB, Oliveira F, Valenzuela JG, Carvalho EM, de Oliveira CI. Immune response to LinB13, a Lutzomyia intermedia salivary protein correlates with disease severity in tegumentary leishmaniasis. Clin Infect Dis 2022; 75:1754-1762. [PMID: 35385578 DOI: 10.1093/cid/ciac258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND We have previously shown that seropositivity to rLinB-13, a salivary protein from Lutzomyia intermedia, predicted sand fly exposure and was associated with increased risk of developing cutaneous leishmaniasis (CL). METHODS Herein, we investigated the cellular immune response to saliva from Lu. intermedia, using rLinB-13 as a surrogate antigen in naturally exposed individuals presenting positive serology to LinB-13. We also investigated the response to rLinB-13 in leishmaniasis patients, displaying active ulcers and positive PCR for L. braziliensis. RESULTS Peripheral blood mononuclear cells (PBMCs) stimulated in vitro with rLinB-13 secreted elevated levels of IL-10, IL-4, IL-1β, IL-1α, IL-6 and chemokines (CCL3, CCL4, CCL5 and CXCL5). CL, and disseminated leishmaniasis (DL) patients displayed a significantly higher IgG response to rLinB-13, compared to healthy subjects and anti-rLinB-13 IgG was positively correlated with the number of lesions in DL patients. Positive serology to rLinB-13 was also associated with chemotherapy failure. PBMCs from DL patients stimulated with rLINB-13 secreted significantly higher levels IL-10 and IL-1β compared to CL individuals. CONCLUSIONS In this study, we observed an association between humoral and cellular immune response to the sand fly salivary protein rLinB-13 and disease severity in tegumentary leishmaniasis. This study brings evidence that immunity to rLinB-13 influences disease outcome in L. braziliensis infection and results indicate that positive serology to rLinB-13 IgG can be employed as marker of DL, an emerging and severe form of disease caused by L. braziliensis.
Collapse
Affiliation(s)
- Augusto M Carvalho
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| | | | | | - Fabiano Oliveira
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Jesus G Valenzuela
- Vector Molecular Biology Section, Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Edgar M Carvalho
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil.,Immunology Service of the University Hospital Professor Edgard Santos, Federal University of Bahia, Salvador, Bahia, Brazil
| | - Camila I de Oliveira
- Instituto Gonçalo Moniz, FIOCRUZ, Salvador, Bahia, Brazil.,Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Salvador, Bahia, Brazil
| |
Collapse
|