1
|
Samec T, Boulos J, Gilmore S, Hazelton A, Alexander-Bryant A. Peptide-based delivery of therapeutics in cancer treatment. Mater Today Bio 2022; 14:100248. [PMID: 35434595 PMCID: PMC9010702 DOI: 10.1016/j.mtbio.2022.100248] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/09/2022] Open
Abstract
Current delivery strategies for cancer therapeutics commonly cause significant systemic side effects due to required high doses of therapeutic, inefficient cellular uptake of drug, and poor cell selectivity. Peptide-based delivery systems have shown the ability to alleviate these issues and can significantly enhance therapeutic loading, delivery, and cancer targetability. Peptide systems can be tailor-made for specific cancer applications. This review describes three peptide classes, targeting, cell penetrating, and fusogenic peptides, as stand-alone nanoparticle systems, conjugations to nanoparticle systems, or as the therapeutic modality. Peptide nanoparticle design, characteristics, and applications are discussed as well as peptide applications in the clinical space.
Collapse
Affiliation(s)
- Timothy Samec
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Jessica Boulos
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Serena Gilmore
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Anthony Hazelton
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| | - Angela Alexander-Bryant
- Nanobiotechnology Laboratory, Clemson University, Department of Bioengineering, Clemson, SC, USA
| |
Collapse
|
2
|
Chen J, Li J, Li L, Liu P, Xiang Y, Cao W. Single Amino Acids G196 and R198 in hr1 of Subgroup K Avian Leukosis Virus Glycoprotein Are Critical for Tva Receptor Binding. Front Microbiol 2020; 11:596586. [PMID: 33391214 PMCID: PMC7772352 DOI: 10.3389/fmicb.2020.596586] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/13/2020] [Indexed: 11/13/2022] Open
Abstract
Avian leukosis viruses (ALVs), a type of retrovirus responsible for various tumor diseases in chickens, are divided into 11 subgroups: ALV-A to ALV-K. After the envelope glycoproteins of ALV interact with the cellular receptor to initiate viral invasion, alterations in a few amino acids of the viral glycoproteins or cell receptors may trigger changes in their conformation and binding affinity. To identify the functional determinants of the ALV-K envelope protein that binds to Tva (a recently identified cellular receptor of ALV-K), using the strategy of continuous, segment-by-segment substitution of the gp85-encoded surface glycoprotein (SU) of ALV-K GDFX0602 with ALV-E ev-1 (using Tvb as the receptor), a series of chimeric soluble gp85 proteins were expressed for co-immunoprecipitation (co-IP) analysis and a series of recombinant viruses with replication-competent avian retrovirus vectors containing Bryan polymerase (RCASBP) as their skeleton were created for transfecting to DF-1 cells and titer determination. The co-IP analysis, fluorescence-activated cell sorting, and virus titer measurements revealed that the substitution of residues 194–198, 206–216 of hr1, residues 251–256 between hr1 and hr2, and residues 269–280 of hr2 were identified to reduce the binding of gp85 to Tva. The substitution of residues 194–221 in hr1 nullified the infectiveness of these viruses, similar to the effect of single amino acid mutations in K251E and L252I located between hr1 and hr2; continuous amino acid mutations in hr2 could not produce the same effect despite reducing their infectiveness. Finally, single amino acid mutations G196A and R198H nearly abolished the binding of gp85 to Tva and nullified the infectiveness of these viruses to DF-1. This study paves the way for exploring the molecular mechanisms of the binding of Tva to ALV-K SU.
Collapse
Affiliation(s)
- Jian Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jinqun Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Lizhen Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Peng Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yong Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.,Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China.,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, Guangzhou, China.,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, Guangzhou, China.,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, Guangzhou, China
| |
Collapse
|
3
|
The Bipartite Sequence Motif in the N and C Termini of gp85 of Subgroup J Avian Leukosis Virus Plays a Crucial Role in Receptor Binding and Viral Entry. J Virol 2020; 94:JVI.01232-20. [PMID: 32878894 DOI: 10.1128/jvi.01232-20] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/29/2020] [Indexed: 01/24/2023] Open
Abstract
Subgroup J avian leukemia virus (ALV-J), belonging to the genus Alpharetrovirus, enters cells through its envelope surface unit (gp85) via specifically recognizing the cellular receptor chicken Na+/H+ exchanger type I (chNHE1), the 28 to 39 N-terminal residues of which were characterized as the minimal receptor functional domain in our previous studies. In this study, to further clarify the precise organization and properties of the interaction between ALV-J gp85 and chNHE1, we identified the chNHE1-binding domain of ALV-J gp85 using a series of gp85 mutants with segment substitutions and evaluating their effects on chNHE1 binding in protein-cell binding assays. Our results showed that hemagglutinin (HA) substitutions of amino acids (aa) 38 to 131 (N terminus of gp85) and aa 159 to 283 (C terminus of gp85) significantly inhibited the interaction between gp85 and chNHE1/chNHE1 loop 1. In addition, these HA-substituted chimeric gp85 proteins could not effectively block the entry of ALV-J into chNHE1-expressing cells. Furthermore, analysis of various N-linked glycosylation sites and cysteine mutants in gp85 revealed that glycosylation sites (N6 and N11) and cysteines (C3 and C9) were directly involved in receptor-gp85 binding and important for the entry of ALV-J into cells. Taken together, our findings indicated that the bipartite sequence motif, spanning aa 38 to 131 and aa 159 to 283, of ALV-J gp85 was essential for binding to chNHE1, with its two N-linked glycosylation sites and two cysteines being important for its receptor-binding function and subsequent viral infection steps.IMPORTANCE Infection of a cell by retroviruses requires the attachment and fusion of the host and viral membranes. The specific adsorption of envelope (Env) surface proteins to cell receptors is a key step in triggering infections and has been the target of antiviral drug screening. ALV-J is an economically important avian pathogen that belongs to the genus Alpharetrovirus and has a wider host range than other ALV subgroups. Our results showed that the amino acids 38 to 131 of the N terminus and 159 to 283 of the C terminus of ALV-J gp85 controlled the efficiency of gp85 binding to chNHE1 and were critical for viral infection. In addition, the glycosylation sites (N6 and N11) and cysteines (C3 and C9) of gp85 played a crucial role in the receptor binding and viral entry. These findings might help elucidate the mechanism of the entry of ALV-J into host cells and provide antiviral targets for the control of ALV-J.
Collapse
|
4
|
Zhang Y, Guan X, Chen Z, Cao D, Kang Z, Shen Q, Lei Q, Li F, Li H, Leghari MF, Wang Y, Qi X, Wang X, Gao Y. The high conserved cellular receptors of avian leukosis virus subgroup J in Chinese local chickens contributes to its wide host range. Poult Sci 2019; 97:4187-4192. [PMID: 30107614 DOI: 10.3382/ps/pey331] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Accepted: 08/06/2018] [Indexed: 02/05/2023] Open
Abstract
Avian leukosis virus (ALV) is a tumor-inducing virus that spreads among most chicken species, causing serious financial losses for the poultry industry. Subgroup J avian leukosis virus (ALV-J) is a recombinant exogenous ALV, which shows more extensive host range in comparison with other subgroups, especially in Chinese local chickens. To identify the relationship between ALV-J host range and the polymorphism of its cellular receptors, we performed a wide range epidemiological investigation of current ALV-J infection in Chinese local chickens, and discovered that all the 18 local chicken breeds being investigated from main local chicken breeding provinces were ALV-J positive. Furthermore, we cloned ALV-J cellular receptor genes of chNHE1 and chANXA2 of these 18 chicken breeds. Sequence alignment demonstrated that despite several regular mutations at the nucleotide level, there were no corresponding amino acid mutations for either chNHE1 gene or chANXA2 gene. Additionally, virus entry assay indicated that the level of viral enter into cells is stable among different chicken breeds. Results of this study indicated that the wide host range of ALV-J in Chinese local chickens was partially due to the high conservatism of its cellular receptors, and also provide target sites for drug design of resistance to ALV-J infection.
Collapse
Affiliation(s)
- Yao Zhang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| | - Xiaolu Guan
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| | - Zhiwu Chen
- Guangxi Jinling Husbandry Group CO., LTD, Lu Ping Country, Nanning 530000, Guangxi Zhuang Autonomous Region, PR China
| | - Dingguo Cao
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong 250100, China
| | - Zhaofeng Kang
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Qiancheng Shen
- Guangxi Jinling Husbandry Group CO., LTD, Lu Ping Country, Nanning 530000, Guangxi Zhuang Autonomous Region, PR China
| | - Qiuxia Lei
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong 250100, China
| | - Fuwei Li
- Institute of Poultry Science, Shandong Academy of Agricultural Science, Jinan, Shandong 250100, China
| | - Haiqin Li
- Institute of Animal Husbandry and Veterinary, Jiangxi Academy of Agricultural Science, Nanchang 330200, China
| | - Muhammad Farooque Leghari
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| | - Yongqiang Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| | - Xiaole Qi
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| | - Xiaomei Wang
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| | - Yulong Gao
- Division of Avian Infectious Diseases, State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, Heilongjiang Province, PR China
| |
Collapse
|
5
|
Retroviral host range extension is coupled with Env-activating mutations resulting in receptor-independent entry. Proc Natl Acad Sci U S A 2017; 114:E5148-E5157. [PMID: 28607078 DOI: 10.1073/pnas.1704750114] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The extent of virus transmission among individuals and species is generally determined by the presence of specific membrane-embedded virus receptors required for virus entry. Interaction of the viral envelope glycoprotein (Env) with a specific cellular receptor is the first and crucial step in determining host specificity. Using a well-established retroviral model-avian Rous sarcoma virus (RSV)-we analyzed changes in an RSV variant that had repeatedly been able to infect rodents. By envelope gene (env) sequencing, we identified eight mutations that do not match the already described mutations influencing the host range. Two of these mutations-one at the beginning (D32G) of the surface Env subunit (SU) and the other at the end of the fusion peptide region (L378S)-were found to be of critical importance, ensuring transmission to rodent, human, and chicken cells lacking the appropriate receptor. Furthermore, we carried out assays to examine the virus entry mechanism and concluded that these two mutations cause conformational changes in the Env variant and that these changes lead to an activated, or primed, state of Env (normally induced after Env interaction with the receptor). In summary, our results indicate that retroviral host range extension is caused by spontaneous Env activation, which circumvents the need for original cell receptor. This activation is, in turn, caused by mutations in various env regions.
Collapse
|
6
|
Wu X, Zhao J, Zeng Y, Wu Y, Wang Q, Wu B, Huang Y. A novel avian retrovirus associated with lymphocytoma isolated from a local Chinese flock induced significantly reduced growth and immune suppression in SPF chickens. Vet Microbiol 2017. [PMID: 28622858 DOI: 10.1016/j.vetmic.2017.04.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Avian Leukosis Viruses (ALVs) are associated with neoplasias, immune suppression and reduced performance in chicken flocks. In the present study, a naturally occurring recombinant strain of ALV (FJ15HT0) was isolated from an infected flock of Chinese "Hetian" chickens, and was subsequently identified as an exogenous ALV by immuno-fluorescence assay (IFA), PCR and following entire proviral DNA nucleotide sequencing. This isolate is revealed as a novel recombinant virus, lacking viral oncogenes, with the gp85 (93.4%) of subgroup B, the U3 (92.1%) and R (95.2%) region of subgroup J, the U5 (93.8%) region and 5'UTR (95.7%) of subgroup C, as well as the gp37 (90.6%) and 3' (92.2%) of ALV-E. The simulative congenital infection with this isolate in SPF chickens resulted in significant weight loss (P<0.05) and a significant reduction in the humoral immune response to the live NDV vaccine (P<0.05), but not to the inactive AIV-H5 vaccine (P>0.05). Foci of lymphocytomas were observed in tissues of congenitally infected chickens at 11 weeks post-hatch, demonstrating the acute oncogenicity of the isolate.
Collapse
Affiliation(s)
- Xiaoping Wu
- Fujian Key Lab of Traditional Chinese Veterinary Medicine and Animal Health, the College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou 350002, China.
| | - Jinrong Zhao
- Fujian Key Lab of Traditional Chinese Veterinary Medicine and Animal Health, the College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Yukun Zeng
- Fujian Key Lab of Traditional Chinese Veterinary Medicine and Animal Health, the College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Yijian Wu
- Fujian Key Lab of Traditional Chinese Veterinary Medicine and Animal Health, the College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Quanxi Wang
- Fujian Key Lab of Traditional Chinese Veterinary Medicine and Animal Health, the College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Baocheng Wu
- Fujian Key Lab of Traditional Chinese Veterinary Medicine and Animal Health, the College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Yifan Huang
- Fujian Key Lab of Traditional Chinese Veterinary Medicine and Animal Health, the College of Animal Science, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| |
Collapse
|
7
|
Avian sarcoma leukosis virus receptor-envelope system for simultaneous dissection of multiple neural circuits in mammalian brain. Proc Natl Acad Sci U S A 2015; 112:E2947-56. [PMID: 25991858 DOI: 10.1073/pnas.1423963112] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Pathway-specific gene delivery is requisite for understanding complex neuronal systems in which neurons that project to different target regions are locally intermingled. However, conventional genetic tools cannot achieve simultaneous, independent gene delivery into multiple target cells with high efficiency and low cross-reactivity. In this study, we systematically screened all receptor-envelope pairs resulting from the combination of four avian sarcoma leukosis virus (ASLV) envelopes (EnvA, EnvB, EnvC, and EnvE) and five engineered avian-derived receptors (TVA950, TVB(S3), TVC, TVB(T), and DR-46TVB) in vitro. Four of the 20 pairs exhibited both high infection rates (TVA-EnvA, 99.6%; TVB(S3)-EnvB, 97.7%; TVC-EnvC, 98.2%; and DR-46TVB-EnvE, 98.8%) and low cross-reactivity (<2.5%). Next, we tested these four receptor-envelope pairs in vivo in a pathway-specific gene-transfer method. Neurons projecting into a limited somatosensory area were labeled with each receptor by retrograde gene transfer. Three of the four pairs exhibited selective transduction into thalamocortical neurons expressing the paired receptor (>98%), with no observed cross-reaction. Finally, by expressing three receptor types in a single animal, we achieved pathway-specific, differential fluorescent labeling of three thalamic neuronal populations, each projecting into different somatosensory areas. Thus, we identified three orthogonal pairs from the list of ASLV subgroups and established a new vector system that provides a simultaneous, independent, and highly specific genetic tool for transferring genes into multiple target cells in vivo. Our approach is broadly applicable to pathway-specific labeling and functional analysis of diverse neuronal systems.
Collapse
|
8
|
Aydin H, Smrke BM, Lee JE. Structural characterization of a fusion glycoprotein from a retrovirus that undergoes a hybrid 2-step entry mechanism. FASEB J 2013; 27:5059-71. [PMID: 24036886 PMCID: PMC7164122 DOI: 10.1096/fj.13-232371] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Entry of enveloped viruses into host cells is mediated by their surface envelope glycoproteins (Env). On the surface of the virus, Env is in a metastable, prefusion state, primed to catalyze the fusion of the viral and host membranes. An external trigger is needed to promote the drastic conformational changes necessary for the fusion subunit to fold into the low‐energy, 6‐helix bundle. These triggers typically facilitate pH‐independent entry at the plasma membrane or pH‐dependent entry in a low‐pH endosomal compartment. The α‐retrovirus avian sarcoma leukosis virus (ASLV) has a rare, 2‐step entry mechanism with both pH‐dependent and pH‐independent features. Here, we present the 2.0‐Å‐resolution crystal structure of the ASLV transmembrane (TM) fusion protein. Our structural and biophysical studies indicated that unlike other pH‐dependent or pH‐independent viral TMs, the ASLV fusion subunit is stable irrespective of pH. Two histidine residues (His490 and His492) in the chain reversal region confer stability at low pH. A structural comparison of class I viral fusion proteins suggests that the presence of a positive charge, either a histidine or arginine amino acid, stabilizes a helical dipole moment and is a signature of fusion proteins active at low pH. The structure now reveals key residues and features that explain its 2‐step mechanism, and we discuss the implications of the ASLV TM structure in the context of general mechanisms required for membrane fusion.—Aydin, H., Smrke, B.M., Lee, J. E. Structural characterization of a fusion glycoprotein from a retrovirus that undergoes a hybrid 2‐step entry mechanism. FASEB J. 27, 5059–5071 (2013). http://www.fasebj.org
Collapse
Affiliation(s)
- Halil Aydin
- 11 King's College Cir., Rm. 6316, Toronto, ON, Canada M5S 1A8.
| | | | | |
Collapse
|
9
|
White JM, Delos SE, Brecher M, Schornberg K. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit Rev Biochem Mol Biol 2008; 43:189-219. [PMID: 18568847 DOI: 10.1080/10409230802058320] [Citation(s) in RCA: 665] [Impact Index Per Article: 41.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Recent work has identified three distinct classes of viral membrane fusion proteins based on structural criteria. In addition, there are at least four distinct mechanisms by which viral fusion proteins can be triggered to undergo fusion-inducing conformational changes. Viral fusion proteins also contain different types of fusion peptides and vary in their reliance on accessory proteins. These differing features combine to yield a rich diversity of fusion proteins. Yet despite this staggering diversity, all characterized viral fusion proteins convert from a fusion-competent state (dimers or trimers, depending on the class) to a membrane-embedded homotrimeric prehairpin, and then to a trimer-of-hairpins that brings the fusion peptide, attached to the target membrane, and the transmembrane domain, attached to the viral membrane, into close proximity thereby facilitating the union of viral and target membranes. During these conformational conversions, the fusion proteins induce membranes to progress through stages of close apposition, hemifusion, and then the formation of small, and finally large, fusion pores. Clearly, highly divergent proteins have converged on the same overall strategy to mediate fusion, an essential step in the life cycle of every enveloped virus.
Collapse
Affiliation(s)
- Judith M White
- Department of Cell Biology, University of Virginia, Charlottesville, Virginia 22908-0732, USA.
| | | | | | | |
Collapse
|