1
|
Ernst L, Macedo GC, McCall LI. System-based insights into parasitological and clinical treatment failure in Chagas disease. mSystems 2025; 10:e0003824. [PMID: 39772644 PMCID: PMC11834445 DOI: 10.1128/msystems.00038-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
Infectious disease treatment success requires symptom resolution (clinical treatment success), which often but not always involves pathogen clearance. Both of these treatment goals face disease-specific and general challenges. In this review, we summarize the current state of knowledge in mechanisms of clinical and parasitological treatment failure in the context of Chagas disease, a neglected tropical disease causing cardiac and gastrointestinal symptoms. Parasite drug resistance and persistence, drug pharmacokinetics and dynamics, as well as persistently altered host immune responses and tissue damage are the most common reasons for Chagas disease treatment failure. We discuss the therapeutics that failed before regulatory approval, limitations of current therapeutic options and new treatment strategies to overcome persistent parasites, inflammatory responses, and metabolic alterations. Large-scale omics analyses were critical in generating these insights and will continue to play a prominent role in addressing the challenges still facing Chagas disease drug treatment.
Collapse
Affiliation(s)
- Luis Ernst
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Giovana C. Macedo
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| | - Laura-Isobel McCall
- Department of Chemistry and Biochemistry, San Diego State University, San Diego, California, USA
| |
Collapse
|
2
|
Murta SMF, Lemos Santana PA, Jacques Dit Lapierre TJW, Penteado AB, El Hajje M, Navarro Vinha TC, Liarte DB, de Souza ML, Goulart Trossini GH, de Oliveira Rezende Júnior C, de Oliveira RB, Ferreira RS. New drug discovery strategies for the treatment of benznidazole-resistance in Trypanosoma cruzi, the causative agent of Chagas disease. Expert Opin Drug Discov 2024; 19:741-753. [PMID: 38715393 DOI: 10.1080/17460441.2024.2349155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/22/2024]
Abstract
INTRODUCTION Benznidazole, the drug of choice for treating Chagas Disease (CD), has significant limitations, such as poor cure efficacy, mainly in the chronic phase of CD, association with side effects, and parasite resistance. Understanding parasite resistance to benznidazole is crucial for developing new drugs to treat CD. AREAS COVERED Here, the authors review the current understanding of the molecular basis of benznidazole resistance. Furthermore, they discuss the state-of-the-art methods and critical outcomes employed to evaluate the efficacy of potential drugs against T. cruzi, aiming to select better compounds likely to succeed in the clinic. Finally, the authors describe the different strategies employed to overcome resistance to benznidazole and find effective new treatments for CD. EXPERT OPINION Resistance to benznidazole is a complex phenomenon that occurs naturally among T. cruzi strains. The combination of compounds that inhibit different metabolic pathways of the parasite is an important strategy for developing a new chemotherapeutic protocol.
Collapse
Affiliation(s)
- Silvane Maria Fonseca Murta
- Grupo de Genômica Funcional de Parasitos - Instituto René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Pedro Augusto Lemos Santana
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | - André Berndt Penteado
- Departamento de Farmacia, Faculdade de Ciencias Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | - Marissa El Hajje
- Departamento de Farmacia, Faculdade de Ciencias Farmacêuticas, Universidade de São Paulo, São Paulo, Brazil
| | | | | | - Mariana Laureano de Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | | | | | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| | - Rafaela Salgado Ferreira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Brazil
| |
Collapse
|
3
|
Gabaldón-Figueira JC, Martinez-Peinado N, Escabia E, Ros-Lucas A, Chatelain E, Scandale I, Gascon J, Pinazo MJ, Alonso-Padilla J. State-of-the-Art in the Drug Discovery Pathway for Chagas Disease: A Framework for Drug Development and Target Validation. Res Rep Trop Med 2023; 14:1-19. [PMID: 37337597 PMCID: PMC10277022 DOI: 10.2147/rrtm.s415273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/03/2023] [Indexed: 06/21/2023] Open
Abstract
Chagas disease is the most important protozoan infection in the Americas, and constitutes a significant public health concern throughout the world. Development of new medications against its etiologic agent, Trypanosoma cruzi, has been traditionally slow and difficult, lagging in comparison with diseases caused by other kinetoplastid parasites. Among the factors that explain this are the incompletely understood mechanisms of pathogenesis of T. cruzi infection and its complex set of interactions with the host in the chronic stage of the disease. These demand the performance of a variety of in vitro and in vivo assays as part of any drug development effort. In this review, we discuss recent breakthroughs in the understanding of the parasite's life cycle and their implications in the search for new chemotherapeutics. For this, we present a framework to guide drug discovery efforts against Chagas disease, considering state-of-the-art preclinical models and recently developed tools for the identification and validation of molecular targets.
Collapse
Affiliation(s)
| | - Nieves Martinez-Peinado
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Elisa Escabia
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
| | - Albert Ros-Lucas
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Eric Chatelain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Ivan Scandale
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Joaquim Gascon
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - María-Jesús Pinazo
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
- Drugs for Neglected Diseases Initiative (DNDi), Geneva, Switzerland
| | - Julio Alonso-Padilla
- Barcelona Institute for Global Health (ISGlobal), Hospital Clínic—University of Barcelona, Barcelona, Spain
- CIBER de Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| |
Collapse
|
4
|
McGonagle K, Tarver GJ, Cantizani J, Cotillo I, Dodd PG, Ferguson L, Gilbert IH, Marco M, Miles T, Naylor C, Osuna-Cabello M, Paterson C, Read KD, Pinto EG, Riley J, Scullion P, Shishikura Y, Simeons F, Stojanovski L, Svensen N, Thomas J, Wyatt PG, Manzano P, De Rycker M, Thomas MG. Identification and development of a series of disubstituted piperazines for the treatment of Chagas disease. Eur J Med Chem 2022; 238:114421. [PMID: 35594652 PMCID: PMC11458808 DOI: 10.1016/j.ejmech.2022.114421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 11/23/2022]
Abstract
Approximately 6-7 million people around the world are estimated to be infected with Trypanosoma cruzi, the causative agent of Chagas disease. The current treatments are inadequate and therefore new medical interventions are urgently needed. In this paper we describe the identification of a series of disubstituted piperazines which shows good potency against the target parasite but is hampered by poor metabolic stability. We outline the strategies used to mitigate this issue such as lowering logD, bioisosteric replacements of the metabolically labile piperazine ring and use of plate-based arrays for quick diversity scoping. We discuss the success of these strategies within the context of this series and highlight the challenges faced in phenotypic programs when attempting to improve the pharmacokinetic profile of compounds whilst maintaining potency against the desired target.
Collapse
Affiliation(s)
- Kate McGonagle
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Gary J Tarver
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Juan Cantizani
- Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760, Spain
| | - Ignacio Cotillo
- Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760, Spain
| | - Peter G Dodd
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Liam Ferguson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Ian H Gilbert
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Maria Marco
- Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760, Spain
| | - Tim Miles
- Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760, Spain
| | - Claire Naylor
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Maria Osuna-Cabello
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Christy Paterson
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Kevin D Read
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Erika G Pinto
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Jennifer Riley
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Paul Scullion
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Yoko Shishikura
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Frederick Simeons
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Laste Stojanovski
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Nina Svensen
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - John Thomas
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Paul G Wyatt
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK
| | - Pilar Manzano
- Global Health R&D, GlaxoSmithKline, Tres Cantos, 28760, Spain.
| | - Manu De Rycker
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK.
| | - Michael G Thomas
- Drug Discovery Unit, Wellcome Centre for Anti-Infectives Research, University of Dundee, Dundee, DD1 5EH, UK.
| |
Collapse
|
5
|
Temporal and Wash-Out Studies Identify Medicines for Malaria Venture Pathogen Box Compounds with Fast-Acting Activity against Both Trypanosoma cruzi and Trypanosoma brucei. Microorganisms 2022; 10:microorganisms10071287. [PMID: 35889006 PMCID: PMC9317670 DOI: 10.3390/microorganisms10071287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022] Open
Abstract
Chagas disease caused by the protozoan Trypanosoma cruzi is endemic to 21 countries in the Americas, effects approximately 6 million people and on average results in 12,000 deaths annually. Human African Trypanosomiasis (HAT) is caused by the Trypanosoma brucei sub-species, endemic to 36 countries within sub-Saharan Africa. Treatment regimens for these parasitic diseases are complicated and not effective against all disease stages; thus, there is a need to find improved treatments. To identify new molecules for the drug discovery pipelines for these diseases, we have utilised in vitro assays to identify compounds with selective activity against both T. cruzi and T.b. brucei from the Medicines for Malaria Venture (MMV) Pathogen Box compound collection. To prioritise these molecules for further investigation, temporal and wash off assays were utilised to identify the speed of action and cidality of compounds. For translational relevance, compounds were tested against clinically relevant T.b. brucei subspecies. Compounds with activity against T. cruzi cytochrome P450 (TcCYP51) have not previously been successful in clinical trials for chronic Chagas disease; thus, to deprioritise compounds with this activity, they were tested against recombinant TcCYP51. Compounds with biological profiles warranting progression offer important tools for drug and target development against kinetoplastids.
Collapse
|
6
|
Kent RS, Briggs EM, Colon BL, Alvarez C, Silva Pereira S, De Niz M. Paving the Way: Contributions of Big Data to Apicomplexan and Kinetoplastid Research. Front Cell Infect Microbiol 2022; 12:900878. [PMID: 35734575 PMCID: PMC9207352 DOI: 10.3389/fcimb.2022.900878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/06/2022] [Indexed: 11/13/2022] Open
Abstract
In the age of big data an important question is how to ensure we make the most out of the resources we generate. In this review, we discuss the major methods used in Apicomplexan and Kinetoplastid research to produce big datasets and advance our understanding of Plasmodium, Toxoplasma, Cryptosporidium, Trypanosoma and Leishmania biology. We debate the benefits and limitations of the current technologies, and propose future advancements that may be key to improving our use of these techniques. Finally, we consider the difficulties the field faces when trying to make the most of the abundance of data that has already been, and will continue to be, generated.
Collapse
Affiliation(s)
- Robyn S. Kent
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT, United States
| | - Emma M. Briggs
- Institute for Immunology and Infection Research, School of Biological Sciences, University Edinburgh, Edinburgh, United Kingdom
- Wellcome Centre for Integrative Parasitology, Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Beatrice L. Colon
- Wellcome Centre for Anti-Infectives Research, Division of Biological Chemistry and Drug Discovery, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Catalina Alvarez
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Sara Silva Pereira
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal
- Institut Pasteur, Paris, France
| |
Collapse
|