1
|
Rehman MU, He F, Shu X, Guo J, Liu Z, Cao S, Long S. Antibacterial and antifungal pyrazoles based on different construction strategies. Eur J Med Chem 2025; 282:117081. [PMID: 39608204 DOI: 10.1016/j.ejmech.2024.117081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/05/2024] [Accepted: 11/17/2024] [Indexed: 11/30/2024]
Abstract
The growing prevalence of microbial infections, and antimicrobial resistance (AMR) stemming from the overuse and misuse of antibiotics, call for novel therapeutic agents, particularly ones targeting resistant microbial strains. Scientists are striving to develop innovative agents to tackle the rising microbial infections and abate the risk of AMR. Pyrazole, a five-membered heterocyclic compound belonging to the azole family, is a versatile scaffold and serves as a core structure in many drugs with antimicrobial and other therapeutic effects. In this review, we have updated pyrazole-based antibacterial and antifungal agents mainly developed between 2016 and 2024, by combining with diverse pharmacophores such as coumarin, thiazole, oxadiazole, isoxazole, indole, etc. Meanwhile, the various strategies (molecular hybridization, bioisosterism, scaffold hopping, multicomponent reactions, and catalyst-free synthesis) for integrating different functional groups with the pyrazole ring are discussed. Additionally, structure-activity relationships of these pyrazole derivatives, i.e., how structural modifications impact their selectivity and therapeutic potential against bacterial and fungal strains, are highlighted. This review provides insights into designing next-generation antimicrobials to combat AMR, and offers valuable perspectives to the scientists working on heterocyclic compounds with diverse bioactivities.
Collapse
Affiliation(s)
- Muneeb Ur Rehman
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Fang He
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Xi Shu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ju Guo
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Ziwei Liu
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China
| | - Shuang Cao
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| | - Sihui Long
- Key Laboratory for Green Chemical Process of Ministry of Education, Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Hubei Engineering Research Center for Advanced Fine Chemicals, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, 206 1st Rd Optics Valley, East Lake New Technology Development District, Wuhan, Hubei, 430205, China.
| |
Collapse
|
2
|
Taverna CG, Córdoba S, Haim MS, Lombardo M, Vivot ME, Arias BA, Vivot W, Szusz W, Abbey D, Poklépovich TJ, Canteros CE. Molecular Epidemiology and Antifungal Susceptibility Profile of Candidozyma Isolates From Argentina. Mycoses 2025; 68:e70025. [PMID: 39846347 DOI: 10.1111/myc.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 01/06/2025] [Accepted: 01/09/2025] [Indexed: 01/24/2025]
Abstract
BACKGROUND Epidemiological surveillance of Candidozyma sp. has become important because many species of this new genus have been reported to be responsible for nosocomial outbreaks and to exhibit elevated minimal inhibitory concentrations (MIC) to one or more classes of antifungal drugs. OBJECTIVES To describe the genetic relationships among Argentinian clinical isolates belonging to the Candidozyma genus and to study the molecular mechanisms associated with antifungal resistance. METHODS We performed whole-genome sequencing of 41 isolates. Identification was based on ribosomal DNA sequencing and susceptibility testing was determined according to the EUCAST document. Phylogenetic analysis, non-synonymous mutations in genes associated with antifungal resistance and the presence of copy number variations (CNVs) were investigated. RESULTS We identified 12 Candidozyma haemuli, 11 Candidozyma haemuli var. vulneris, 5 Cz. haemuli/ Cz. haemuli var. vulneris ITS hybrids, 8 Candidozyma duobushaemuli and 5 Candidozyma cf. pseudohaemuli. Phylogenetic analysis, together with clinical data, demonstrated nosocomial transmission events. In addition, Cz. haemuli and Cz. haemuli var. vulneris were not separated in the phylogenetic tree; the Cz. cf. pseudohaemuli isolates clustered distantly from the Cz. pseudohaemuli type strain. Most isolates were resistant to amphotericin B, and two Cz. haemuli isolates showed fluconazole resistance and Y132F mutation in ERG11. We did not find CNV in genes associated with antifungal resistance. CONCLUSIONS These findings highlight the need for epidemiological surveillance of these species and the study of molecular mechanisms associated with antifungal resistance. Furthermore, we propose a taxonomic revision for Cz. haemuli var. vulneris and Cz. pseudohaemuli based on genomic data.
Collapse
Affiliation(s)
- Constanza Giselle Taverna
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Susana Córdoba
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Maria Sol Haim
- Unidad Operativa Centro Nacional de Genómica y Bioinformática-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Micaela Lombardo
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Matías Ezequiel Vivot
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Bárbara Abigail Arias
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Walter Vivot
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Wanda Szusz
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Darren Abbey
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Tomas Javier Poklépovich
- Unidad Operativa Centro Nacional de Genómica y Bioinformática-ANLIS "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Cristina Elena Canteros
- Departamento Micología-Instituto Nacional de Enfermedades Infecciosas "Dr. Carlos G. Malbrán", Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
3
|
de Macedo AT, Santos DWDCL, Spruijtenburg B, de Souza DAC, Dos Santos Barbosa LFM, Marques SG, Dos Santos JRA, Meijer EFJ, de Groot T, de Azevedo CDMPES, Meis JF. Clonal outbreak of Candida vulturna in a paediatric oncology ward in Maranhão, Brazil. J Infect 2024; 89:106349. [PMID: 39537034 DOI: 10.1016/j.jinf.2024.106349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 10/12/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
OBJECTIVE To describe an outbreak due to Candida vulturna, a newly emerging Candida species belonging to the Candida haemulonii species complex in the Metschnikowiaceae family. METHODS In this retrospective cohort study we genotyped 14 C. vulturna bloodstream isolates, occurring in a 4-month-period in paediatric cancer patients in a Brazilian hospital. To prove an outbreak, ITS sequence analysis and whole genome sequencing (WGS) was done. Antifungal susceptibility was performed with the reference CLSI method and the commercial Sensititre YeastOne (SYO) YO10 plates. A control C. vulturna isolate from another region in Brazil was included in all analyses. RESULTS MALDI-TOF-MS identified isolates as C. pseudohaemulonii and C. duobushaemulonii albeit with low scores and therefore molecular methods were required for accurate identification. ITS sequence analyses clearly differentiated C. vulturna from other species in the C. haemulonii species complex. WGS proved the presence of a clonal outbreak with C. vulturna involving 14 paediatric patients. Antifungal susceptibility testing (AFST) with two methods showed the isolates had low MICs of commonly available antifungals. CONCLUSION This study describes an outbreak due to the rare yeast C. vulturna, related to C. auris, during a four-month period in patients admitted to a paediatric oncology ward in a Brazilian hospital. In contrast to previous studies the yeast was susceptible to all antifungals and patient outcome was good.
Collapse
Affiliation(s)
| | - Daniel Wagner de Castro Lima Santos
- Instituto D'Or de Pesquisa e Ensino (IDOR), São Luís, MA, Brazil; Hospital Universitário, Universidade Federal do Maranhão, São Luís, MA, Brazil
| | - Bram Spruijtenburg
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Microbiology and Immunology, Canisius-Wilhelmina Hospital/Dicoon, Nijmegen, the Netherlands
| | - Dayse Azevedo Coelho de Souza
- Universidade Federal do Maranhão (UFMA)-Programa de Pós Graduação em Ciências da Saúde, São Luís, MA, Brazil; Hospital de Cancer Aldenora Bello (HCAB), São Luís, MA, Brazil
| | | | - Sirlei Garcia Marques
- Hospital Universitário, Universidade Federal do Maranhão, São Luís, MA, Brazil; Laboratório Cedro, São Luís, MA, Brazil
| | | | - Eelco F J Meijer
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Department of Medical Microbiology and Immunology, Canisius-Wilhelmina Hospital/Dicoon, Nijmegen, the Netherlands
| | - Theun de Groot
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands; Department of Medical Microbiology and Immunology, Canisius-Wilhelmina Hospital/Dicoon, Nijmegen, the Netherlands
| | | | - Jacques F Meis
- Radboudumc-CWZ Center of Expertise for Mycology, Nijmegen, the Netherlands; Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands; Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD) and Excellence Center for Medical Mycology, University of Cologne, Cologne, Germany.
| |
Collapse
|
4
|
Popczyk P, Ghinet A, Bortolus C, Kamus L, Lensink MF, de Ruyck J, Sendid B, Dubar F. Antifungal and anti-biofilm effects of hydrazone derivatives on Candida spp. J Enzyme Inhib Med Chem 2024; 39:2429109. [PMID: 39589067 PMCID: PMC11600518 DOI: 10.1080/14756366.2024.2429109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/10/2024] [Accepted: 11/08/2024] [Indexed: 11/27/2024] Open
Abstract
Worldwide, invasive candidiasis are a burden for the health system due to difficulties to manage patients, to the increasing of the resistance of the current therapeutics and the emergence of naturally resistant species of Candida. In this context, the development of innovative antifungal drugs is urgently needed. During invasive candidiasis, yeast is submitted to many stresses (oxidative, thermic, osmotic) in the human host. In order to resist in this context, yeast develops different strategy, especially the biosynthesis of trehalose. Starting from the 3D structural data of TPS2, an enzyme implicated in trehalose biosynthesis, we identified hydrazone as an interesting scaffold to design new antifungal drugs. Interestingly, our hydrazone derivatives which demonstrate antifungal and anti-biofilm effects on Candida spp., are non-toxic in in vitro and in vivo models (Galleria mellonella).
Collapse
Affiliation(s)
- Pierre Popczyk
- INSERM U1285, Université de Lille, CHU de Lille, UMR CNRS 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Alina Ghinet
- Junia, Health and Environment, Laboratory of Sustainable Chemistry and Health, Lille, France
- UMR 1167 – RID-AGE – Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille, France
- Alexandru Ioan Cuza University of Iasi, Iasi, Romania
| | - Clovis Bortolus
- INSERM U1285, Université de Lille, CHU de Lille, UMR CNRS 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Laure Kamus
- Department of Medical Biology, Félix-Guyon Hospital Center, Saint-Denis, France
- UMR Processus Infectieux en Milieu Insulaire Tropical (PIMIT), CNRS 9192, INSERM U1187, IRD 249, Université de La Réunion, Saint-Denis, France
| | - Marc F. Lensink
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Jérôme de Ruyck
- Univ. Lille, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Boualem Sendid
- INSERM U1285, Université de Lille, CHU de Lille, UMR CNRS 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Faustine Dubar
- INSERM U1285, Université de Lille, CHU de Lille, UMR CNRS 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
5
|
Zheng Q, Bing J, Han S, Guan S, Hu T, Cai L, Chu H, Huang G. Biological and genomic analyses of Clavispora sputum sp. nov., a novel potential fungal pathogen closely related to Clavispora lusitaniae (syn. Candida lusitaniae) and Candida auris. New Microbes New Infect 2024; 62:101506. [PMID: 39483706 PMCID: PMC11525147 DOI: 10.1016/j.nmni.2024.101506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/29/2024] [Accepted: 10/09/2024] [Indexed: 11/03/2024] Open
Abstract
Several human fungal pathogens, including drug-resistant Candida auris and species of the Candida haemulonii complex, have emerged over the past two decades, posing new threats to human health. In this study, we report the isolation and identification of a novel species belonging to the genus Clavispora, herein named as Cl avispora sputum, from a clinical sputum sample of a COVID-19 patient. Cl . sputum is phylogenetically closely related to fungal pathogens Clavispora lusitaniae (syn. Candida lusitaniae) and C. auris. When grown on CHROMagar Candida Plus medium, Cl. sputum exhibited a similar coloration to C. auris strain CBS12372. Cl. sputum was able to develop weak filaments on CM medium. Although Cl. sputum and Cl. lusitaniae are phylogenetically closely related, comparative genomic and synteny analyses indicated significant chromosomal rearrangements between the two species. Although Cl. sputum could not grow at 37 °C under regular culture condition, an increased fungal burden in the lung tissue of a mouse systemic infection model implies that it could be a potential opportunistic pathogenic yeast in humans.
Collapse
Affiliation(s)
- Qiushi Zheng
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, PR China
| | - Jian Bing
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, PR China
| | - Shiling Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Shuyun Guan
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, PR China
| | - Tianren Hu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Lei Cai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, PR China
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, PR China
| | - Guanghua Huang
- Shanghai Institute of Infectious Disease and Biosecurity, Department of Infectious Diseases, Shanghai Key Laboratory of Infectious Diseases and Biosafety Emergency Response, National Medical Center for Infectious Diseases, Huashan Hospital, State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, PR China
| |
Collapse
|
6
|
Huang Y, Su Y, Chen X, Xiao M, Xu Y. Insight into Virulence and Mechanisms of Amphotericin B Resistance in the Candida haemulonii Complex. J Fungi (Basel) 2024; 10:615. [PMID: 39330375 PMCID: PMC11433262 DOI: 10.3390/jof10090615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/15/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
The Candida haemulonii complex includes emerging opportunistic human fungal pathogens with documented multidrug-resistance profiles. It comprises Candida haemulonii sensu stricto, Candida haemulonii var. vulnera, Candida duobushaemulonii, Candida pseudohaemulonii, and Candida vulturna. In recent years, rates of clinical isolation of strains from this complex have increased in multiple countries, including China, Malaysia, and Brazil. Biofilm formation, hydrolytic enzymes, surface interaction properties, phenotype switching and cell aggregation abilities, extracellular vesicles production, stress response, and immune evasion help these fungi to infect the host and exert pathological effects. Multidrug resistance profiles also enhance the threat they pose; they exhibit low susceptibility to echinocandins and azoles and an intrinsic resistance to amphotericin B (AMB), the first fungal-specific antibiotic. AMB is commonly employed in antifungal treatments, and it acts via several known mechanisms. Given the propensity of clinical Candida species to initiate bloodstream infections, clarifying how C. haemulonii resists AMB is of critical clinical importance. This review outlines our present understanding of the C. haemulonii complex's virulence factors, the mechanisms of action of AMB, and the mechanisms underlying AMB resistance.
Collapse
Affiliation(s)
- Yuyan Huang
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- Graduate School, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Yanyu Su
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
- Graduate School, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
| | - Xinfei Chen
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Meng Xiao
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| | - Yingchun Xu
- Department of Laboratory Medicine, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science and Peking Union Medical College, Beijing 100730, China
- Beijing Key Laboratory for Mechanisms Research and Precision Diagnosis of Invasive Fungal Diseases (BZ0447), Beijing 100730, China
| |
Collapse
|
7
|
Nascimento ALF, de Medeiros AGJ, Neves ACO, de Macedo ABN, Rossato L, Assis Santos D, dos Santos ALS, Lima KMG, Bastos RW. Near-infrared spectroscopy and multivariate analysis as effective, fast, and cost-effective methods to discriminate Candida auris from Candida haemulonii. Front Chem 2024; 12:1412288. [PMID: 39050373 PMCID: PMC11266292 DOI: 10.3389/fchem.2024.1412288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 06/10/2024] [Indexed: 07/27/2024] Open
Abstract
Candida auris and Candida haemulonii are two emerging opportunistic pathogens that have caused an increase in clinical cases in the recent years worldwide. The differentiation of some Candida species is highly laborious, difficult, costly, and time-consuming depending on the similarity between the species. Thus, this study aimed to develop a new, faster, and less expensive methodology for differentiating between C. auris and C. haemulonii based on near-infrared (NIR) spectroscopy and multivariate analysis. C. auris CBS10913 and C. haemulonii CH02 were separated in 15 plates per species, and three isolated colonies of each plate were selected for Fourier transform near-infrared (FT-NIR) analysis, totaling 90 spectra. Subsequently, principal component analysis (PCA) and variable selection algorithms, including the successive projections algorithm (SPA) and genetic algorithm (GA) coupled with linear discriminant analysis (LDA), were employed to discern distinctive patterns among the samples. The use of PCA, SPA, and GA algorithms associated with LDA achieved 100% sensitivity and specificity for the discriminations. The SPA-LDA and GA-LDA algorithms were essential in selecting the variables (infrared wavelengths) of most importance for the models, which could be attributed to binding of cell wall structures such as polysaccharides, peptides, proteins, or molecules resulting from yeasts' metabolism. These results show the high potential of combined FT-NIR and multivariate analysis techniques for the classification of Candida-like fungi, which can contribute to faster and more effective diagnosis and treatment of patients affected by these microorganisms.
Collapse
Affiliation(s)
- Ayrton L. F. Nascimento
- Laboratório de Química Biológica e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Anthony G. J. de Medeiros
- Laboratório de Uso Comum, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana C. O. Neves
- Laboratório de Química Biológica e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ana B. N. de Macedo
- Laboratório de Uso Comum, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Luana Rossato
- Laboratório de Pesquisa em Ciências da Saúde, Universidade Federal da Grande Dourados, Dourados, Brazil
| | - Daniel Assis Santos
- Laboratório de Micologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
| | - André L. S. dos Santos
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro-RJ, Brazil
| | - Kássio M. G. Lima
- Laboratório de Química Biológica e Quimiometria, Instituto de Química, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Rafael W. Bastos
- Laboratório de Uso Comum, Centro de Biociências, Universidade Federal do Rio Grande do Norte, Natal, Brazil
- National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil
| |
Collapse
|
8
|
Cafarchia C, Mendoza-Roldan JA, Rhimi W, C I Ugochukwu I, Miglianti M, Beugnet F, Giuffrè L, Romeo O, Otranto D. Candida auris from the Egyptian cobra: Role of snakes as potential reservoirs. Med Mycol 2024; 62:myae056. [PMID: 38816207 DOI: 10.1093/mmy/myae056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/20/2024] [Accepted: 05/29/2024] [Indexed: 06/01/2024] Open
Abstract
Candida auris represents one of the most urgent threats to public health, although its ecology remains largely unknown. Because amphibians and reptiles may present favorable conditions for C. auris colonization, cloacal and blood samples (n = 68), from several snake species, were cultured and molecularly screened for C. auris using molecular amplification of glycosylphosphatidylinositol protein-encoding genes and ribosomal internal transcribed spacer sequencing. Candida auris was isolated from the cloacal swab of one Egyptian cobra (Naja haje legionis) and molecularly identified in its cloaca and blood. The isolation of C. auris from wild animals is herein reported for the first time, thus suggesting the role that these animals could play as reservoirs of this emerging pathogen. The occurrence of C. auris in blood requires further investigation, although the presence of cationic antimicrobial peptides in the plasma of reptiles could play a role in reducing the vitality of the fungus.
Collapse
Affiliation(s)
- Claudia Cafarchia
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy , 70010
| | | | - Wafa Rhimi
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
| | - Iniobong C I Ugochukwu
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
- Department of Veterinary Pathology and Microbiology, University of Nigeria, Nsukka, Nigeria, 410001
| | - Mara Miglianti
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
| | | | - Letterio Giuffrè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy, 98122
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy, 98122
| | - Domenico Otranto
- Department of Veterinary Medicine, University of Bari Aldo Moro, Bari, Italy, 70010
- Department of Veterinary Clinical Sciences, City University of Hong Kong, 518057
| |
Collapse
|
9
|
Setoguchi D, Iwanaga N, Ito Y, Hirayama T, Yoshida M, Takeda K, Ide S, Nagayoshi Y, Kondo A, Tashiro M, Takazono T, Kosai K, Izumikawa K, Yanagihara K, Mukae H. Case report and literature review of refractory fungemia caused by Candidavulturna. Heliyon 2024; 10:e31464. [PMID: 38803887 PMCID: PMC11128515 DOI: 10.1016/j.heliyon.2024.e31464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/29/2024] Open
Abstract
Candida vulturna is a recently discovered and not widely documented ascomycetous yeast phylogenetically related to the outbreak-causing and multidrug-resistant Candida auris. A middle-aged Japanese man with no discernible immunodeficiency was admitted to hospital with ileal diverticulitis. Following laparoscopic right hemicolectomy against abscess formation on postoperative day (POD) 7, continuous fungemia occurred due to Candida haemulonii, identified using a conventional method by confirming the biochemical phenotype. Micafungin was initiated; however, the fungus was persistently isolated from blood cultures. Eventually, the antifungal agent was changed to a combination of liposomal amphotericin B (L-AMB) and caspofungin (CPFG), which cleared the infection, and no pathogens were detected in the blood cultures on POD 31. Contrast-enhanced computed tomography showed septic emboli in the lungs and spleen; however, no evidence of vasculitis was observed. Moreover, sequential echocardiography did not reveal any signs of infectious endocarditis. Finally, CPFG and L-AMB were administered to the patient for 7 and 9 weeks, respectively, during which the patient's symptoms did not relapse. The strain was later genetically identified as C. vulturna. This case report illustrates a clinical presentation of C. vulturna and provides the diagnostic approach and treatment methods for this pathogen.
Collapse
Affiliation(s)
- Daichi Setoguchi
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
- Department of Respiratory Medicine, NHO Nagasaki Medical Center, Nagasaki, Japan
| | - Naoki Iwanaga
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Yuya Ito
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Tatsuro Hirayama
- Department of Pharmacotherapeutics, Nagasaki University Hospital, Nagasaki, Japan
| | - Masataka Yoshida
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kazuaki Takeda
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Shotaro Ide
- Infectious Disease Experts Training Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Yohsuke Nagayoshi
- Department of Respiratory Medicine, Japanese Red Cross Nagasaki Genbaku Isahaya Hospital, Nagasaki, Japan
| | - Akira Kondo
- Department of Respiratory Medicine, NHO Nagasaki Medical Center, Nagasaki, Japan
| | - Masato Tashiro
- Department of Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Takahiro Takazono
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Kosuke Kosai
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Koichi Izumikawa
- Department of Infection Control and Education Center, Nagasaki University Hospital, Nagasaki, Japan
| | - Katsunori Yanagihara
- Department of Laboratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| | - Hiroshi Mukae
- Department of Respiratory Medicine, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
10
|
Amin Zadeh H, Zomorodkia AA, Hadi S, Mohammad Zadeh I, Sabetghadam SAA, Hadi V. Synthesis and evaluation of the antifungal activity of 5-hydroxy-3-phenyl-1H-pyrazole-1-carbothioamide for use in the oral environment. J Oral Biol Craniofac Res 2024; 14:211-215. [PMID: 38445048 PMCID: PMC10912861 DOI: 10.1016/j.jobcr.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/29/2023] [Accepted: 01/15/2024] [Indexed: 03/07/2024] Open
Abstract
Background and aim Candida albicans and Candida tropicalis, can cause superficial infections of the oral mucosa as well as disseminated bloodstream and deep-tissue infections. The most frequently employed class of antifungals used for Candida infection treatment are the azole antifungals. Their low price, low toxic qualities, and availability for oral use make fluconazole and similar azole antifungals the preferred treatment for various infections caused by Candida. Nevertheless, developed and intrinsic resistance to antifungals of the azole family has been widely documented in association with various species of Candida. Candida infection management requires synthesizing new compounds to improve azole class antifungals, as Candida isolates resistant to azole are increasingly encountered in the clinical setting. This study aimed to synthesize a new azole compound and investigate its antifungal activity. Methods In this experimental study, 5-hydroxy-3-phenyl-1H-pyrazole-1-carbothioamide was synthesized by the reaction between thiosemecarbazide and ethylbezoylacetate. The structure of the synthesized compound was characterized by different techniques such as Fourier transform infrared (FT-IR) and nuclear magnetic resonance (NMR) spectra and its antifungal activity against Candida albicans and Candida tropicalis was investigated by the Spread Plat method to determine its minimum fungicidal concentration (MFC) and minimum inhibitory concentration (MIC). Results and discussion The Spread Plat test demonstrated that with the increase in 5-hydroxy-3-phenyl-1H-pyrazole-1-carbothioamide concentration, colonies of fungi were increasingly eliminated at a significant level(p < 0.001). At a concentration of 1000 ppm, all Candida albicans and Candida tropicalis colonies were destroyed. Conclusions The results indicate that the synthesized compound showed a promising antifungal effect. On the other hand, it had a suitable spectrum of effect, because it showed antifungal effects on both Candida albicans and Candida tropicalis strains.
Collapse
Affiliation(s)
- Hossein Amin Zadeh
- Department of Chemistry, Shahid Bahonar University of Kerman, 76169, Iran
| | - Ali Asghar Zomorodkia
- Department of Chemical Engineering, South Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Saeid Hadi
- Department of Health and Nutriotion, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran
| | - Iman Mohammad Zadeh
- Oral and Dental Disease Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | | | - Vahid Hadi
- Department of Health and Nutriotion, Faculty of Medicine, AJA University of Medical Science, Tehran, Iran
| |
Collapse
|
11
|
Ahmad S, Asadzadeh M, Al-Sweih N, Khan Z. Spectrum and management of rare Candida/yeast infections in Kuwait in the Middle East. Ther Adv Infect Dis 2024; 11:20499361241263733. [PMID: 39070702 PMCID: PMC11273600 DOI: 10.1177/20499361241263733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 06/06/2024] [Indexed: 07/30/2024] Open
Abstract
Invasive fungal infections (IFIs) are associated with high mortality rates and mostly affect patients with compromised immunity. The incidence of IFIs is increasing worldwide with the expanding population of susceptible patients. Candida and other yeast infections represent a major component of IFIs. Rare Candida/yeast infections have also increased in recent years and pose considerable diagnostic and management challenges as they are not easily recognized by routine phenotypic characteristic-based diagnostic methods and/or by the automated yeast identification systems. Rare Candida/yeasts also exhibit reduced susceptibility to antifungal drugs making proper management of invasive infections challenging. Here, we review the diagnosis and management of 60 cases of rare Candida/yeast IFIs described so far in Kuwait, an Arabian Gulf country in the Middle East. Interestingly, majority (34 of 60, 56.7%) of these rare Candida/yeast invasive infections occurred among neonates or premature, very-low-birth-weight neonates, usually following prior bacteremia episodes. The clinical details, treatment given, and outcome were available for 28 of 34 neonates. The crude mortality rate among these neonates was 32.2% as 19 of 28 (67.8%) survived the infection and were discharged in healthy condition, likely due to accurate diagnosis and frequent use of combination therapy. Physicians treating patients with extended stay under intensive care, on mechanical ventilation, receiving broad spectrum antibiotics and with gastrointestinal surgery/complications should proactively investigate IFIs. Timely diagnosis and early antifungal treatment are essential to decrease mortality. Understanding the epidemiology and spectrum of rare Candida/yeast invasive infections in different geographical regions, their susceptibility profiles and management will help to devise novel diagnostic and treatment approaches and formulate guidelines for improved patient outcome.
Collapse
Affiliation(s)
- Suhail Ahmad
- Department of Microbiology, Faculty of Medicine, Kuwait University, P.O. Box 24923, Safat 13110, Kuwait
| | - Mohammad Asadzadeh
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Noura Al-Sweih
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| | - Ziauddin Khan
- Department of Microbiology, Faculty of Medicine, Kuwait University, Jabriya, Kuwait
| |
Collapse
|