1
|
Campos-Estrada C, González-Herrera F, Greif G, Carillo I, Guzmán-Rivera D, Liempi A, Robello C, Kemmerling U, Castillo C, Maya JD. Notch receptor expression in Trypanosoma cruzi-infected human umbilical vein endothelial cells treated with benznidazole or simvastatin revealed by microarray analysis. Cell Biol Int 2020; 44:1112-1123. [PMID: 31943572 DOI: 10.1002/cbin.11308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 01/10/2020] [Indexed: 11/09/2022]
Abstract
Chagas disease is a vector-borne disease caused by the protozoan parasite Trypanosoma cruzi. Current therapy involves benznidazole. Benznidazole and other drugs can modify gene expression patterns, improving the response to the inflammatory influx induced by T. cruzi and decreasing the endothelial activation or immune cell recruitment, among other effects. Here, we performed a microarray analysis of human umbilical vein endothelial cells (HUVECs) treated with benznidazole and the anti-inflammatory drugs acetylsalicylic acid or simvastatin and infected with T. cruzi. Parasitic infection produces differential expression of a set of genes in HUVECs treated with benznidazole alone or a combination with simvastatin or acetylsalicylic acid. The differentially expressed genes were involved in inflammation, adhesion, cardiac function, and remodeling. Notch1 and high mobility group B1 were genes of interest in this analysis due to their importance in placental development, cardiac development, and inflammation. Quantitative polymerase chain reaction confirmation of these two genes indicated that both are upregulated in the presence of benznidazole.
Collapse
Affiliation(s)
- Carolina Campos-Estrada
- Facultad de Farmacia, Universidad de Valparaíso, Av. Gran Bretaña 1093, Playa Ancha, Valparaíso, Región de Valparaíso, 2360102, Chile
| | - Fabiola González-Herrera
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Gonzalo Greif
- Molecular Biology Unit, Pasteur Institute and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo, 11800, Uruguay
| | - Ileana Carillo
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Daniela Guzmán-Rivera
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Ana Liempi
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Carlos Robello
- Molecular Biology Unit, Pasteur Institute and Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Avenida General Flores 2125, Montevideo, 11800, Uruguay
| | - Ulrike Kemmerling
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Christian Castillo
- Programa de Biología Integrativa, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| | - Juan Diego Maya
- Programa de Farmacología Molecular y Clínica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago, Región Metropolitana, 8380453, Chile
| |
Collapse
|
2
|
Mascareno E, Gupta R, Martello LA, Dhar-Mascareno M, Salciccioli L, Beckles D, Walsh MG, Machado FS, Tanowitz HB, Haseeb M. Rapidly progressive course of Trypanosoma cruzi infection in mice heterozygous for hexamethylene bis-acetamide inducible 1 (Hexim1) gene. Microbes Infect 2018; 20:25-36. [DOI: 10.1016/j.micinf.2017.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/30/2017] [Accepted: 09/04/2017] [Indexed: 01/02/2023]
|
3
|
Trypanosoma cruzi infection in genetically selected mouse lines: genetic linkage with quantitative trait locus controlling antibody response. Mediators Inflamm 2014; 2014:952857. [PMID: 25197170 PMCID: PMC4146349 DOI: 10.1155/2014/952857] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 07/15/2014] [Accepted: 07/16/2014] [Indexed: 01/21/2023] Open
Abstract
Trypanosoma cruzi infection was studied in mouse lines selected for maximal (AIRmax) or minimal (AIRmin) acute inflammatory reaction and for high (HIII) or low (LIII) antibody (Ab) responses to complex antigens. Resistance was associated with gender (females) and strain—the high responder lines AIRmax and HIII were resistant. The higher resistance of HIII as compared to LIII mice extended to higher infective doses and was correlated with enhanced production of IFN-γ and nitric oxide production by peritoneal and lymph node cells, in HIII males and females. We also analyzed the involvement of previously mapped Ab and T. cruzi response QTL with the survival of Selection III mice to T. cruzi infections in a segregating backcross [F1(HIII×LIII) ×LIII] population. An Ab production QTL marker mapping to mouse chromosome 1 (34.8 cM) significantly cosegregated with survival after acute T. cruzi infections, indicating that this region also harbors genes whose alleles modulate resistance to acute T. cruzi infection.
Collapse
|
4
|
The acute phase of Trypanosoma cruzi infection is attenuated in 5-lipoxygenase-deficient mice. Mediators Inflamm 2014; 2014:893634. [PMID: 25165415 PMCID: PMC4137569 DOI: 10.1155/2014/893634] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 12/24/2022] Open
Abstract
In the present work we examine the contribution of 5-lipoxygenase- (5-LO-) derived lipid mediators to immune responses during the acute phase of Trypanosoma cruzi infection in 5-LO gene knockout (5-LO(-/-)) mice and wild-type (WT) mice. Compared with WT mice, the 5-LO(-/-) mice developed less parasitemia/tissue parasitism, less inflammatory cell infiltrates, and a lower mortality. This resistance of 5-LO(-/-) mice correlated with several differences in the immune response to infection, including reduced PGE2 synthesis; sustained capacity of splenocytes to produce high levels of interleukin (IL)-12 early in the infection; enhanced splenocyte production of IL-1β, IL-6, and IFN-γ; rapid T-cell polarization to secrete high quantities of IFN-γ and low quantities of IL-10; and greater numbers of CD8(+)CD44(high)CD62L(low) memory effector T cells at the end of the acute phase of infection. The high mortality in WT mice was associated with increased production of LTB4/LTC4, T cell bias to produce IFN-γ, high levels of serum nitrite, and marked protein extravasation into the peritoneal cavity, although survival was improved by treatment with a cys-LT receptor 1 antagonist. These data also provide evidence that 5-LO-derived mediators negatively affect host survival during the acute phase of T. cruzi infection.
Collapse
|
5
|
Flórez-Vargas O, Bramhall M, Noyes H, Cruickshank S, Stevens R, Brass A. The quality of methods reporting in parasitology experiments. PLoS One 2014; 9:e101131. [PMID: 25076044 PMCID: PMC4116335 DOI: 10.1371/journal.pone.0101131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2014] [Accepted: 06/03/2014] [Indexed: 12/23/2022] Open
Abstract
There is a growing concern both inside and outside the scientific community over the lack of reproducibility of experiments. The depth and detail of reported methods are critical to the reproducibility of findings, but also for making it possible to compare and integrate data from different studies. In this study, we evaluated in detail the methods reporting in a comprehensive set of trypanosomiasis experiments that should enable valid reproduction, integration and comparison of research findings. We evaluated a subset of other parasitic (Leishmania, Toxoplasma, Plasmodium, Trichuris and Schistosoma) and non-parasitic (Mycobacterium) experimental infections in order to compare the quality of method reporting more generally. A systematic review using PubMed (2000-2012) of all publications describing gene expression in cells and animals infected with Trypanosoma spp was undertaken based on PRISMA guidelines; 23 papers were identified and included. We defined a checklist of essential parameters that should be reported and have scored the number of those parameters that are reported for each publication. Bibliometric parameters (impact factor, citations and h-index) were used to look for association between Journal and Author status and the quality of method reporting. Trichuriasis experiments achieved the highest scores and included the only paper to score 100% in all criteria. The mean of scores achieved by Trypanosoma articles through the checklist was 65.5% (range 32-90%). Bibliometric parameters were not correlated with the quality of method reporting (Spearman's rank correlation coefficient <-0.5; p>0.05). Our results indicate that the quality of methods reporting in experimental parasitology is a cause for concern and it has not improved over time, despite there being evidence that most of the assessed parameters do influence the results. We propose that our set of parameters be used as guidelines to improve the quality of the reporting of experimental infection models as a pre-requisite for integrating and comparing sets of data.
Collapse
Affiliation(s)
- Oscar Flórez-Vargas
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Michael Bramhall
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Harry Noyes
- School of Biological Science, University of Liverpool, Liverpool, United Kingdom
| | - Sheena Cruickshank
- Manchester Immunology Group, Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| | - Robert Stevens
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
| | - Andy Brass
- Bio-health Informatics Group, School of Computer Science, University of Manchester, Manchester, United Kingdom
- Manchester Immunology Group, Faculty of Life Science, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
6
|
Sanches TLM, Cunha LD, Silva GK, Guedes PMM, Silva JS, Zamboni DS. The use of a heterogeneously controlled mouse population reveals a significant correlation of acute phase parasitemia with mortality in Chagas disease. PLoS One 2014; 9:e91640. [PMID: 24651711 PMCID: PMC3961278 DOI: 10.1371/journal.pone.0091640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/13/2014] [Indexed: 11/18/2022] Open
Abstract
Chagas disease develops upon infection with the protozoan parasite Trypanosoma cruzi and undergoes an acute phase characterized by massive parasite replication and the presence of parasites in the blood. This condition is known as acute phase parasitemia. This initial stage may result in a cure, in the development of the chronic stages of the disease or in the death of the infected host. Despite intensive investigation related to the characterization of the acute and chronic phases of the disease, the cause-effect relationship of acute phase parasitemia to the outcome of the disease is still poorly understood. In this study, we artificially generated a heterogeneously controlled mouse population by intercrossing F1 mice obtained from a parental breeding of highly susceptible A/J with highly resistant C57BL/6 mouse strains. This F2 population was infected and used to assess the correlation of acute phase parasitemia with the longevity of the animals. We used nonparametric statistical analyses and found a significant association between parasitemia and mortality. If males and females were evaluated separately, we found that the former were more susceptible to death, although parasitemia was similar in males and females. In females, we found a strong negative correlation between parasitemia and longevity. In males, however, additional factors independent of parasitemia may favor mouse mortality during the development of the disease. The correlations of acute phase parasitemia with mortality reported in this study may facilitate an appropriate prognostic approach to the disease in humans. Moreover, these results illustrate the complexity of the mammalian genetic traits that regulate host resistance during Chagas disease.
Collapse
Affiliation(s)
- Tiago L. M. Sanches
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Larissa D. Cunha
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Grace K. Silva
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Paulo M. M. Guedes
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - João Santana Silva
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
| | - Dario S. Zamboni
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
7
|
Silva GK, Cunha LD, Horta CV, Silva ALN, Gutierrez FRS, Silva JS, Zamboni DS. A parent-of-origin effect determines the susceptibility of a non-informative F1 population to Trypanosoma cruzi infection in vivo. PLoS One 2013; 8:e56347. [PMID: 23409175 PMCID: PMC3569416 DOI: 10.1371/journal.pone.0056347] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/08/2013] [Indexed: 01/09/2023] Open
Abstract
The development of Chagas disease is determined by a complex interaction between the genetic traits of both the protozoan parasite, T. cruzi, and the infected host. This process is regulated by multiple genes that control different aspects of the host-parasite interaction. While determination of the relevant genes in humans is extremely difficult, it is feasible to use inbred mouse strains to determine the genes and loci responsible for host resistance to infection. In this study, we investigated the susceptibility of several inbred mouse strains to infection with the highly virulent Y strain of T. cruzi and found a considerable difference in susceptibility between A/J and C57BL/6 mice. We explored the differences between these two mouse strains and found that the A/J strain presented higher mortality, exacerbated and uncontrolled parasitemia and distinct histopathology in the target organs, which were associated with a higher parasite burden and more extensive tissue lesions. We then employed a genetic approach to assess the pattern of inheritance of the resistance phenotype in an F1 population and detected a strong parent-of-origin effect determining the susceptibility of the F1 male mice. This effect is unlikely to result from imprinted genes because the inheritance of this susceptibility was affected by the direction of the parental crossing. Collectively, our genetic approach of using the F1 population suggests that genes contained in the murine chromosome X contribute to the natural resistance against T. cruzi infection. Future linkage studies may reveal the locus and genes participating on the host resistance process reported herein.
Collapse
Affiliation(s)
- Grace K. Silva
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - Larissa D. Cunha
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - Catarina V. Horta
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - Alexandre L. N. Silva
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - Fredy R. S. Gutierrez
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - João S. Silva
- Department of Biochemistry and Immunology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
| | - Dario S. Zamboni
- Department of Cell Biology, University of São Paulo, Medical School Ribeirão Preto, FMRP/USP, Ribeirão Preto, São Paulo, Brazil
- * E-mail:
| |
Collapse
|