1
|
Berger DJ, Park SK, Crellen T, Vianney TJ, Kabatereine NB, Cotton JA, Sanya R, Elliot A, Tukahebwa EM, Adriko M, Standley CJ, Gouvras A, Kinung'hi S, Haas H, Rabone M, Emery A, Lamberton PHL, Webster BL, Allan F, Buddenborg S, Berriman M, Marchant JS, Doyle SR, Webster JP. Extensive transmission and variation in a functional receptor for praziquantel resistance in endemic Schistosoma mansoni. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.29.610291. [PMID: 39257780 PMCID: PMC11383708 DOI: 10.1101/2024.08.29.610291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Mass-drug administration (MDA) of human populations using praziquantel monotherapy has become the primary strategy for controlling and potentially eliminating the major neglected tropical disease schistosomiasis. To understand how long-term MDA impacts schistosome populations, we analysed whole-genome sequence data of 570 Schistosoma mansoni samples (and the closely related outgroup species, S. rodhaini) from eight countries incorporating both publicly-available sequence data and new parasite material. This revealed broad-scale genetic structure across countries but with extensive transmission over hundreds of kilometres. We characterised variation across the transient receptor potential melastatin ion channel, TRPMPZQ, a target of praziquantel, which has recently been found to influence praziquantel susceptibility. Functional profiling of TRPMPZQ variants found in endemic populations identified four mutations that reduced channel sensitivity to praziquantel, indicating standing variation for resistance. Analysis of parasite infrapopulations sampled from individuals pre- and post-treatment identified instances of treatment failure, further indicative of potential praziquantel resistance. As schistosomiasis is targeted for elimination as a public health problem by 2030 in all currently endemic countries, and even interruption of transmission in selected African regions, we provide an in-depth genomic characterisation of endemic populations and an approach to identify emerging praziquantel resistance alleles.
Collapse
Affiliation(s)
- Duncan J Berger
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Sang-Kyu Park
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Thomas Crellen
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | | | - Narcis B Kabatereine
- Vector Borne & Neglected Tropical Disease Control Division, Ministry of Health, Kampala, Uganda
| | - James A Cotton
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Richard Sanya
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
| | - Alison Elliot
- Immunomodulation and Vaccines Programme, Medical Research Council/Uganda Virus Research Institute and London School of Hygiene and Tropical Medicine Uganda Research Unit, Entebbe, Uganda
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Edridah M Tukahebwa
- Vector Borne & Neglected Tropical Disease Control Division, Ministry of Health, Kampala, Uganda
| | - Moses Adriko
- Vector Borne & Neglected Tropical Disease Control Division, Ministry of Health, Kampala, Uganda
| | - Claire J Standley
- Center for Global Health Science and Security, Georgetown University, 3900 Reservoir Rd NW, Washington DC 20007, USA
| | - Anouk Gouvras
- Global Schistosomiasis Alliance, Podium Space - Ealing Cross, 85 Uxbridge Road, London, W5 5BW, UK
| | - Safari Kinung'hi
- National Institute for Medical Research (NIMR) Mwanza Centre, P.O Box 1462, Mwanza, United Republic of Tanzania
| | | | - Muriel Rabone
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK; Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK, London Centre for Neglected Tropical Disease Research (LCNTDR), London, UK
| | - Aidan Emery
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK; Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK, London Centre for Neglected Tropical Disease Research (LCNTDR), London, UK
| | - Poppy H L Lamberton
- School of Biodiversity, One Health, and Veterinary Medicine, University of Glasgow, Glasgow, UK
| | - Bonnie L Webster
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK; Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK, London Centre for Neglected Tropical Disease Research (LCNTDR), London, UK
| | - Fiona Allan
- Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK; Wolfson Wellcome Biomedical Laboratories, Department of Life Sciences, The Natural History Museum, London, SW7 5BD, UK, London Centre for Neglected Tropical Disease Research (LCNTDR), London, UK
| | - Sarah Buddenborg
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Matthew Berriman
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
- Current address: School of Institute of Infection & Immunity, College of Medical, Veterinary & Life Sciences, University of Glasgow, 120 University Place, Glasgow, G12 8TA, UK
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | - Stephen R Doyle
- Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Joanne P Webster
- Department of Pathology and Pathogen Biology, Royal Veterinary College, University of London, Herts, UK
| |
Collapse
|
2
|
Zhou A, Zhang W, Ge X, Liu Q, Luo F, Xu S, Hu W, Lu Y. Characterizing genetic variation on the Z chromosome in Schistosoma japonicum reveals host-parasite co-evolution. Parasit Vectors 2024; 17:207. [PMID: 38720339 PMCID: PMC11080191 DOI: 10.1186/s13071-024-06250-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/18/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease that afflicts millions of people worldwide; it is caused by Schistosoma, the only dioecious flukes with ZW systems. Schistosoma japonicum is endemic to Asia; the Z chromosome of S. japonicum comprises one-quarter of the entire genome. Detection of positive selection using resequencing data to understand adaptive evolution has been applied to a variety of pathogens, including S. japonicum. However, the contribution of the Z chromosome to evolution and adaptation is often neglected. METHODS We obtained 1,077,526 high-quality SNPs on the Z chromosome in 72 S. japonicum using re-sequencing data publicly. To examine the faster Z effect, we compared the sequence divergence of S. japonicum with two closely related species, Schistosoma haematobium and S. mansoni. Genetic diversity was compared between the Z chromosome and autosomes in S. japonicum by calculating the nucleotide diversity (π) and Dxy values. Population structure was also assessed based on PCA and structure analysis. Besides, we employed multiple methods including Tajima's D, FST, iHS, XP-EHH, and CMS to detect positive selection signals on the Z chromosome. Further RNAi knockdown experiments were performed to investigate the potential biological functions of the candidate genes. RESULTS Our study found that the Z chromosome of S. japonicum showed faster evolution and more pronounced genetic divergence than autosomes, although the effect may be smaller than the variation among genes. Compared with autosomes, the Z chromosome in S. japonicum had a more pronounced genetic divergence of sub-populations. Notably, we identified a set of candidate genes associated with host-parasite co-evolution. In particular, LCAT exhibited significant selection signals within the Taiwan population. Further RNA interference experiments suggested that LCAT is necessary for S. japonicum survival and propagation in the definitive host. In addition, we identified several genes related to the specificity of the intermediate host in the C-M population, including Rab6 and VCP, which are involved in adaptive immune evasion to the host. CONCLUSIONS Our study provides valuable insights into the adaptive evolution of the Z chromosome in S. japonicum and further advances our understanding of the co-evolution of this medically important parasite and its hosts.
Collapse
Affiliation(s)
- An Zhou
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
| | - Wei Zhang
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Xueling Ge
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Qi Liu
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
| | - Fang Luo
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China
- Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
- Human Phenome Institute, Zhangjiang Fudan International Innovation Center, and Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai, 201203, China
- School of Life Science and Technology, Shanghai Tech University, Shanghai, 201210, China
| | - Wei Hu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China
- College of Life Sciences, Inner Mongolia University, Hohhot, 010070, China
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200438, China.
- Ministry of Education Key Laboratory of Contemporary Anthropology, Collaborative Innovation Center for Genetics and Development, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Lim RM, Arme TM, Pedersen AB, Webster JP, Lamberton PHL. Defining schistosomiasis hotspots based on literature and shareholder interviews. Trends Parasitol 2023; 39:1032-1049. [PMID: 37806786 DOI: 10.1016/j.pt.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/11/2023] [Accepted: 09/12/2023] [Indexed: 10/10/2023]
Abstract
The World Health Organization (WHO) recently proposed a new operational definition which designates communities with ≥10% prevalence of Schistosoma spp. infection as a persistent hotspot, when, after at least two rounds of high-coverage annual preventive chemotherapy, there is a lack of appropriate reduction. However, inconsistencies and challenges from both biological and operational perspectives remain, making the prescriptive use of this definition difficult. Here, we present a comprehensive analysis of the use of the term 'hotspot' across schistosomiasis research over time, including both literature searches and opinions from a range of stakeholders, to assess the utility and generalisability of the new WHO definition of a persistent hotspot. Importantly, we propose an updated definition based on our analyses.
Collapse
Affiliation(s)
- Rivka M Lim
- Institute of Evolution and Ecology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK.
| | - Thomas M Arme
- School of Biodiversity, One Health and Veterinary Medicine, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Amy B Pedersen
- Institute of Evolution and Ecology, School of Biological Sciences, Ashworth Laboratories, University of Edinburgh, Edinburgh, UK
| | - Joanne P Webster
- Department of Pathobiology and Population Sciences, Royal Veterinary College, University of London, Hatfield, Herts, UK
| | - Poppy H L Lamberton
- School of Biodiversity, One Health and Veterinary Medicine, Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
Gomes BF, Senger MR, Moreira-Filho JT, de Vasconcellos FJ, Dantas RF, Owens R, Andrade CH, Neves BJ, Silva-Junior FP. Discovery of new Schistosoma mansoni aspartyl protease inhibitors by structure-based virtual screening. Mem Inst Oswaldo Cruz 2023; 118:e230031. [PMID: 37672425 PMCID: PMC10481938 DOI: 10.1590/0074-02760230031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/01/2023] [Indexed: 09/08/2023] Open
Abstract
BACKGROUND Schistosomiasis is a neglected tropical disease caused by trematodes of the genus Schistosoma, with a limited treatment, mainly based on the use of praziquantel (PZQ). Currently, several aspartic proteases genes have already been identified within the genome of Schistosoma species. At least one enzyme encoded from this gene family (SmAP), named SmCD1, has been validated for the development of schistosomicidal drugs, since it has a key role in haemoglobin digestion by worms. OBJECTIVE In this work, we integrated a structure-based virtual screening campaign, enzymatic assays and adult worms ex vivo experiments aiming to discover the first classes of SmCD1 inhibitors. METHODS Initially, the 3D-structures of SmCD1, SmCD2 and SmCD3 were generated using homology modelling approach. Using these models, we prioritised 50 compounds from 20,000 compounds from ChemBridge database for further testing in adult worm aqueous extract (AWAE) and recombinant SmCD1 using enzymatic assays. FINDINGS Seven compounds were confirmed as hits and among them, two compounds representing new chemical scaffolds, named 5 and 19, had IC50 values against SmCD1 close to 100 μM while presenting binding efficiency indexes comparable to or even higher than pepstatin, a classical tight-binding peptide inhibitor of aspartyl proteases. Upon activity comparison against mammalian enzymes, compound 50 was selective and the most potent against the AWAE aspartic protease activity (IC50 = 77.7 μM). Combination of computational and experimental results indicate that compound 50 is a selective inhibitor of SmCD2. Compounds 5, 19 and 50 tested at low concentrations (10 uM) were neither cytotoxic against WSS-1 cells (48 h) nor could kill adult worms ex-vivo, although compounds 5 and 50 presented a slight decrease on female worms motility on late incubations times (48 or 72 h). MAIN CONCLUSION Overall, the inhibitors identified in this work represent promising hits for further hit-to-lead optimisation.
Collapse
Affiliation(s)
- Bárbara Figueira Gomes
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Mario Roberto Senger
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - José Teófilo Moreira-Filho
- Universidade Federal de Goiás, Faculdade de Farmácia, Laboratório de Planejamento de Fármacos e Modelagem Molecular, Goiânia, GO, Brasil
| | - Fabio Jorge de Vasconcellos
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Rafael Ferreira Dantas
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| | - Raymond Owens
- University of Oxford and Rosalind Franklin Institute, Oxfordshire, UK
| | - Carolina Horta Andrade
- Universidade Federal de Goiás, Faculdade de Farmácia, Laboratório de Planejamento de Fármacos e Modelagem Molecular, Goiânia, GO, Brasil
| | - Bruno Junior Neves
- Universidade Federal de Goiás, Faculdade de Farmácia, Laboratório de Quimioinformática, Goiânia, GO, Brasil
| | - Floriano Paes Silva-Junior
- Fundação Oswaldo Cruz-Fiocruz, Instituto Oswaldo Cruz, Laboratório de Bioquímica Experimental e Computacional de Fármacos, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
5
|
Thorn CS, Maness RW, Hulke JM, Delmore KE, Criscione CD. Population genomics of helminth parasites. J Helminthol 2023; 97:e29. [PMID: 36927601 DOI: 10.1017/s0022149x23000123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Next generation sequencing technologies have facilitated a shift from a few targeted loci in population genetic studies to whole genome approaches. Here, we review the types of questions and inferences regarding the population biology and evolution of parasitic helminths being addressed within the field of population genomics. Topics include parabiome, hybridization, population structure, loci under selection and linkage mapping. We highlight various advances, and note the current trends in the field, particularly a focus on human-related parasites despite the inherent biodiversity of helminth species. We conclude by advocating for a broader application of population genomics to reflect the taxonomic and life history breadth displayed by helminth parasites. As such, our basic knowledge about helminth population biology and evolution would be enhanced while the diversity of helminths in itself would facilitate population genomic comparative studies to address broader ecological and evolutionary concepts.
Collapse
Affiliation(s)
- C S Thorn
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - R W Maness
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - J M Hulke
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - K E Delmore
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| | - C D Criscione
- Department of Biology, Texas A&M University, 3258 TAMU, College Station, TX, 77843, USA
| |
Collapse
|
6
|
Nikolakis ZL, Adams RH, Wade KJ, Lund AJ, Carlton EJ, Castoe TA, Pollock DD. Prospects for genomic surveillance for selection in schistosome parasites. FRONTIERS IN EPIDEMIOLOGY 2022; 2:932021. [PMID: 38455290 PMCID: PMC10910990 DOI: 10.3389/fepid.2022.932021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 09/12/2022] [Indexed: 03/09/2024]
Abstract
Schistosomiasis is a neglected tropical disease caused by multiple parasitic Schistosoma species, and which impacts over 200 million people globally, mainly in low- and middle-income countries. Genomic surveillance to detect evidence for natural selection in schistosome populations represents an emerging and promising approach to identify and interpret schistosome responses to ongoing control efforts or other environmental factors. Here we review how genomic variation is used to detect selection, how these approaches have been applied to schistosomes, and how future studies to detect selection may be improved. We discuss the theory of genomic analyses to detect selection, identify experimental designs for such analyses, and review studies that have applied these approaches to schistosomes. We then consider the biological characteristics of schistosomes that are expected to respond to selection, particularly those that may be impacted by control programs. Examples include drug resistance, host specificity, and life history traits, and we review our current understanding of specific genes that underlie them in schistosomes. We also discuss how inherent features of schistosome reproduction and demography pose substantial challenges for effective identification of these traits and their genomic bases. We conclude by discussing how genomic surveillance for selection should be designed to improve understanding of schistosome biology, and how the parasite changes in response to selection.
Collapse
Affiliation(s)
- Zachary L. Nikolakis
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - Richard H. Adams
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA, United States
| | - Kristen J. Wade
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Andrea J. Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, CO, United States
| | - Elizabeth J. Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Anschutz, Aurora, CO, United States
| | - Todd A. Castoe
- Department of Biology, University of Texas at Arlington, Arlington, TX, United States
| | - David D. Pollock
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, United States
| |
Collapse
|
7
|
Lund AJ, Wade KJ, Nikolakis ZL, Ivey KN, Perry BW, Pike HNC, Paull SH, Liu Y, Castoe TA, Pollock DD, Carlton EJ. Integrating genomic and epidemiologic data to accelerate progress toward schistosomiasis elimination. eLife 2022; 11:79320. [PMID: 36040013 PMCID: PMC9427098 DOI: 10.7554/elife.79320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/11/2022] [Indexed: 11/13/2022] Open
Abstract
The global community has adopted ambitious goals to eliminate schistosomiasis as a public health problem, and new tools are needed to achieve them. Mass drug administration programs, for example, have reduced the burden of schistosomiasis, but the identification of hotspots of persistent and reemergent transmission threaten progress toward elimination and underscore the need to couple treatment with interventions that reduce transmission. Recent advances in DNA sequencing technologies make whole-genome sequencing a valuable and increasingly feasible option for population-based studies of complex parasites such as schistosomes. Here, we focus on leveraging genomic data to tailor interventions to distinct social and ecological circumstances. We consider two priority questions that can be addressed by integrating epidemiological, ecological, and genomic information: (1) how often do non-human host species contribute to human schistosome infection? and (2) what is the importance of locally acquired versus imported infections in driving transmission at different stages of elimination? These questions address processes that can undermine control programs, especially those that rely heavily on treatment with praziquantel. Until recently, these questions were difficult to answer with sufficient precision to inform public health decision-making. We review the literature related to these questions and discuss how whole-genome approaches can identify the geographic and taxonomic sources of infection, and how such information can inform context-specific efforts that advance schistosomiasis control efforts and minimize the risk of reemergence.
Collapse
Affiliation(s)
- Andrea J Lund
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Kristen J Wade
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Zachary L Nikolakis
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Kathleen N Ivey
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Blair W Perry
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - Hamish NC Pike
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Sara H Paull
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| | - Yang Liu
- Sichuan Centers for Disease Control and PreventionChengduChina
| | - Todd A Castoe
- Department of Biology, University of Texas at ArlingtonArlingtonUnited States
| | - David D Pollock
- Department of Biochemistry & Molecular Genetics, University of Colorado School of MedicineAuroraUnited States
| | - Elizabeth J Carlton
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado AnschutzAuroraUnited States
| |
Collapse
|