1
|
Ao Y, Gong X, Li J, Zhao R, Song S, Guo Y, Feng Y, Xiao L, Xu R, Li N. Characterization of NFDQ1 in Cryptosporidium parvum. Parasit Vectors 2024; 17:439. [PMID: 39462401 PMCID: PMC11514877 DOI: 10.1186/s13071-024-06532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 10/09/2024] [Indexed: 10/29/2024] Open
Abstract
BACKGROUND Cryptosporidium spp. are important zoonotic parasites that can cause moderate to severe diarrhea in humans and animals. Among the three Cryptosporidium species infecting the intestines of calves, Cryptosporidium parvum has a broad host range and causes severe diarrhea in calves, while Cryptosporidium bovis and Cryptosporidium ryanae mainly infect calves without obvious clinical symptoms. Comparative genomic analysis revealed differences in the copy number of genes encoding the nonfinancial disclosure quality (NFDQ) secretory protein family among the three species, suggesting that this protein family may be associated with the host range or pathogenicity of Cryptosporidium spp. To understand the function of cgd8_10 encoded NFDQ1, tagged and knockout strains were constructed and characterized in this study. METHODS To determine the localization of NFDQ1, we used clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein 9 (Cas9) technology to tag the C-terminus of NFDQ1 with three hemagglutinin epitopes (3 × HA). The tagged strain was constructed, and the genomic insertion was confirmed by polymerase chain reaction (PCR). Immunofluorescence assays were performed to observe the localization of NFDQ1 both in extracellular sporozoites and at various intracellular developmental stages. Immunoelectron microscopy was used to study the ultrastructural localization of NFDQ1. Then, the ΔNFDQ1 strain was generated by CRISPR/Cas9 and the in vitro growth assay on HCT-8 cells was used to analyze of phenotypic changes after knockout NFDQ1 in parasites. RESULTS The NFDQ1 tagging and knockout stains were successfully constructed by CRISPR/Cas9 technology and the insertions of transgenic strains were validated by PCR. The expression of NFDQ1 was validated in parasite by western blot. Immunofluorescence and immune-electron microscopy assay showed that NFDQ1 expressed in both asexual and sexual stages of C. parvum, where it was localized to the cytoplasm of the parasite. Upon ablation of NFDQ1, the ΔNFDQ1 strain showed an apparent growth retardation during sexual replication in vitro. CONCLUSIONS NFDQ1 is a cytoplasmic protein without specific localization to secretory organelles, and it may participate in C. parvum growth during sexual reproduction. Future study should determine the role of NFDQ1 following C. parvum infection in vivo.
Collapse
Affiliation(s)
- Yangsiqi Ao
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqing Gong
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Jieping Li
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Ruiming Zhao
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Shujiao Song
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Xu
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
2
|
Li M, Yang F, Hou T, Gong X, Li N, Sibley LD, Feng Y, Xiao L, Guo Y. Variant surface protein GP60 contributes to host infectivity of Cryptosporidium parvum. Commun Biol 2024; 7:1175. [PMID: 39294220 PMCID: PMC11411101 DOI: 10.1038/s42003-024-06885-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 09/12/2024] [Indexed: 09/20/2024] Open
Abstract
Biological studies of the determinants of Cryptosporidium infectivity are lacking despite the fact that cryptosporidiosis is a major public health problem. Recently, the 60-kDa glycoprotein (GP60) has received attention because of its high sequence polymorphism and association with host infectivity of isolates and protection against reinfection. However, studies of GP60 function have been hampered by its heavy O-linked glycosylation. Here, we used advanced genetic tools to investigate the processing, fate, and function of GP60. Endogenous gene tagging showed that the GP60 cleavage products, GP40 and GP15, are both highly expressed on the surface of sporozoites, merozoites and male gametes. During invasion, GP40 translocates to the apical end of the zoites and remains detectable at the parasite-host interface. Deletion of the signal peptide, GPI anchor, and GP15 sequences affects the membrane localization of GP40. Deletion of the GP60 gene significantly reduces parasite growth and severity of infection, and replacement of the GP60 gene with sequence from an avirulent isolate reduces the pathogenicity of a highly infective isolate. These results have revealed dynamic changes in GP60 expression during parasite development. They further suggest that GP60 is a key protein mediating host infectivity and pathogenicity.
Collapse
Affiliation(s)
- Muxiao Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Fuxian Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Tianyi Hou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaoqing Gong
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
3
|
Huang Y, Li J, Pei S, You H, Liu H, Guo Y, Xu R, Li N, Feng Y, Xiao L. Optimization of a DiCre recombinase system with reduced leakage for conditional genome editing of Cryptosporidium. Parasit Vectors 2024; 17:352. [PMID: 39169430 PMCID: PMC11337648 DOI: 10.1186/s13071-024-06431-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 08/02/2024] [Indexed: 08/23/2024] Open
Abstract
BACKGROUND The dimerizable Cre recombinase system (DiCre) exhibits increased leaky activity in Cryptosporidium, leading to unintended gene editing in the absence of induction. Therefore, optimization of the current DiCre technique is necessary for functional studies of essential Cryptosporidium genes. METHODS Based on the results of transcriptomic analysis of Cryptosporidium parvum stages, seven promoters with different transcriptional capabilities were screened to drive the expression of Cre fragments (FKBP-Cre59 and FRB-Cre60). Transient transfection was performed to assess the effect of promoter strength on leakage activity. In vitro and in vivo experiments were performed to evaluate the leaky activity and cleavage efficiency of the optimized DiCre system by polymerase chain reaction (PCR), nanoluciferase, and fluorescence analyses. RESULTS The use of promoters with lower transcriptional activity, such as pcgd6_4110 and pcgd3_260, as opposed to strong promoters such as pActin, pα-Tubulin, and pEnolase, reduced the leakage rate of the system from 35-75% to nearly undetectable levels, as verified by transient transfection. Subsequent in vitro and in vivo experiments using stable lines further demonstrated that the optimized DiCre system had no detectable leaky activity. The system achieved 71% cleavage efficiency in vitro. In mice, a single dose of the inducer resulted in a 10% conditional gene knockout and fluorescent protein expression in oocysts. These fluorescently tagged transgenic oocysts could be enriched by flow sorting for further infection studies. CONCLUSIONS A DiCre conditional gene knockout system for Cryptosporidium with good cleavage efficiency and reduced leaky activity has been successfully established.
Collapse
Affiliation(s)
- Yue Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Jinli Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Shifeng Pei
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Heng You
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Huimin Liu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Rui Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
4
|
Wang MY, Zhang S, Zhang ZS, Qian XY, Chai HL, Wang Y, Fan WJ, Yi C, Ding YL, Han WX, Zhao L, Liu YH. Prevalence and molecular characterization of Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis in dairy cattle in Ningxia, northwestern China. Vet Res Commun 2024; 48:2629-2643. [PMID: 38565798 DOI: 10.1007/s11259-024-10364-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/25/2024] [Indexed: 04/04/2024]
Abstract
Cryptosporidium spp., Enterocytozoon bieneusi, and Giardia duodenalis are common intestinal pathogens that infect humans and animals. To date, research regarding these three protozoa in the Ningxia Hui Autonomous Region (Ningxia) has mostly been limited to a single pathogen, and comprehensive data on mixed infections are unavailable. This study aimed to evaluate the zoonotic potential of these three protozoa. In this study, small subunit ribosomal RNA (SSU rRNA) and 60 kDa glycoprotein (gp60) genes of Cryptosporidium; internal transcribed spacer (ITS) gene of E. bieneusi; and SSU rRNA, glutamate dehydrogenase (gdh), triosephosphate isomerase (tpi), and beta-giardin (bg) genes of G. duodenalis were examined. DNA extraction, polymerase chain reaction, and sequence analysis were performed on fecal samples collected from 320 dairy cattle at three intensive dairy farms in Ningxia in 2021 to determine the prevalence and genetic characteristics of these three protozoa. The findings revealed that 61.56% (197/320) of the samples were infected with at least one protozoan. The overall prevalence of Cryptosporidium was 19.38% (62/320), E. bieneusi was 41.56% (133/320), and G. duodenalis was 29.38% (94/320). This study identified four Cryptosporidium species (C. bovis, C. andersoni, C. ryanae, and C. parvum) and the presence of mixed infections with two or three Cryptosporidium species. C. bovis was the dominant species in this study, while the dominant C. parvum subtypes were IIdA15G1 and IIdA20G1. The genotypes of E. bieneusis were J, BEB4, and I alongside the novel genotypes NX1-NX8, all belonging to group 2, with genotype J being dominant. G. duodenalis assemblages were identified as assemblages E, A, and B, and a mixed infection involving assemblages A + E was identified, with assemblage E being the dominant one. Concurrently, 11 isolates formed 10 different assemblage E multilocus genotypes (MLGs) and 1 assemblage A MLG and assemblage E MLGs formed 5 subgroups. To the best of our knowledge, this is the first report on mixed infection with two or three Cryptosporidium species in cattle in Ningxia and on the presence of the C. parvum subtype IIdA20G1 in this part of China. This study also discovered nine genotypes of E. bieneusis and novel features of G. duodenalis assemblages in Ningxia. This study indicates that dairy cattle in this region may play a significant role in the zoonotic transmission of Cryptosporidium spp., E. bieneusi, and G. duodenalis.
Collapse
Affiliation(s)
- Ming-Yuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhan-Sheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Xiao-Yin Qian
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Hai-Liang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wen-Jun Fan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Chao Yi
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Wen-Xiong Han
- Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co., Ltd., Hohhot, China
| | - Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
5
|
Li J, Fan Y, Li N, Guo Y, Wang W, Feng K, He W, Li F, Huang J, Xu Y, Xiao L, Feng Y. Comparative genomics analysis reveals sequence characteristics potentially related to host preference in Cryptosporidium xiaoi. Int J Parasitol 2024; 54:379-390. [PMID: 38492779 DOI: 10.1016/j.ijpara.2024.03.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 02/26/2024] [Accepted: 03/12/2024] [Indexed: 03/18/2024]
Abstract
Cryptosporidium spp. are important diarrhea-associated pathogens in humans and livestock. Among the known species, Cryptosporidium xiaoi, which causes cryptosporidiosis in sheep and goats, was previously recognized as a genotype of the bovine-specific Cryptosporidium bovis based on their high sequence identity in the ssrRNA gene. However, the lack of genomic data has limited characterization of the genetic differences between the two closely related species. In this study, we sequenced the genomes of two C. xiaoi isolates and performed comparative genomic analysis to identify the sequence uniqueness of this ovine-adapted species compared with other Cryptosporidium spp. Our results showed that C. xiaoi is genetically related to C. bovis as shown by their 95.8% genomic identity and similar gene content. Consistent with this, both C. xiaoi and C. bovis appear to have fewer genes encoding mitochondrial metabolic enzymes and invasion-related protein families. However, they appear to possess several species-specific genes. Further analysis indicates that the sequence differences between these two Cryptosporidium spp. are mainly in 24 highly polymorphic genes, half of which are located in the subtelomeric regions. Some of these subtelomeric genes encode secretory proteins that have undergone positive selection. In addition, the genomes of two C. xiaoi isolates, identified as subtypes XXIIIf and XXIIIh, share 99.9% nucleotide sequence identity, with six highly divergent genes encoding putative secretory proteins. Therefore, these species-specific genes and sequence polymorphism in subtelomeric genes probably contribute to the different host preference of C. xiaoi and C. bovis.
Collapse
Affiliation(s)
- Jiayu Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yingying Fan
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Weijian Wang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Kangli Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Wei He
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Falei Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Jianbo Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yanhua Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
6
|
Huang W, Tang K, Chen C, Arrowood MJ, Chen M, Guo Y, Li N, Roellig DM, Feng Y, Xiao L. Sequence introgression from exogenous lineages underlies genomic and biological differences among Cryptosporidium parvum IOWA lines. WATER RESEARCH 2024; 254:121333. [PMID: 38402753 PMCID: PMC10994760 DOI: 10.1016/j.watres.2024.121333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/27/2024]
Abstract
The IOWA strain of Cryptosporidium parvum is widely used in studies of the biology and detection of the waterborne pathogens Cryptosporidium spp. While several lines of the strain have been sequenced, IOWA-II, the only reference of the original subtype (IIaA15G2R1), exhibits significant assembly errors. Here we generated a fully assembled genome of IOWA-CDC of this subtype using PacBio and Illumina technologies. In comparative analyses of seven IOWA lines maintained in different laboratories (including two sequenced in this study) and 56 field isolates, IOWA lines (IIaA17G2R1) with less virulence had mixed genomes closely related to IOWA-CDC but with multiple sequence introgressions from IOWA-II and unknown lineages. In addition, the IOWA-IIaA17G2R1 lines showed unique nucleotide substitutions and loss of a gene associated with host infectivity, which were not observed in other isolates analyzed. These genomic differences among IOWA lines could be the genetic determinants of phenotypic traits in C. parvum. These data provide a new reference for comparative genomic analyses of Cryptosporidium spp. and rich targets for the development of advanced source tracking tools.
Collapse
Affiliation(s)
- Wanyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Kevin Tang
- Division of Scientific Resources, Centers for Disease Control and Prevention, Atlanta, GA 30341, USA
| | - Chengyi Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Michael J Arrowood
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA
| | - Ming Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China
| | - Dawn M Roellig
- Division of Foodborne, Waterborne, and Environmental Diseases, Centers for Disease Control and Prevention, Atlanta, Georgia 30341, USA.
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
7
|
Luo C, Xu Y, Zhang J, Tian Q, Guo Y, Li N, Feng Y, Xu R, Xiao L. Cryptosporidium parvum disrupts intestinal epithelial barrier in neonatal mice through downregulation of cell junction molecules. PLoS Negl Trop Dis 2024; 18:e0012212. [PMID: 38787872 PMCID: PMC11156435 DOI: 10.1371/journal.pntd.0012212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/06/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
BACKGROUND Cryptosporidium spp. cause watery diarrhea in humans and animals, especially in infants and neonates. They parasitize the apical surface of the epithelial cells in the intestinal lumen. However, the pathogenesis of Cryptosporidium-induced diarrhea is not fully understood yet. METHODOLOGY/PRINCIPAL FINDINGS In this study, we infected C57BL/6j neonatal mice with C. parvum IIa and IId subtypes, and examined oocyst burden, pathological changes, and intestinal epithelial permeability during the infection. In addition, transcriptomic analyses were used to study the mechanism of diarrhea induced by the C. parvum IId subtype. The neonatal mice were sensitive to both C. parvum IIa and IId infection, but the IId subtype caused a wide oocyst shedding window and maintained the high oocyst burden in the mice compared with the IIa subtype. In addition, the mice infected with C. parvum IId resulted in severe intestinal damage at the peak of infection, leading to increased permeability of the epithelial barrier. The KEGG, GO and GSEA analyses revealed that the downregulation of adherens junction and cell junction molecules at 11 dpi. Meanwhile, E-cadherin, which is associated with adherens junction, was reduced at the protein level in mouse ileum at peak and late infection. CONCLUSIONS/SIGNIFICANCE C. parvum IId infection causes more severe pathological damage than C. parvum IIa infection in neonatal mice. Furthermore, the impairment of the epithelial barrier during C. parvum IId infection results from the downregulation of intestinal junction proteins.
Collapse
Affiliation(s)
- Chaowei Luo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yanhua Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Qing Tian
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Rui Xu
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Center for Emerging and Zoonotic Diseases, College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| |
Collapse
|
8
|
Deng M, Hou T, Zhang J, Mao X, Yang F, Wei Y, Tang Y, Zeng W, Huang W, Li N, Xiao L, Feng Y, Guo Y. Cultivation, cryopreservation, and transcriptomic studies of host-adapted Cryptosporidium parvum and Cryptosporidium hominis using enteroids. iScience 2024; 27:109563. [PMID: 38623332 PMCID: PMC11016910 DOI: 10.1016/j.isci.2024.109563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/21/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Cryptosporidium hominis and Cryptosporidium parvum are major causes of severe diarrhea. Comparative studies of them are hampered by the lack of effective cultivation and cryopreservation methods, especially for C. hominis. Here, we describe adapted murine enteroids for the cultivation and complete development of host-adapted C. parvum and C. hominis subtypes, producing oocysts infectious to mice. Using the system, we developed a cryopreservation method for Cryptosporidium isolates. In comparative RNA-seq analyses of C. hominis cultures, the enteroid system generated significantly more host and pathogen responses than the conventional HCT-8 cell system. In particular, the infection was shown to upregulate PI3K-Akt, Ras, TNF, NF-κB, IL-17, MAPK, and innate immunity signaling pathways and downregulate host cell metabolism, and had significantly higher expression of parasite genes involved in oocyst formation. Therefore, the enteroid system provides a valuable tool for comparative studies of the biology of divergent Cryptosporidium species and isolates.
Collapse
Affiliation(s)
- Miner Deng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Tianyi Hou
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Jie Zhang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Xinjie Mao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Fuxian Yang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yanting Wei
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yongping Tang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wanting Zeng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Wanyi Huang
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Li M, Sun X, Chen H, Li N, Feng Y, Xiao L, Guo Y. Stable expression of mucin glycoproteins GP40 and GP15 of Cryptosporidium parvum in Toxoplasma gondii. Parasit Vectors 2024; 17:65. [PMID: 38360646 PMCID: PMC10870685 DOI: 10.1186/s13071-024-06159-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/24/2024] [Indexed: 02/17/2024] Open
Abstract
BACKGROUND Cryptosporidium spp. are common protozoa causing diarrhea in humans and animals. There are currently only one FDA-approved drug and no vaccines for cryptosporidiosis, largely due to the limited knowledge of the molecular mechanisms involved in the invasion of the pathogens. Previous studies have shown that GP60, which is cleaved into GP40 and GP15 after expression, is an immunodominant mucin protein involved in the invasion of Cryptosporidium. The protein is highly O-glycosylated, and recombinant proteins expressed in prokaryotic systems are non-functional. Therefore, few studies have investigated the function of GP40 and GP15. METHODS To obtain recombinant GP40 with correct post-translational modifications, we used CRISPR/Cas9 technology to insert GP40 and GP15 into the UPRT locus of Toxoplasma gondii, allowing heterologous expression of Cryptosporidium proteins. In addition, the Twin-Strep tag was inserted after GP40 for efficient purification of GP40. RESULTS Western blotting and immunofluorescent microscopic analyses both indicated that GP40 and GP15 were stably expressed in T. gondii mutants. GP40 localized not only in the cytoplasm of tachyzoites but also in the parasitophorous vacuoles, while GP15 without the GPI anchor was expressed only in the cytoplasm. In addition, a large amount of recTgGP40 was purified using Strep-TactinXT supported by a visible band of ~ 50 kDa in SDS-PAGE. CONCLUSIONS The establishment of a robust and efficient heterologous expression system of GP40 in T. gondii represents a novel approach and concept for investigating Cryptosporidium mucins, overcoming the limitations of previous studies that relied on unstable transient transfection, which involved complex steps and high costs.
Collapse
Affiliation(s)
- Muxiao Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Xiaohua Sun
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Haoyu Chen
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Na Li
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Yaoyu Feng
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Lihua Xiao
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China
| | - Yaqiong Guo
- State Key Laboratory for Animal Disease Control and Prevention, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
10
|
Shaw S, Cohn IS, Baptista RP, Xia G, Melillo B, Agyabeng-Dadzie F, Kissinger JC, Striepen B. Genetic crosses within and between species of Cryptosporidium. Proc Natl Acad Sci U S A 2024; 121:e2313210120. [PMID: 38147547 PMCID: PMC10769859 DOI: 10.1073/pnas.2313210120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/12/2023] [Indexed: 12/28/2023] Open
Abstract
Parasites and their hosts are engaged in reciprocal coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium, genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach, multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing Cryptosporidium parvum, a parasite of cattle and humans, and Cryptosporidium tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward-genetic analysis of parasite biology and host specificity.
Collapse
Affiliation(s)
- Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Rodrigo P. Baptista
- Department of Medicine, Houston Methodist Research Institute, Houston, TX77030
| | - Guoqin Xia
- Department of Chemistry, Scripps Research, La Jolla, CA92037
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA92037
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA02142
| | | | - Jessica C. Kissinger
- Department of Genetics, University of Georgia, Athens, GA30602
- Center for Tropical and Emerging Global Diseases and Institute of Bioinformatics, University of Georgia, Athens, GA30602
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
11
|
Zhao L, Chai HL, Wang MY, Zhang ZS, Han WX, Yang B, Wang Y, Zhang S, Zhao WH, Ma YM, Zhan YJ, Wang LF, Ding YL, Wang JL, Liu YH. Prevalence and molecular characterization of Cryptosporidium spp. in dairy cattle in Central Inner Mongolia, Northern China. BMC Vet Res 2023; 19:134. [PMID: 37626358 PMCID: PMC10464073 DOI: 10.1186/s12917-023-03696-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
BACKGROUND Cryptosporidium is a gastrointestinal protozoan that widely exists in nature, it is an established zoonotic pathogen. Infected cattle are considered to be associated with cryptosporidiosis outbreaks in humans. In the present study, we aimed to assess the prevalence and species distribution of Cryptosporidium in dairy cattle in Central Inner Mongolia. METHODS We focused on the small subunit ribosomal RNA gene (SSU rRNA) of Cryptosporidium and 60-kDa glycoprotein gene (gp60) of Cryptosporidium parvum. We collected 505 dairy cattle manure samples from 6 sampling sites in Inner Mongolia in 2021; the samples were divided into 4 groups based on age. DNA extraction, polymerase chain reaction (PCR), sequence analysis, and restriction fragment length polymorphism (RFLP) using SspI and MboII restriction endonucleases were performed. RFLP analysis was performed to determine the prevalence and species distribution of Cryptosporidium. RESULTS SSU rRNA PCR revealed that the overall prevalence of Cryptosporidium infection was 29.90% (151/505), with a prevalence of 37.67% (55/146) and 26.74% (96/359) in diarrheal and nondiarrheal samples, respectively; these differences were significant. The overall prevalence of Cryptosporidium infection at the 6 sampling sites ranged from 0 to 47.06% and that among the 4 age groups ranged from 18.50 to 43.81%. SSU rRNA sequence analysis and RFLP analysis revealed the presence of 4 Cryptosporidium species, namely, C. bovis (44.37%), C. andersoni (35.10%), C. ryanae (21.85%), and C. parvum (11.92%), along with a mixed infection involving two or three Cryptosporidium species. Cryptosporidium bovis or C. andersoni was the most common cause of infection in the four age groups. The subtype of C. parvum was successfully identified as IIdA via gp60 analysis; all isolates were identified as the subtype IIdA19G1. CONCLUSIONS To the best of our knowledge, this is the first report of dairy cattle infected with four Cryptosporidium species in Inner Mongolia, China, along with a mixed infection involving two or three Cryptosporidium species, with C. bovis and C. andersoni as the dominant species. Moreover, this is the first study to identify C. parvum subtype IIdA19G1 in cattle in Inner Mongolia. Our study findings provide detailed information on molecular epidemiological investigation of bovine cryptosporidiosis in Inner Mongolia, suggesting that dairy cattle in this region are at risk of transmitting cryptosporidiosis to humans.
Collapse
Affiliation(s)
- Li Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Hai-Liang Chai
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Ming-Yuan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Zhan-Sheng Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wen-Xiong Han
- Inner Mongolia Saikexing Reproductive Biotechnology (Group) Co.,Ltd, Hohhot, China
| | - Bo Yang
- Animal Disease Control Center of Ordos, Ordos, China
| | - Yan Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Shan Zhang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Wei-Hong Zhao
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yi-Min Ma
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yong-Jie Zhan
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Li-Feng Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
| | - Yu-Lin Ding
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Jin-Ling Wang
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China
| | - Yong-Hong Liu
- College of Veterinary Medicine, Inner Mongolia Agricultural University, Hohhot, China.
- Key Laboratory of Clinical Diagnosis and Treatment Technology in Animal Disease, Ministry of Agriculture and Rural Affairs, Hohhot, China.
| |
Collapse
|
12
|
Shaw S, Cohn IS, Baptista RP, Xia G, Melillo B, Agyabeng-Dadzie F, Kissinger JC, Striepen B. Genetic crosses within and between species of Cryptosporidium. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.04.551960. [PMID: 37577700 PMCID: PMC10418217 DOI: 10.1101/2023.08.04.551960] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Parasites and their hosts are engaged in rapid coevolution that balances competing mechanisms of virulence, resistance, and evasion. This often leads to host specificity, but genomic reassortment between different strains can enable parasites to jump host barriers and conquer new niches. In the apicomplexan parasite Cryptosporidium genetic exchange has been hypothesized to play a prominent role in adaptation to humans. The sexual lifecycle of the parasite provides a potential mechanism for such exchange; however, the boundaries of Cryptosporidium sex are currently undefined. To explore this experimentally, we established a model for genetic crosses. Drug resistance was engineered using a mutated phenylalanyl tRNA synthetase gene and marking strains with this and the previously used Neo transgene enabled selection of recombinant progeny. This is highly efficient, and genomic recombination is evident and can be continuously monitored in real time by drug resistance, flow cytometry, and PCR mapping. Using this approach multiple loci can now be modified with ease. We demonstrate that essential genes can be ablated by crossing a Cre recombinase driver strain with floxed strains. We further find that genetic crosses are also feasible between species. Crossing C. parvum, a parasite of cattle and humans, and C. tyzzeri a mouse parasite resulted in progeny with a recombinant genome derived from both species that continues to vigorously replicate sexually. These experiments have important fundamental and translational implications for the evolution of Cryptosporidium and open the door to reverse- and forward- genetic analysis of parasite biology and host specificity.
Collapse
Affiliation(s)
- Sebastian Shaw
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | - Ian S. Cohn
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| | | | - Guoqin Xia
- Department of Chemistry, Scripps Research, La Jolla, CA
| | - Bruno Melillo
- Department of Chemistry, Scripps Research, La Jolla, CA
- Chemical Biology and Therapeutics Science Program, Broad Institute, Cambridge, MA
| | | | - Jessica C. Kissinger
- Department of Genetics, University of Georgia, Athens, GA
- Center for Tropical and Emerging Global Diseases and Institute of Bioinformatics University of Georgia, Athens, GA
| | - Boris Striepen
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
13
|
Bartley PM, Thomson S, Jonsson NN, Taroda A, Elisabeth AI, Katzer F. Differences in virulence and oocyst shedding profiles in lambs experimentally infected with different isolates of Cryptosporidium parvum. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2023; 4:100127. [PMID: 37456556 PMCID: PMC10344821 DOI: 10.1016/j.crpvbd.2023.100127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/30/2023] [Accepted: 06/13/2023] [Indexed: 07/18/2023]
Abstract
A wide spectrum of disease severity associated with cryptosporidiosis has been described, ranging from asymptomatic to fatal in both human and animal hosts. The reasons for the variations in severity are likely to be multifactorial, involving environmental, host and parasite factors. This paper describes two experimental infection trials in lambs, a symptomatic host for the parasite, to investigate variation in the clinical manifestations following infection with two distinct isolates of Cryptosporidium parvum. In the first experiment, groups of naïve lambs were challenged with one of two isolates (CP1 or CP2) at < 1 week of age, to test the effect of the isolates on disease outcome. In a second experiment one group of lambs challenged at < 1 week of age (CP1) was then re-challenged with the same isolate at 6 weeks of age (CP1), while a second group was challenged for the first time at 6 weeks of age (CP1). This experiment examined age-related disease symptoms, oocyst shedding and the effect of prior exposure to the parasite on a subsequent homologous challenge. The two isolates were associated with significant differences in the demeanour of the animals and in the numbers of oocysts shed in the faeces. There were also differences in the duration and severity of diarrhoea, though these were not significant. The age of the lamb, at the time of a primary challenge (<1 week or 6 weeks), also resulted in differences in clinical outcomes, with younger lambs showing more severe clinical disease than the older lambs (feeding profiles and presentation of diarrhoea), while older lambs showed virtually no signs of infection but still produced large numbers of oocysts.
Collapse
Affiliation(s)
- Paul M. Bartley
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom
| | - Sarah Thomson
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom
- College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Rd, Glasgow, G61 1QH, United Kingdom
| | - Nicholas N. Jonsson
- College of Medical, Veterinary and Life Sciences, University of Glasgow, 464 Bearsden Rd, Glasgow, G61 1QH, United Kingdom
| | - Alessandra Taroda
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom
- Protozoology Laboratory, Departamento de Medicina Veterinária Preventiva, Universidade Estadual de Londrina, Rodovia Celso Garcia Cid – PR-445 Km 380, Londrina, Paraná State, 86057-970, Brazil
| | - A. Innes Elisabeth
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom
| | - Frank Katzer
- Moredun Research Institute, Pentlands Science Park, Bush Loan, Edinburgh, EH26 0PZ, United Kingdom
| |
Collapse
|