1
|
Raya S, Malla B, Thakali O, Angga MS, Segawa T, Sherchand JB, Haramoto E. Validation and application of high-throughput quantitative PCR for the simultaneous detection of microbial source tracking markers in environmental water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173604. [PMID: 38821279 DOI: 10.1016/j.scitotenv.2024.173604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/02/2024]
Abstract
No single microbial source tracking (MST) marker can be applied to determine the sources of fecal pollution in all water types. This study aimed to validate a high-throughput quantitative polymerase chain reaction (HT-qPCR) method for the simultaneous detection of multiple MST markers. A total of 26 fecal-source samples that had been previously collected from human sewage (n = 6) and ruminant (n = 3), dog (n = 6), pig (n = 6), chicken (n = 3), and duck (n = 2) feces in the Kathmandu Valley, Nepal, were used to validate 10 host-specific MST markers, i.e., Bacteroidales (BacHum, gyrB, BacR, and Pig2Bac), mitochondrial DNA (mtDNA) (swine, bovine, and Dog-mtDNA), and viral (human adenovirus, porcine adenovirus, and chicken/turkey parvovirus) markers, via HT-qPCR. Only Dog-mtDNA showed 100 % accuracy. All the tested bacterial markers showed a sensitivity of 100 %. Nine of the 10 markers were further used to identify fecal contamination in groundwater sources (n = 54), tanker filling stations (n = 14), drinking water treatment plants (n = 5), and river water samples (n = 6). The human-specific Bacteroidales marker BacHum and ruminant-specific Bacteroidales marker BacR was detected at a high ratio in river water samples (83 % and 100 %, respectively). The results of HT-qPCR were in agreement with the standard qPCR. The comparable performances of HT-qPCR and standard qPCR as well as the successful detection of MST markers in the fecal-source and water samples demonstrated the potential applicability of these markers for detecting fecal contamination sources via HT-qPCR.
Collapse
Affiliation(s)
- Sunayana Raya
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Bikash Malla
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Ocean Thakali
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Made Sandhyana Angga
- Department of Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan
| | - Takahiro Segawa
- Center for Life Science, University of Yamanashi, 1110 Shimokato, Chuo, Yamanashi 409-3898, Japan.
| | - Jeevan B Sherchand
- Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu 1524, Nepal
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi 400-8511, Japan.
| |
Collapse
|
2
|
Engström A. Fighting an old disease with modern tools: characteristics and molecular detection methods of drug-resistant Mycobacterium tuberculosis. Infect Dis (Lond) 2015; 48:1-17. [PMID: 26167849 DOI: 10.3109/23744235.2015.1061205] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Tuberculosis (TB) is an ancient disease, but not a disease of the past. The increasing prevalence of drug-resistant strains of Mycobacterium tuberculosis, the causative agent of TB, demands new measures to combat the situation. Rapid and accurate detection of the pathogen, and its drug susceptibility pattern, is essential for timely initiation of treatment, and ultimately, control of the disease. Molecular-based methods offer a great chance to improve detection of drug-resistant TB; however, their development and usage should be accompanied with a profound understanding of drug resistance mechanisms and circulating M. tuberculosis strains in specific settings, as otherwise, the usefulness of such tests may be limited. This review gives an overview of the history of TB treatment and drug resistance, drug resistance mechanisms for the most commonly used drugs and molecular methods designed to detect drug-resistant strains.
Collapse
Affiliation(s)
- Anna Engström
- a From the Department of Medical Biochemistry and Microbiology , Uppsala University , Uppsala , Sweden and Molecular Mycobacteriology, Research Center Borstel , Borstel , Germany
| |
Collapse
|
3
|
Granberg F, Karlsson OE, Leijon M, Liu L, Belák S. Molecular approaches to recognize relevant and emerging infectious diseases in animals. Methods Mol Biol 2015; 1247:109-24. [PMID: 25399090 PMCID: PMC7123086 DOI: 10.1007/978-1-4939-2004-4_7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Since the introduction of the first molecular tests, there has been a continuous effort to develop new and improved assays for rapid and efficient detection of infectious agents. This has been motivated by a need for improved sensitivity as well as results that can be easily communicated. The experiences and knowledge gained at the World Organisation for Animal Health (OIE) Collaborating Centre for Biotechnology-based Diagnosis of Infectious Diseases in Veterinary Medicine, Uppsala, Sweden, will here be used to provide an overview of the different molecular approaches that can be used to diagnose and identify relevant and emerging infectious diseases in animals.
Collapse
Affiliation(s)
- Fredrik Granberg
- OIE Collaborating Centre for the Biotechnology-Based Diagnosis of Infectious Diseases in Veterinary Medicine, Swedish University of Agricultural Sciences (SLU), Uppsala, Sweden,
| | | | | | | | | |
Collapse
|
4
|
Lau HY, Palanisamy R, Trau M, Botella JR. Molecular inversion probe: a new tool for highly specific detection of plant pathogens. PLoS One 2014; 9:e111182. [PMID: 25343255 PMCID: PMC4208852 DOI: 10.1371/journal.pone.0111182] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 09/28/2014] [Indexed: 11/18/2022] Open
Abstract
Highly specific detection methods, capable of reliably identifying plant pathogens are crucial in plant disease management strategies to reduce losses in agriculture by preventing the spread of diseases. We describe a novel molecular inversion probe (MIP) assay that can be potentially developed into a robust multiplex platform to detect and identify plant pathogens. A MIP has been designed for the plant pathogenic fungus Fusarium oxysporum f.sp. conglutinans and the proof of concept for the efficiency of this technology is provided. We demonstrate that this methodology can detect as little as 2.5 ng of pathogen DNA and is highly specific, being able to accurately differentiate Fusarium oxysporum f.sp. conglutinans from other fungal pathogens such as Botrytis cinerea and even pathogens of the same species such as Fusarium oxysporum f.sp. lycopersici. The MIP assay was able to detect the presence of the pathogen in infected Arabidopsis thaliana plants as soon as the tissues contained minimal amounts of pathogen. MIP methods are intrinsically highly multiplexable and future development of specific MIPs could lead to the establishment of a diagnostic method that could potentially screen infected plants for hundreds of pathogens in a single assay.
Collapse
Affiliation(s)
- Han Yih Lau
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Ramkumar Palanisamy
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Matt Trau
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland, Australia
| | - Jose R. Botella
- Plant Genetic Engineering Laboratory, School of Agriculture and Food Sciences, University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Microfluidic quantitative PCR for simultaneous quantification of multiple viruses in environmental water samples. Appl Environ Microbiol 2014; 80:7505-11. [PMID: 25261510 DOI: 10.1128/aem.02578-14] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
To secure food and water safety, quantitative information on multiple pathogens is important. In this study, we developed a microfluidic quantitative PCR (MFQPCR) system to simultaneously quantify 11 major human viral pathogens, including adenovirus, Aichi virus, astrovirus, enterovirus, human norovirus, rotavirus, sapovirus, and hepatitis A and E viruses. Murine norovirus and mengovirus were also quantified in our MFQPCR system as a sample processing control and an internal amplification control, respectively. River water contaminated with effluents from a wastewater treatment plant in Sapporo, Japan, was collected and used to validate our MFQPCR system for multiple viruses. High-throughput quantitative information was obtained with a quantification limit of 2 copies/μl of cDNA/DNA. Using this MFQPCR system, we could simultaneously quantify multiple viral pathogens in environmental water samples. The viral quantities obtained using MFQPCR were similar to those determined by conventional quantitative PCR. Thus, the MFQPCR system developed in this study can provide direct and quantitative information for viral pathogens, which is essential for risk assessments.
Collapse
|
6
|
Akhras MS, Pettersson E, Diamond L, Unemo M, Okamoto J, Davis RW, Pourmand N. The Sequencing Bead Array (SBA), a next-generation digital suspension array. PLoS One 2013; 8:e76696. [PMID: 24116138 PMCID: PMC3792038 DOI: 10.1371/journal.pone.0076696] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 08/24/2013] [Indexed: 01/26/2023] Open
Abstract
Here we describe the novel Sequencing Bead Array (SBA), a complete assay for molecular diagnostics and typing applications. SBA is a digital suspension array using Next-Generation Sequencing (NGS), to replace conventional optical readout platforms. The technology allows for reducing the number of instruments required in a laboratory setting, where the same NGS instrument could be employed from whole-genome and targeted sequencing to SBA broad-range biomarker detection and genotyping. As proof-of-concept, a model assay was designed that could distinguish ten Human Papillomavirus (HPV) genotypes associated with cervical cancer progression. SBA was used to genotype 20 cervical tumor samples and, when compared with amplicon pyrosequencing, was able to detect two additional co-infections due to increased sensitivity. We also introduce in-house software Sphix, enabling easy accessibility and interpretation of results. The technology offers a multi-parallel, rapid, robust, and scalable system that is readily adaptable for a multitude of microarray diagnostic and typing applications, e.g. genetic signatures, single nucleotide polymorphisms (SNPs), structural variations, and immunoassays. SBA has the potential to dramatically change the way we perform probe-based applications, and allow for a smooth transition towards the technology offered by genomic sequencing.
Collapse
Affiliation(s)
- Michael S. Akhras
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, United States of America
| | - Erik Pettersson
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, United States of America
| | - Lisa Diamond
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, United States of America
| | - Magnus Unemo
- World Health Organization Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Swedish Reference Laboratory for Pathogenic Neisseria, Department of Laboratory Medicine, Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Jennifer Okamoto
- Department of Bioengineering, Stanford University, Stanford, California, United States of America
- Howard Hughes Medical Institute, Stanford University, Stanford, California, United States of America
| | - Ronald W. Davis
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, United States of America
| | - Nader Pourmand
- Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, United States of America
- * E-mail:
| |
Collapse
|
7
|
Simultaneous quantification of multiple food- and waterborne pathogens by use of microfluidic quantitative PCR. Appl Environ Microbiol 2013; 79:2891-8. [PMID: 23435884 DOI: 10.1128/aem.00205-13] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The direct quantification of multiple pathogens has been desired for diagnostic and public health purposes for a long time. In this study, we applied microfluidic quantitative PCR (qPCR) technology to the simultaneous detection and quantification of multiple food- and waterborne pathogens. In this system, multiple singleplex qPCR assays were run under identical detection conditions in nanoliter-volume chambers that are present in high densities on a chip. First, we developed 18 TaqMan qPCR assays that could be run in the same PCR conditions by using prevalidated TaqMan probes. Specific and sensitive quantification was achieved by using these qPCR assays. With the addition of two previously validated TaqMan qPCR assays, we used 20 qPCR assays targeting 10 enteric pathogens, a fecal indicator bacterium (general Escherichia coli), and a process control strain in the microfluidic qPCR system. We preamplified the template DNA to increase the sensitivity of the qPCR assays. Our results suggested that preamplification was effective for quantifying small amounts of the template DNA without any major impact on the sensitivity, efficiency, and quantitative performance of qPCR. This microfluidic qPCR system allowed us to detect and quantify multiple pathogens from fecal samples and environmental water samples spiked with pathogens at levels as low as 100 cells/liter. These results suggest that the routine monitoring of multiple pathogens in food and water samples is now technically feasible. This method may provide more reliable information for risk assessment than the current fecal contamination indicator approach.
Collapse
|
8
|
A rapid, cost-effective method of assembly and purification of synthetic DNA probes >100 bp. PLoS One 2012; 7:e34373. [PMID: 22493688 PMCID: PMC3321010 DOI: 10.1371/journal.pone.0034373] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2012] [Accepted: 03/01/2012] [Indexed: 12/01/2022] Open
Abstract
Here we introduce a rapid, cost-effective method of generating molecular DNA probes in just under 15 minutes without the need for expensive, time-consuming gel-extraction steps. As an example, we enzymatically concatenated six variable strands (50 bp) with a common strand sequence (51 bp) in a single pool using Fast-Link DNA ligase to produce 101 bp targets (10 min). Unincorporated species were then filtered out by passing the crude reaction through a size-exclusion column (<5 min). We then compared full-length product yield of crude and purified samples using HPLC analysis; the results of which clearly show our method yields three-quarters that of the crude sample (50% higher than by gel-extraction). And while we substantially reduced the amount of unligated product with our filtration process, higher purity and yield, with an increase in number of stands per reaction (>12) could be achieved with further optimization. Moreover, for large-scale assays, we envision this method to be fully automated with the use of robotics such as the Biomek FX; here, potentially thousands of samples could be pooled, ligated and purified in either a 96, 384 or 1536-well platform in just minutes.
Collapse
|
9
|
|
10
|
MassCode liquid arrays as a tool for multiplexed high-throughput genetic profiling. PLoS One 2011; 6:e18967. [PMID: 21544191 PMCID: PMC3081317 DOI: 10.1371/journal.pone.0018967] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Accepted: 03/18/2011] [Indexed: 02/04/2023] Open
Abstract
Multiplexed detection assays that analyze a modest number of nucleic acid targets over large sample sets are emerging as the preferred testing approach in such applications as routine pathogen typing, outbreak monitoring, and diagnostics. However, very few DNA testing platforms have proven to offer a solution for mid-plexed analysis that is high-throughput, sensitive, and with a low cost per test. In this work, an enhanced genotyping method based on MassCode technology was devised and integrated as part of a high-throughput mid-plexing analytical system that facilitates robust qualitative differential detection of DNA targets. Samples are first analyzed using MassCode PCR (MC-PCR) performed with an array of primer sets encoded with unique mass tags. Lambda exonuclease and an array of MassCode probes are then contacted with MC-PCR products for further interrogation and target sequences are specifically identified. Primer and probe hybridizations occur in homogeneous solution, a clear advantage over micro- or nanoparticle suspension arrays. The two cognate tags coupled to resultant MassCode hybrids are detected in an automated process using a benchtop single quadrupole mass spectrometer. The prospective value of using MassCode probe arrays for multiplexed bioanalysis was demonstrated after developing a 14plex proof of concept assay designed to subtype a select panel of Salmonella enterica serogroups and serovars. This MassCode system is very flexible and test panels can be customized to include more, less, or different markers.
Collapse
|
11
|
García-Cañas V, Mondello M, Cifuentes A. Combining ligation reaction and capillary gel electrophoresis to obtain reliable long DNA probes. J Sep Sci 2011; 34:1011-9. [PMID: 21404441 DOI: 10.1002/jssc.201000826] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 01/24/2011] [Accepted: 02/01/2011] [Indexed: 11/12/2022]
Abstract
New DNA amplification methods are continuously developed for sensitive detection and quantification of specific DNA target sequences for, e.g. clinical, environmental or food applications. These new applications often require the use of long DNA oligonucleotides as probes for target sequences hybridization. Depending on the molecular technique, the length of DNA probes ranges from 40 to 450 nucleotides, solid-phase chemical synthesis being the strategy generally used for their production. However, the fidelity of chemical synthesis of DNA decreases for larger DNA probes. Defects in the oligonucleotide sequence result in the loss of hybridization efficiency, affecting the sensitivity and selectivity of the amplification method. In this work, an enzymatic procedure has been developed as an alternative to solid-phase chemical synthesis for the production of long oligonucleotides. The enzymatic procedure for probe production was based on ligation of short DNA sequences. Long DNA probes were obtained from smaller oligonucleotides together with a short sequence that acts as bridge stabilizing the molecular complex for DNA ligation. The ligation reactions were monitored by capillary gel electrophoresis with laser-induced fluorescence detection (CGE-LIF) using a bare fused-silica capillary. The capillary gel electrophoresis-LIF method demonstrated to be very useful and informative for the characterization of the ligation reaction, providing important information about the nature of some impurities, as well as for the fine optimization of the ligation conditions (i.e. ligation cycles, oligonucleotide and enzyme concentration). As a result, the yield and quality of the ligation product were highly improved. The in-lab prepared DNA probes were used in a novel multiplex ligation-dependent genome amplification (MLGA) method for the detection of genetically modified maize in samples. The great possibilities of the whole approach were demonstrated by the specific and sensitive detection of transgenic maize at percentages lower than 1%.
Collapse
|
12
|
Affiliation(s)
- Jin-Woo Bae
- Department of Biology, Kyung Hee University, Seoul, Korea
| |
Collapse
|
13
|
Roh SW, Abell GCJ, Kim KH, Nam YD, Bae JW. Comparing microarrays and next-generation sequencing technologies for microbial ecology research. Trends Biotechnol 2010; 28:291-9. [PMID: 20381183 DOI: 10.1016/j.tibtech.2010.03.001] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/18/2010] [Accepted: 03/08/2010] [Indexed: 12/12/2022]
Abstract
Recent advances in molecular biology have resulted in the application of DNA microarrays and next-generation sequencing (NGS) technologies to the field of microbial ecology. This review aims to examine the strengths and weaknesses of each of the methodologies, including depth and ease of analysis, throughput and cost-effectiveness. It also intends to highlight the optimal application of each of the individual technologies toward the study of a particular environment and identify potential synergies between the two main technologies, whereby both sample number and coverage can be maximized. We suggest that the efficient use of microarray and NGS technologies will allow researchers to advance the field of microbial ecology, and importantly, improve our understanding of the role of microorganisms in their various environments.
Collapse
Affiliation(s)
- Seong Woon Roh
- Department of Life and Nanopharmaceutical Sciences, Kyung Hee University, HoeGi-Dong 1, DongDaeMun-Gu, Republic of Korea
| | | | | | | | | |
Collapse
|
14
|
Basic concepts of microarrays and potential applications in clinical microbiology. Clin Microbiol Rev 2010; 22:611-33. [PMID: 19822891 DOI: 10.1128/cmr.00019-09] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The introduction of in vitro nucleic acid amplification techniques, led by real-time PCR, into the clinical microbiology laboratory has transformed the laboratory detection of viruses and select bacterial pathogens. However, the progression of the molecular diagnostic revolution currently relies on the ability to efficiently and accurately offer multiplex detection and characterization for a variety of infectious disease pathogens. Microarray analysis has the capability to offer robust multiplex detection but has just started to enter the diagnostic microbiology laboratory. Multiple microarray platforms exist, including printed double-stranded DNA and oligonucleotide arrays, in situ-synthesized arrays, high-density bead arrays, electronic microarrays, and suspension bead arrays. One aim of this paper is to review microarray technology, highlighting technical differences between them and each platform's advantages and disadvantages. Although the use of microarrays to generate gene expression data has become routine, applications pertinent to clinical microbiology continue to rapidly expand. This review highlights uses of microarray technology that impact diagnostic microbiology, including the detection and identification of pathogens, determination of antimicrobial resistance, epidemiological strain typing, and analysis of microbial infections using host genomic expression and polymorphism profiles.
Collapse
|
15
|
Ritari J, Paulin L, Hultman J, Auvinen P. Application of hybridization control probe to increase accuracy on ligation detection or minisequencing diagnostic microarrays. BMC Res Notes 2009; 2:249. [PMID: 20003444 PMCID: PMC2799435 DOI: 10.1186/1756-0500-2-249] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2009] [Accepted: 12/14/2009] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND Nucleic acid detection based on ligation reaction or single nucleotide extension of ssDNA probes followed by tag microarray hybridization provides an accurate and sensitive detection tool for various diagnostic purposes. Since microarray quality is crucial for reliable detection, these methods can benefit from correcting for microarray artefacts using specifically adapted techniques. FINDINGS Here we demonstrate the application of a per-spot hybridization control oligonucleotide probe and a novel way of computing normalization for tag array data. The method takes into account the absolute value of the detection probe signal and the variability in the control probe signal to significantly alleviate problems caused by artefacts and noise on low quality microarrays. CONCLUSIONS Diagnostic microarray platforms require experimental and computational tools to enable efficient correction of array artefacts. The techniques presented here improve the signal to noise ratio and help in determining true positives with better statistical significance and in allowing the use of arrays with poor quality that would otherwise be discarded.
Collapse
Affiliation(s)
- Jarmo Ritari
- DNA sequencing and genomics laboratory, Institute of Biotechnology, University of Helsinki, 00790 Helsinki, Finland.
| | | | | | | |
Collapse
|
16
|
Kong CS, Narasimhan B, Cao H, Kwok S, Erickson JP, Koong A, Pourmand N, Le QT. The relationship between human papillomavirus status and other molecular prognostic markers in head and neck squamous cell carcinomas. Int J Radiat Oncol Biol Phys 2009; 74:553-61. [PMID: 19427557 DOI: 10.1016/j.ijrobp.2009.02.015] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2008] [Revised: 02/06/2009] [Accepted: 02/07/2009] [Indexed: 01/22/2023]
Abstract
PURPOSE To evaluate the relationship between human papillomavirus (HPV) status and known prognostic makers for head and neck cancers including tumor hypoxia, epidermal growth factor receptor (EGFR) expression and intratumoral T-cell levels and to determine the prognostic impact of these markers by HPV status. METHODS AND MATERIALS HPV status in 82 evaluable head and neck squamous cell carcinomas patients was determined by pyrosequencing and related to p16(INK4a) staining and treatment outcomes. It was correlated with tumor hypoxia (tumor pO(2) and carbonic anhydrase [CAIX] staining), EGFR status, and intratumoral lymphocyte expression (CD3 staining). RESULTS Forty-four percent of evaluable tumors had strong HPV signal by pyrosequencing. There was a significant relationship between strong HPV signal and p16(INK4a) staining as well as oropharynx location. The strong HPV signal group fared significantly better than others, both in time to progression (TTP, p = 0.008) and overall survival (OS, p = 0.004) for all patients and for the oropharyngeal subset. Positive p16(INK4a) staining was associated with better TTP (p = 0.014) and OS (p = 0.00002). There was no relationship between HPV status and tumor pO(2) or CAIX staining. However, HPV status correlated inversely with EGFR reactivity (p = 0.0006) and directly with CD3(+) T-lymphocyte level (p = 0.03). Whereas CAIX and EGFR overexpression were negative prognostic factors regardless of HPV status, CD3(+) T-cell levels was prognostic only in HPV(-) tumors. CONCLUSION HPV status was a prognostic factor for progression and survival. It correlated inversely with EGFR expression and directly with T-cell infiltration. The prognostic effect of CAIX and EGFR expression was not influenced by HPV status, whereas intratumoral T-cell levels was significant only for HPV(-) tumors.
Collapse
Affiliation(s)
- Christina S Kong
- Department of Pathology, Stanford University, Santa Cruz, CA, USA
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
The approximately 6,000 strains in the yeast deletion collection can be studied in a single culture by using a microarray to detect the 20 bp DNA "barcodes" or "tags" contained in each strain. Barcode intensities measured by microarray are compared across time-points or across conditions to analyze the relative fitness of each strain. The development of this pooled fitness assay has greatly facilitated the functional annotation of the yeast genome by making genome-wide gene-deletion studies faster and easier, and has led to the development of high throughput methods for studying drug action in yeast. Pooled screens can be used for identifying gene functions, measuring the functional relatedness of gene pairs to group genes into pathways, identifying drug targets, and determining a drug's mechanism of action. This process involves five main steps: preparing aliquots of pooled cells, pooled growth, isolation of genomic DNA and PCR amplification of the barcodes, array hybridization, and data analysis. In addition to yeast fitness applications, the general method of studying pooled samples with barcode arrays can also be adapted for use with other types of samples, such as mutant collections in other organisms, siRNA vectors, and molecular inversion probes.
Collapse
|
18
|
Xu C, Zhou YF, Deng JY, Deng X, Guo YC, Cui ZQ, Zhang ZP, Wei HP, Bi LJ, Zhang XE. On-chip ligation of multiplexing probe-pairs for identifying point mutations out of dense SNP loci. Biosens Bioelectron 2008; 24:818-24. [DOI: 10.1016/j.bios.2008.07.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 07/01/2008] [Accepted: 07/02/2008] [Indexed: 11/30/2022]
|
19
|
Varley KE, Mitra RD. Nested Patch PCR enables highly multiplexed mutation discovery in candidate genes. Genome Res 2008; 18:1844-50. [PMID: 18849522 DOI: 10.1101/gr.078204.108] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Medical resequencing of candidate genes in individual patient samples is becoming increasingly important in the clinic and in clinical research. Medical resequencing requires the amplification and sequencing of many candidate genes in many patient samples. Here we introduce Nested Patch PCR, a novel method for highly multiplexed PCR that is very specific, can sensitively detect SNPs and mutations, and is easy to implement. This is the first method that couples multiplex PCR with sample-specific DNA barcodes and next-generation sequencing to enable highly multiplex mutation discovery in candidate genes for multiple samples in parallel. In our pilot study, we amplified exons from colon cancer and matched normal human genomic DNA. From each sample, we successfully amplified 96% (90 of 94) targeted exons from across the genome, totaling 21.6 kbp of sequence. Ninety percent of all sequencing reads were from targeted exons, demonstrating that Nested Patch PCR is highly specific. We found that the abundance of reads per exon was reproducible across samples. We reliably detected germline SNPs and discovered a colon tumor specific nonsense mutation in APC, a gene causally implicated in colorectal cancer. With Nested Patch PCR, candidate gene mutation discovery across multiple individual patient samples can now utilize the power of second-generation sequencing.
Collapse
Affiliation(s)
- Katherine Elena Varley
- Department of Genetics, Center for Genome Sciences, Washington University School of Medicine, St. Louis, Missouri 63108, USA
| | | |
Collapse
|
20
|
Pierce SE, Davis RW, Nislow C, Giaever G. Genome-wide analysis of barcoded Saccharomyces cerevisiae gene-deletion mutants in pooled cultures. Nat Protoc 2007; 2:2958-74. [DOI: 10.1038/nprot.2007.427] [Citation(s) in RCA: 167] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Akhras MS, Unemo M, Thiyagarajan S, Nyrén P, Davis RW, Fire AZ, Pourmand N. Connector inversion probe technology: a powerful one-primer multiplex DNA amplification system for numerous scientific applications. PLoS One 2007; 2:e915. [PMID: 17878950 PMCID: PMC1976392 DOI: 10.1371/journal.pone.0000915] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Accepted: 08/20/2007] [Indexed: 01/26/2023] Open
Abstract
We combined components of a previous assay referred to as Molecular Inversion Probe (MIP) with a complete gap filling strategy, creating a versatile powerful one-primer multiplex amplification system. As a proof-of-concept, this novel method, which employs a Connector Inversion Probe (CIPer), was tested as a genetic tool for pathogen diagnosis, typing, and antibiotic resistance screening with two distinct systems: i) a conserved sequence primer system for genotyping Human Papillomavirus (HPV), a cancer-associated viral agent and ii) screening for antibiotic resistance mutations in the bacterial pathogen Neisseria gonorrhoeae. We also discuss future applications and advances of the CIPer technology such as integration with digital amplification and next-generation sequencing methods. Furthermore, we introduce the concept of two-dimension informational barcodes, i.e. “multiplex multiplexing padlocks” (MMPs). For the readers' convenience, we also provide an on-line tutorial with user-interface software application CIP creator 1.0.1, for custom probe generation from virtually any new or established primer-pairs.
Collapse
Affiliation(s)
- Michael S. Akhras
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, United States of America
- Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Magnus Unemo
- National Reference Laboratory for Pathogenic Neisseria, Department of Clinical Microbiology, Örebro University Hospital, Örebro, Sweden
| | - Sreedevi Thiyagarajan
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, United States of America
| | - Pål Nyrén
- Department of Biotechnology, Royal Institute of Technology, Stockholm, Sweden
| | - Ronald W. Davis
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, United States of America
| | - Andrew Z. Fire
- Department of Pathology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Stanford University School of Medicine, Stanford, California, United States of America
| | - Nader Pourmand
- Stanford Genome Technology Center, Stanford University, Palo Alto, California, United States of America
- Biomolecular Engineering, University of California at Santa Cruz, Santa Cruz, California, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|