1
|
Mulat G, Maru M, Tarekegn ZS, Dejene H. A systematic review and meta-analysis on prevalence of bovine trypanosomosis in East Africa. Parasite Epidemiol Control 2024; 26:e00371. [PMID: 39184304 PMCID: PMC11341968 DOI: 10.1016/j.parepi.2024.e00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/14/2024] [Accepted: 07/22/2024] [Indexed: 08/27/2024] Open
Abstract
Bovine trypanosomosis is an incapacitating and lethal ailment brought about by protozoan parasites of the genus Trypanosoma. The disease leads to losses in livestock and agricultural productivity, resulting in significant socio-economic repercussions. In East Africa, trypanosomosis has been endemic for an extensive period due to ecological factors and vector biology that facilitate the persistent circulation of trypanosomes. This investigation outlines the occurrence of bovine trypanosomosis in East Africa through a meta-analysis. A thorough search was conducted on PubMed, Google Scholar, Scopus, Web of Science and AJOL. Suitable studies were chosen using inclusion and exclusion criteria. The prevalence was estimated through a random effect model. Publication bias and the variation in prevalence estimates due to heterogeneity were also evaluated. The analysis was performed on 115 studies that contained relevant prevalence data. The collective estimate of bovine trypanosomosis prevalence across the studies stood at 12% (95% CI: 11, 13), ranging from 1% (95% CI: 0, 2) to 51% (95% CI: 45, 58). The subgroup analysis by country revealed considerable disparities in prevalence. The highest estimated prevalence was 24% (95% CI: 18, 30) in Somalia, whereas the lowest prevalence was observed in Ethiopia at 10% (95% CI: 9, 11). A significant level of heterogeneity was noted in most pooled estimates, even after conducting subgroup analysis. The visual examination of the funnel plot and the Egger's regression asymmetry coefficient (b = -5.13, 95% CI: -7.49, -2.76, p = 0.00) and Begg's plot (p = 0.00) indicate the presence of publication bias. In conclusion, bovine trypanosomosis is a pervasive and noteworthy malady affecting livestock. The findings of this investigation imply a high prevalence of bovine trypanosomosis in the majority of the countries under scrutiny. Despite the well-known hindrance that livestock trypanosomosis poses to livestock production in Africa, little attention has been devoted to the trypanosomosis situation, particularly in East African nations.
Collapse
Affiliation(s)
- Getie Mulat
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| | - Moges Maru
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| | - Zewdu Seyoum Tarekegn
- Department of Veterinary Pathobiology, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| | - Haileyesus Dejene
- Department of Veterinary Epidemiology and Public Health, College of Veterinary Medicine and Animal Sciences, University of Gondar, Ethiopia
| |
Collapse
|
2
|
Franco JR, Priotto G, Paone M, Cecchi G, Ebeja AK, Simarro PP, Sankara D, Metwally SBA, Argaw DD. The elimination of human African trypanosomiasis: Monitoring progress towards the 2021-2030 WHO road map targets. PLoS Negl Trop Dis 2024; 18:e0012111. [PMID: 38626188 PMCID: PMC11073784 DOI: 10.1371/journal.pntd.0012111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/06/2024] [Accepted: 03/26/2024] [Indexed: 04/18/2024] Open
Abstract
BACKGROUND Human African trypanosomiasis (HAT) is a neglected tropical disease that usually occurs in rural areas in sub-Saharan Africa. It caused devastating epidemics during the 20th century. Sustained, coordinated efforts by different stakeholders working with national sleeping sickness control programmes (NSSCPs) succeeded in controlling the disease and reducing the number of cases to historically low levels. In 2012, WHO targeted the elimination of the disease as a public health problem by 2020. This goal has been reached and a new ambitious target was stated in the WHO road map for NTDs 2021-2030 and endorsed by the 73rd World Health Assembly: the elimination of gambiense HAT transmission (i.e. reducing the number of reported cases to zero). The interruption of transmission was not considered as an achievable goal for rhodesiense HAT, as it would require vast veterinary interventions rather than actions at the public health level. METHODOLOGY/PRINCIPAL FINDINGS Data reported to WHO by NSSCPs were harmonized, verified, georeferenced and included in the atlas of HAT. A total of 802 cases were reported in 2021 and 837 in 2022. This is below the target for elimination as a public health problem at the global level (< 2000 HAT cases/year); 94% of the cases were caused by infection with T. b. gambiense. The areas reporting ≥ 1 HAT case/10 000 inhabitants/year in 2018-2022 cover a surface of 73 134 km2, with only 3013 km2 at very high or high risk. This represents a reduction of 90% from the baseline figure for 2000-2004, the target set for the elimination of HAT as a public health problem. For the surveillance of the disease, 4.5 million people were screened for gambiense HAT with serological tests in 2021-2022, 3.6 million through active screening and 0.9 million by passive screening. In 2021 and 2022 the elimination of HAT as a public health problem was validated in Benin, Uganda, Equatorial Guinea and Ghana for gambiense HAT and in Rwanda for rhodesiense HAT. To reach the next goal of elimination of transmission of gambiense HAT, countries have to report zero cases of human infection with T. b. gambiense for a period of at least 5 consecutive years. The criteria and procedures to verify elimination of transmission have been recently published by WHO. CONCLUSIONS/SIGNIFICANCE HAT elimination as a public health problem has been reached at global level, with seven countries already validated as having reached this goal. This achievement was made possible by the work of NSSCPs, supported by different public and private partners, and coordinated by WHO. The new challenging goal now is to reach zero cases by 2030. To reach this goal is crucial to maintain the engagement and support of donors and stakeholders and to keep the involvement and coordination of all partners. Along with the focus on elimination of transmission of gambiense HAT, it is important not to neglect rhodesiense HAT, which is targeted for elimination as a public health problem in the WHO road map for NTDs 2021-2030.
Collapse
Affiliation(s)
- Jose R. Franco
- World Health Organization, Global Neglected Tropical Diseases Programme, Prevention, Treatment and Care Unit, Geneva, Switzerland
| | - Gerardo Priotto
- World Health Organization, Global Neglected Tropical Diseases Programme, Prevention, Treatment and Care Unit, Geneva, Switzerland
| | - Massimo Paone
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome, Italy
| | - Giuliano Cecchi
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome, Italy
| | - Agustin Kadima Ebeja
- World Health Organization, Regional Office for Africa, Communicable Disease Unit, Brazzaville, Congo
| | - Pere P. Simarro
- Consultant, World Health Organization, Global Neglected Tropical Diseases Programme, Innovative and Intensified Disease Management Unit, Geneva, Switzerland
| | - Dieudonne Sankara
- World Health Organization, Global Neglected Tropical Diseases Programme, Prevention, Treatment and Care Unit, Geneva, Switzerland
| | - Samia B. A. Metwally
- Food and Agriculture Organization of the United Nations, Animal Production and Health Division, Rome, Italy
| | - Daniel Dagne Argaw
- World Health Organization, Global Neglected Tropical Diseases Programme, Prevention, Treatment and Care Unit, Geneva, Switzerland
| |
Collapse
|
3
|
Gashururu RS, Maingi N, Githigia SM, Getange DO, Ntivuguruzwa JB, Habimana R, Cecchi G, Gashumba J, Bargul JL, Masiga DK. Trypanosomes infection, endosymbionts, and host preferences in tsetse flies ( Glossina spp.) collected from Akagera park region, Rwanda: A correlational xenomonitoring study. One Health 2023; 16:100550. [PMID: 37363264 PMCID: PMC10288097 DOI: 10.1016/j.onehlt.2023.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 06/28/2023] Open
Abstract
Akagera National Park and its surroundings are home to tsetse flies and a number of their mammalian hosts in Rwanda. A One-health approach is being used in the control and surveillance of both animal and human trypanosomosis in Rwanda. Determination of the infection level in tsetse flies, species of trypanosomes circulating in vectors, the source of tsetse blood meal and endosymbionts is crucial in understanding the epidemiology of the disease in animals and humans in the region. Tsetse flies (n = 1101), comprising Glossina pallidipes (n = 771) and Glossina morsitans centralis (n = 330) were collected from Akagera park and surrounding areas between May 2018 and June 2019. The flies were screened for trypanosomes, vertebrate host DNA to identify sources of blood meal, and endosymbionts by PCR - High Resolution Melting analysis and amplicon sequencing. The feeding frequency and the feeding indices (selection index - W) were calculated to identify the preferred hosts. An overall trypanosome infection rate of 13.9% in the fly's Head and Proboscis (HP) and 24.3% in the Thorax and Abdomen (TA) were found. Eight trypanosome species were identified in the tsetse fly HP and TA, namely: Trypanosoma (T.) brucei brucei, T. congolense Kilifi, T. congolense savannah, T. vivax, T. simiae, T. evansi, T. godfreyi, T. grayi and T. theileri. We found no evidence of human-infective T. brucei rhodesiense. We also identified eighteen species of vertebrate hosts that tsetse flies fed on, and the most frequent one was the buffalo (Syncerus caffer) (36.5%). The frequently detected host by selection index was the rhinoceros (Diceros bicornis) (W = 16.2). Most trypanosome infections in tsetse flies were associated with the buffalo blood meal. The prevalence of tsetse endosymbionts Sodalis and Wolbachia was 2.8% and 4.8%, respectively. No Spiroplasma and Salivary Gland Hypertrophy Virus were detected. These findings implicate the buffaloes as the important reservoirs of tsetse-transmitted trypanosomes in the area. This contributes to predicting the main cryptic reservoirs and therefore guiding the effective control of the disease. The study findings provide the key scientific information that supports the current One Health collaboration in the control and surveillance of tsetse-transmitted trypanosomosis in Rwanda.
Collapse
Affiliation(s)
- Richard S. Gashururu
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- School of Veterinary Medicine, University of Rwanda, P.O. Box 57, Nyagatare, Rwanda
| | - Ndichu Maingi
- Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi, Kenya
| | - Samuel M. Githigia
- Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi, Kenya
| | - Dennis O. Getange
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Jean B. Ntivuguruzwa
- School of Veterinary Medicine, University of Rwanda, P.O. Box 57, Nyagatare, Rwanda
| | - Richard Habimana
- Food and Drugs Assessment and Registration Department, Rwanda Food and Drugs Authority (FDA), P.O Box 1948, Kigali, Rwanda
| | - Giuliano Cecchi
- Food and Agriculture Organization of the United Nations (FAO), Animal Production and Health Division, Rome, Italy
| | | | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Daniel K. Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
4
|
Silva Pereira S, De Niz M, Serre K, Ouarné M, Coelho JE, Franco CA, Figueiredo L. Immunopathology and Trypanosoma congolense parasite sequestration cause acute cerebral trypanosomiasis. eLife 2022; 11:77440. [PMID: 35787830 PMCID: PMC9307270 DOI: 10.7554/elife.77440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 07/04/2022] [Indexed: 11/15/2022] Open
Abstract
Trypanosoma congolense causes a syndrome of variable severity in animals in Africa. Cerebral trypanosomiasis is a severe form, but the mechanism underlying this severity remains unknown. We developed a mouse model of acute cerebral trypanosomiasis and characterized the cellular, behavioral, and physiological consequences of this infection. We show large parasite sequestration in the brain vasculature for long periods of time (up to 8 hr) and extensive neuropathology that associate with ICAM1-mediated recruitment and accumulation of T cells in the brain parenchyma. Antibody-mediated ICAM1 blocking and lymphocyte absence reduce parasite sequestration in the brain and prevent the onset of cerebral trypanosomiasis. Here, we establish a mouse model of acute cerebral trypanosomiasis and we propose a mechanism whereby parasite sequestration, host ICAM1, and CD4+ T cells play a pivotal role.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Mariana De Niz
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Karine Serre
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Marie Ouarné
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Joana E Coelho
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Cláudio A Franco
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| | - Luisa Figueiredo
- Instituto de Medicina Molecular, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Silva Pereira S, Mathenge K, Masiga D, Jackson A. Transcriptomic profiling of Trypanosoma congolense mouthpart parasites from naturally infected flies. Parasit Vectors 2022; 15:152. [PMID: 35501882 PMCID: PMC9063227 DOI: 10.1186/s13071-022-05258-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Animal African trypanosomiasis, or nagana, is a veterinary disease caused by African trypanosomes transmitted by tsetse flies. In Africa, Trypanosoma congolense is one of the most pathogenic and prevalent causes of nagana in livestock, resulting in high animal morbidity and mortality and extensive production losses. In the tsetse fly, parasites colonise the midgut and eventually reach the mouthparts, from where they can be transmitted as the fly feeds on vertebrate hosts such as cattle. Despite the extreme importance of mouthpart-form parasites for disease transmission, very few global expression profile studies have been conducted in these parasite forms. Methods Here, we collected tsetse flies from the Shimba Hills National Reserve, a wildlife area in southeast Kenya, diagnosed T. congolense infections, and sequenced the transcriptomes of the T. congolense parasites colonising the mouthparts of the flies. Results We found little correlation between mouthpart parasites from natural and experimental fly infections. Furthermore, we performed differential gene expression analysis between mouthpart and bloodstream parasite forms and identified several surface-expressed genes and 152 novel hypothetical proteins differentially expressed in mouthpart parasites. Finally, we profiled variant antigen expression and observed that a variant surface glycoprotein (VSG) transcript belonging to T. congolense phylotype 8 (i.e. TcIL3000.A.H_000381200), previously observed to be enriched in metacyclic transcriptomes, was present in all wild-caught mouthpart samples as well as bloodstream-form parasites, suggestive of constitutive expression. Conclusion Our study provides transcriptomes of trypanosome parasites from naturally infected tsetse flies and suggests that a phylotype 8 VSG gene is constitutively expressed in metacyclic- and bloodstream-form parasites at the population level. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13071-022-05258-y.
Collapse
Affiliation(s)
- Sara Silva Pereira
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK. .,Faculdade de Medicina, Instituto de Medicina Molecular - João Lobo Antunes, Universidade de Lisboa, Lisbon, Portugal.
| | - Kawira Mathenge
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Daniel Masiga
- International Centre of Insect Physiology and Ecology, Nairobi, Kenya
| | - Andrew Jackson
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, 146 Brownlow Hill, Liverpool, L3 5RF, UK.
| |
Collapse
|