1
|
Favasuli VK, Ronchetti D, Silvestris I, Puccio N, Fabbiano G, Traini V, Todoerti K, Erratico S, Ciarrocchi A, Fragliasso V, Giannandrea D, Tumiatti F, Chiaramonte R, Torrente Y, Finelli P, Morelli E, Munshi NC, Bolli N, Neri A, Taìana E. DIS3 depletion in multiple myeloma causes extensive perturbation in cell cycle progression and centrosome amplification. Haematologica 2024; 109:231-244. [PMID: 37439377 PMCID: PMC10772536 DOI: 10.3324/haematol.2023.283274] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 07/05/2023] [Indexed: 07/14/2023] Open
Abstract
DIS3 gene mutations occur in approximately 10% of patients with multiple myeloma (MM); furthermore, DIS3 expression can be affected by monosomy 13 and del(13q), found in roughly 40% of MM cases. Despite the high incidence of DIS3 mutations and deletions, the biological significance of DIS3 and its contribution to MM pathogenesis remain poorly understood. In this study we investigated the functional role of DIS3 in MM, by exploiting a loss-of-function approach in human MM cell lines. We found that DIS3 knockdown inhibits proliferation in MM cell lines and largely affects cell cycle progression of MM plasma cells, ultimately inducing a significant increase in the percentage of cells in the G0/G1 phase and a decrease in the S and G2/M phases. DIS3 plays an important role not only in the control of the MM plasma cell cycle, but also in the centrosome duplication cycle, which are strictly co-regulated in physiological conditions in the G1 phase. Indeed, DIS3 silencing leads to the formation of supernumerary centrosomes accompanied by the assembly of multipolar spindles during mitosis. In MM, centrosome amplification is present in about a third of patients and may represent a mechanism leading to genomic instability. These findings strongly prompt further studies investigating the relevance of DIS3 in the centrosome duplication process. Indeed, a combination of DIS3 defects and deficient spindle-assembly checkpoint can allow cells to progress through the cell cycle without proper chromosome segregation, generating aneuploid cells which ultimately lead to the development of MM.
Collapse
Affiliation(s)
- Vanessa K Favasuli
- Department of Oncology and Hemato-oncology, University of Milan, Italy; Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
| | | | | | - Noemi Puccio
- Laboratory of Translational Research, Azienda USL-IRCCS Reggio Emilia, 42123 Reggio Emilia, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, Modena, 41121
| | - Giuseppina Fabbiano
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan
| | - Valentina Traini
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan
| | - Katia Todoerti
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan
| | - Silvia Erratico
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Centro Dino Ferrari, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Novystem Spa, Milan
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL-IRCCS Reggio Emilia, 42123 Reggio Emilia
| | - Valentina Fragliasso
- Laboratory of Translational Research, Azienda USL-IRCCS Reggio Emilia, 42123 Reggio Emilia
| | | | - Francesca Tumiatti
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan
| | | | - Yvan Torrente
- Stem Cell Laboratory, Department of Pathophysiology and Transplantation, University of Milan, Centro Dino Ferrari, Unit of Neurology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, 20122 Milan
| | - Palma Finelli
- Medical Genetics Laboratory, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; Department of Medical Biotechnology and Translational Medicine, University of Milan, Segrate, 20090 Milan
| | - Eugenio Morelli
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
| | - Nikhil C Munshi
- Department of Medical Oncology, Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Boston, MA
| | - Niccolò Bolli
- Department of Oncology and Hemato-oncology, University of Milan, Italy; Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan
| | - Antonino Neri
- Scientific Directorate, Azienda USL-IRCCS Reggio Emilia, 42123 Reggio Emilia.
| | - Elisa Taìana
- Hematology, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan
| |
Collapse
|
2
|
Birot A, Kus K, Priest E, Al Alwash A, Castello A, Mohammed S, Vasiljeva L, Kilchert C. RNA-binding protein Mub1 and the nuclear RNA exosome act to fine-tune environmental stress response. Life Sci Alliance 2021; 5:5/2/e202101111. [PMID: 34848435 PMCID: PMC8645331 DOI: 10.26508/lsa.202101111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 11/12/2021] [Accepted: 11/12/2021] [Indexed: 11/24/2022] Open
Abstract
Comparative RNA interactome capture identifies potential regulators of RNA metabolism in fission yeast and reveals RNA exosome–dependent buffering of stress-responsive gene expression networks. The nuclear RNA exosome plays a key role in controlling the levels of multiple protein-coding and non-coding RNAs. Recruitment of the exosome to specific RNA substrates is mediated by RNA-binding co-factors. The transient interaction between co-factors and the exosome as well as the rapid decay of RNA substrates make identification of exosome co-factors challenging. Here, we use comparative poly(A)+ RNA interactome capture in fission yeast expressing three different mutants of the exosome to identify proteins that interact with poly(A)+ RNA in an exosome-dependent manner. Our analyses identify multiple RNA-binding proteins whose association with RNA is altered in exosome mutants, including the zinc-finger protein Mub1. Mub1 is required to maintain the levels of a subset of exosome RNA substrates including mRNAs encoding for stress-responsive proteins. Removal of the zinc-finger domain leads to loss of RNA suppression under non-stressed conditions, altered expression of heat shock genes in response to stress, and reduced growth at elevated temperature. These findings highlight the importance of exosome-dependent mRNA degradation in buffering gene expression networks to mediate cellular adaptation to stress.
Collapse
Affiliation(s)
- Adrien Birot
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Krzysztof Kus
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Emily Priest
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ahmad Al Alwash
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, Oxford, UK.,MRC-University of Glasgow Centre for Virus Research, Glasgow, UK
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Cornelia Kilchert
- Institute of Biochemistry, Justus-Liebig University Giessen, Giessen, Germany
| |
Collapse
|
3
|
Hojka-Osinska A, Chlebowski A, Grochowska J, Owczarek EP, Affek K, Kłosowska-Kosicka K, Szczesny RJ, Dziembowski A. Landscape of functional interactions of human processive ribonucleases revealed by high-throughput siRNA screenings. iScience 2021; 24:103036. [PMID: 34541468 PMCID: PMC8437785 DOI: 10.1016/j.isci.2021.103036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/09/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022] Open
Abstract
Processive exoribonucleases are executors of RNA decay. In humans, their physical but not functional interactions were thoughtfully investigated. Here we have screened cells deficient in DIS3, XRN2, EXOSC10, DIS3L, and DIS3L2 with a custom siRNA library and determined their genetic interactions (GIs) with diverse pathways of RNA metabolism. We uncovered a complex network of positive interactions that buffer alterations in RNA degradation and reveal reciprocal cooperation with genes involved in transcription, RNA export, and splicing. Further, we evaluated the functional distinctness of nuclear DIS3 and cytoplasmic DIS3L using a library of all known genes associated with RNA metabolism. Our analysis revealed that DIS3 mutation suppresses RNA splicing deficiency, while DIS3L GIs disclose the interplay of cytoplasmic RNA degradation with nuclear RNA processing. Finally, genome-wide DIS3 GI map uncovered relations with genes not directly involved in RNA metabolism, like microtubule organization or regulation of telomerase activity.
Collapse
Affiliation(s)
- Anna Hojka-Osinska
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Aleksander Chlebowski
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Joanna Grochowska
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Ewelina P. Owczarek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Kamila Affek
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | | | - Roman J. Szczesny
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Andrzej Dziembowski
- International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics Polish Academy of Sciences, 02-106 Warsaw, Poland
- Department of Genetics and Biotechnology, Faculty of Biology, University of Warsaw, 02-096 Warsaw, Poland
| |
Collapse
|
4
|
Kilchert C, Kecman T, Priest E, Hester S, Aydin E, Kus K, Rossbach O, Castello A, Mohammed S, Vasiljeva L. System-wide analyses of the fission yeast poly(A) + RNA interactome reveal insights into organization and function of RNA-protein complexes. Genome Res 2020; 30:1012-1026. [PMID: 32554781 PMCID: PMC7397868 DOI: 10.1101/gr.257006.119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 05/18/2020] [Indexed: 01/12/2023]
Abstract
Large RNA-binding complexes play a central role in gene expression and orchestrate production, function, and turnover of mRNAs. The accuracy and dynamics of RNA–protein interactions within these molecular machines are essential for their function and are mediated by RNA-binding proteins (RBPs). Here, we show that fission yeast whole-cell poly(A)+ RNA–protein crosslinking data provide information on the organization of RNA–protein complexes. To evaluate the relative enrichment of cellular RBPs on poly(A)+ RNA, we combine poly(A)+ RNA interactome capture with a whole-cell extract normalization procedure. This approach yields estimates of in vivo RNA-binding activities that identify subunits within multiprotein complexes that directly contact RNA. As validation, we trace RNA interactions of different functional modules of the 3′ end processing machinery and reveal additional contacts. Extending our analysis to different mutants of the RNA exosome complex, we explore how substrate channeling through the complex is affected by mutation. Our data highlight the central role of the RNA helicase Mtl1 in regulation of the complex and provide insights into how different components contribute to engagement of the complex with substrate RNA. In addition, we characterize RNA-binding activities of novel RBPs that have been recurrently detected in the RNA interactomes of multiple species. We find that many of these, including cyclophilins and thioredoxins, are substoichiometric RNA interactors in vivo. Because RBPomes show very good overall agreement between species, we propose that the RNA-binding characteristics we observe in fission yeast are likely to apply to related proteins in higher eukaryotes as well.
Collapse
Affiliation(s)
- Cornelia Kilchert
- Institut für Biochemie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Tea Kecman
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Emily Priest
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Svenja Hester
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Ebru Aydin
- Institut für Biochemie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Krzysztof Kus
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Oliver Rossbach
- Institut für Biochemie, Justus-Liebig-Universität Gießen, 35392 Gießen, Germany
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom.,Department of Chemistry, University of Oxford, Chemistry Research Laboratory, Oxford, OX1 3TA, United Kingdom
| | - Lidia Vasiljeva
- Department of Biochemistry, University of Oxford, Oxford, OX1 3QU, United Kingdom
| |
Collapse
|
5
|
Shipkovenska G, Durango A, Kalocsay M, Gygi SP, Moazed D. A conserved RNA degradation complex required for spreading and epigenetic inheritance of heterochromatin. eLife 2020; 9:54341. [PMID: 32491985 PMCID: PMC7269676 DOI: 10.7554/elife.54341] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 05/18/2020] [Indexed: 12/14/2022] Open
Abstract
Heterochromatic domains containing histone H3 lysine 9 methylation (H3K9me) can be epigenetically inherited independently of underlying DNA sequence. To gain insight into the mechanisms that mediate epigenetic inheritance, we used a Schizosaccharomyces pombe inducible heterochromatin formation system to perform a genetic screen for mutations that abolish heterochromatin inheritance without affecting its establishment. We identified mutations in several pathways, including the conserved and essential Rix1-associated complex (henceforth the rixosome), which contains RNA endonuclease and polynucleotide kinase activities with known roles in ribosomal RNA processing. We show that the rixosome is required for spreading and epigenetic inheritance of heterochromatin in fission yeast. Viable rixosome mutations that disrupt its association with Swi6/HP1 fail to localize to heterochromatin, lead to accumulation of heterochromatic RNAs, and block spreading of H3K9me and silencing into actively transcribed regions. These findings reveal a new pathway for degradation of heterochromatic RNAs with essential roles in heterochromatin spreading and inheritance.
Collapse
Affiliation(s)
- Gergana Shipkovenska
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Alexander Durango
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Marian Kalocsay
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, United States
| | - Danesh Moazed
- Howard Hughes Medical Institute, Department of Cell Biology, Harvard Medical School, Boston, United States
| |
Collapse
|
6
|
Milbury KL, Paul B, Lari A, Fowler C, Montpetit B, Stirling PC. Exonuclease domain mutants of yeast DIS3 display genome instability. Nucleus 2020; 10:21-32. [PMID: 30724665 PMCID: PMC6380420 DOI: 10.1080/19491034.2019.1578600] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The exosome functions to regulate the cellular transcriptome through RNA biogenesis, surveillance, and decay. Mutations in Dis3, a catalytic subunit of the RNA exosome with separable endonuclease and exonuclease activities, are linked to multiple myeloma. Here we report that a cancer-associated DIS3 allele, dis3E729K, provides evidence for DIS3 functioning in mitotic fidelity in yeast. This dis3E729K allele does not induce defects in 7S→5.8S rRNA processing, although it elicits a requirement for P-body function. While it does not significantly influence cell cycle progression alone, the allele reduces the efficiency of cell cycle arrest in strains with defects in kinetochore assembly. Finally, point mutations in the exonuclease domains of yeast Dis3 elicit genome instability phenotypes; however, these DIS3 mutations do not increase DNA damage or RNA processing defects that lead to the accumulation of polyadenylated RNA in the nucleus. These data suggest that specific DIS3 activities support mitotic fidelity in yeast.
Collapse
Affiliation(s)
- Karissa L Milbury
- a Terry Fox Laboratory , British Columbia Cancer Agency , Vancouver , Canada
| | - Biplab Paul
- b Department of Cell Biology , University of Alberta , Edmonton , Canada
| | - Azra Lari
- b Department of Cell Biology , University of Alberta , Edmonton , Canada
| | - Claire Fowler
- a Terry Fox Laboratory , British Columbia Cancer Agency , Vancouver , Canada
| | - Ben Montpetit
- b Department of Cell Biology , University of Alberta , Edmonton , Canada.,c Department of Viticulture and Enology , University of California , Davis , CA , USA
| | - Peter C Stirling
- a Terry Fox Laboratory , British Columbia Cancer Agency , Vancouver , Canada.,d Department of Medical Genetics , University of British Columbia , Vancouver , BC , Canada
| |
Collapse
|
7
|
Abstract
The evolutionarily conserved RNA exosome is a multisubunit ribonuclease complex that processes and/or degrades numerous RNAs. Recently, mutations in genes encoding both structural and catalytic subunits of the RNA exosome have been linked to human disease. Mutations in the structural exosome gene EXOSC2 cause a distinct syndrome that includes retinitis pigmentosa, hearing loss, and mild intellectual disability. In contrast, mutations in the structural exosome genes EXOSC3 and EXOSC8 cause pontocerebellar hypoplasia type 1b (PCH1b) and type 1c (PCH1c), respectively, which are related autosomal recessive, neurodegenerative diseases. In addition, mutations in the structural exosome gene EXOSC9 cause a PCH-like disease with cerebellar atrophy and spinal motor neuronopathy. Finally, mutations in the catalytic exosome gene DIS3 have been linked to multiple myeloma, a neoplasm of plasma B cells. How mutations in these RNA exosome genes lead to distinct, tissue-specific diseases is not currently well understood. In this chapter, we examine the role of the RNA exosome complex in human disease and discuss the mechanisms by which mutations in different exosome subunit genes could impair RNA exosome function and give rise to diverse diseases.
Collapse
Affiliation(s)
- Milo B Fasken
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| | - Derrick J Morton
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Emily G Kuiper
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Stephanie K Jones
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
- Genetics and Molecular Biology Graduate Program, Emory University, Atlanta, GA, USA
| | - Sara W Leung
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA
| | - Anita H Corbett
- Department of Biology, RRC 1021, Emory University, Atlanta, GA, USA.
| |
Collapse
|
8
|
Takeda A, Saitoh S, Ohkura H, Sawin KE, Goshima G. Identification of 15 New Bypassable Essential Genes of Fission Yeast. Cell Struct Funct 2019; 44:113-119. [PMID: 31474649 PMCID: PMC6877344 DOI: 10.1247/csf.19025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Every organism has a different set of genes essential for its viability. This indicates that an organism can become tolerant to the loss of an essential gene under certain circumstances during evolution, via the manifestation of 'masked' alternative mechanisms. In our quest to systematically uncover masked mechanisms in eukaryotic cells, we developed an extragenic suppressor screening method using haploid spores deleted of an essential gene in the fission yeast Schizosaccharomyces pombe. We screened for the 'bypass' suppressors of lethality of 92 randomly selected genes that are essential for viability in standard laboratory culture conditions. Remarkably, extragenic mutations bypassed the essentiality of as many as 20 genes (22%), 15 of which have not been previously reported. Half of the bypass-suppressible genes were involved in mitochondria function; we also identified multiple genes regulating RNA processing. 18 suppressible genes were conserved in the budding yeast Saccharomyces cerevisiae, but 13 of them were non-essential in that species. These trends suggest that essentiality bypass is not a rare event and that each organism may be endowed with secondary or backup mechanisms that can substitute for primary mechanisms in various biological processes. Furthermore, the robustness of our simple spore-based methodology paves the way for genome-scale screening.Key words: Schizosaccharomyces pombe, extragenic suppressor screening, bypass of essentiality (BOE), cut7 (kinesin-5), hul5 (E3 ubiquitin ligase).
Collapse
Affiliation(s)
- Aoi Takeda
- Division of Biological Science, Graduate School of Science, Nagoya
University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Shigeaki Saitoh
- Division of Cell Biology, Institute of Life Science, Kurume
University, Kurume, Fukuoka 830-0011, Japan
| | - Hiroyuki Ohkura
- Wellcome Centre for Cell Biology, School of Biological Sciences,
University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9
3BF, UK
| | - Kenneth E. Sawin
- Wellcome Centre for Cell Biology, School of Biological Sciences,
University of Edinburgh, Michael Swann Building, Max Born Crescent, Edinburgh EH9
3BF, UK
| | - Gohta Goshima
- Division of Biological Science, Graduate School of Science, Nagoya
University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan,Correspondence should be addressed to:
: Phone: +81 52-788-6175
| |
Collapse
|
9
|
Pillon MC, Lo YH, Stanley RE. IT'S 2 for the price of 1: Multifaceted ITS2 processing machines in RNA and DNA maintenance. DNA Repair (Amst) 2019; 81:102653. [PMID: 31324529 PMCID: PMC6764878 DOI: 10.1016/j.dnarep.2019.102653] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Cells utilize sophisticated RNA processing machines to ensure the quality of RNA. Many RNA processing machines have been further implicated in regulating the DNA damage response signifying a strong link between RNA processing and genome maintenance. One of the most intricate and highly regulated RNA processing pathways is the processing of the precursor ribosomal RNA (pre-rRNA), which is paramount for the production of ribosomes. Removal of the Internal Transcribed Spacer 2 (ITS2), located between the 5.8S and 25S rRNA, is one of the most complex steps of ribosome assembly. Processing of the ITS2 is initiated by the newly discovered endoribonuclease Las1, which cleaves at the C2 site within the ITS2, generating products that are further processed by the polynucleotide kinase Grc3, the 5'→3' exonuclease Rat1, and the 3'→5' RNA exosome complex. In addition to their defined roles in ITS2 processing, these critical cellular machines participate in other stages of ribosome assembly, turnover of numerous cellular RNAs, and genome maintenance. Here we summarize recent work defining the molecular mechanisms of ITS2 processing by these essential RNA processing machines and highlight their emerging roles in transcription termination, heterochromatin function, telomere maintenance, and DNA repair.
Collapse
Affiliation(s)
- Monica C Pillon
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Yu-Hua Lo
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | - Robin E Stanley
- Signal Transduction Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, 111 T. W. Alexander Drive, Research Triangle Park, NC 27709, USA.
| |
Collapse
|
10
|
Smurova K, De Wulf P. Centromere and Pericentromere Transcription: Roles and Regulation … in Sickness and in Health. Front Genet 2018; 9:674. [PMID: 30627137 PMCID: PMC6309819 DOI: 10.3389/fgene.2018.00674] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 12/04/2018] [Indexed: 12/26/2022] Open
Abstract
The chromosomal loci known as centromeres (CEN) mediate the equal distribution of the duplicated genome between both daughter cells. Specifically, centromeres recruit a protein complex named the kinetochore, that bi-orients the replicated chromosome pairs to the mitotic or meiotic spindle structure. The paired chromosomes are then separated, and the individual chromosomes segregate in opposite direction along the regressing spindle into each daughter cell. Erroneous kinetochore assembly or activity produces aneuploid cells that contain an abnormal number of chromosomes. Aneuploidy may incite cell death, developmental defects (including genetic syndromes), and cancer (>90% of all cancer cells are aneuploid). While kinetochores and their activities have been preserved through evolution, the CEN DNA sequences have not. Hence, to be recognized as sites for kinetochore assembly, CEN display conserved structural themes. In addition, CEN nucleosomes enclose a CEN-exclusive variant of histone H3, named CENP-A, and carry distinct epigenetic labels on CENP-A and the other CEN histone proteins. Through the cell cycle, CEN are transcribed into non-coding RNAs. After subsequent processing, they become key components of the CEN chromatin by marking the CEN locus and by stably anchoring the CEN-binding kinetochore proteins. CEN transcription is tightly regulated, of low intensity, and essential for differentiation and development. Under- or overexpression of CEN transcripts, as documented for myriad cancers, provoke chromosome missegregation and aneuploidy. CEN are genetically stable and fully competent only when they are insulated from the surrounding, pericentromeric chromatin, which must be silenced. We will review CEN transcription and its contribution to faithful kinetochore function. We will further discuss how pericentromeric chromatin is silenced by RNA processing and transcriptionally repressive chromatin marks. We will report on the transcriptional misregulation of (peri)centromeres during stress, natural aging, and disease and reflect on whether their transcripts can serve as future diagnostic tools and anti-cancer targets in the clinic.
Collapse
Affiliation(s)
- Ksenia Smurova
- Centre for Integrative Biology, University of Trento, Trento, Italy
| | - Peter De Wulf
- Centre for Integrative Biology, University of Trento, Trento, Italy
| |
Collapse
|
11
|
Towler BP, Newbury SF. Regulation of cytoplasmic RNA stability: Lessons from Drosophila. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1499. [PMID: 30109918 DOI: 10.1002/wrna.1499] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/06/2018] [Accepted: 07/01/2018] [Indexed: 12/19/2022]
Abstract
The process of RNA degradation is a critical level of regulation contributing to the control of gene expression. In the last two decades a number of studies have shown the specific and targeted nature of RNA decay and its importance in maintaining homeostasis. The key players within the pathways of RNA decay are well conserved with their mutation or disruption resulting in distinct phenotypes as well as human disease. Model organisms including Drosophila melanogaster have played a substantial role in elucidating the mechanisms conferring control over RNA stability. A particular advantage of this model organism is that the functions of ribonucleases can be assessed in the context of natural cells within tissues in addition to individual immortalized cells in culture. Drosophila RNA stability research has demonstrated how the cytoplasmic decay machines, such as the exosome, Dis3L2 and Xrn1, are responsible for regulating specific processes including apoptosis, proliferation, wound healing and fertility. The work discussed here has begun to identify specific mRNA transcripts that appear sensitive to specific decay pathways representing mechanisms through which the ribonucleases control mRNA stability. Drosophila research has also contributed to our knowledge of how specific RNAs are targeted to the ribonucleases including AU rich elements, miRNA targeting and 3' tailing. Increased understanding of these mechanisms is critical to elucidating the control elicited by the cytoplasmic ribonucleases which is relevant to human disease. This article is categorized under: RNA in Disease and Development > RNA in Development RNA Turnover and Surveillance > Regulation of RNA Stability RNA Turnover and Surveillance > Turnover/Surveillance Mechanisms.
Collapse
Affiliation(s)
- Benjamin P Towler
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Sarah F Newbury
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
12
|
Pervasive Protein Thermal Stability Variation during the Cell Cycle. Cell 2018; 173:1495-1507.e18. [PMID: 29706546 PMCID: PMC5998384 DOI: 10.1016/j.cell.2018.03.053] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 01/18/2018] [Accepted: 03/21/2018] [Indexed: 11/21/2022]
Abstract
Quantitative mass spectrometry has established proteome-wide regulation of protein abundance and post-translational modifications in various biological processes. Here, we used quantitative mass spectrometry to systematically analyze the thermal stability and solubility of proteins on a proteome-wide scale during the eukaryotic cell cycle. We demonstrate pervasive variation of these biophysical parameters with most changes occurring in mitosis and G1. Various cellular pathways and components vary in thermal stability, such as cell-cycle factors, polymerases, and chromatin remodelers. We demonstrate that protein thermal stability serves as a proxy for enzyme activity, DNA binding, and complex formation in situ. Strikingly, a large cohort of intrinsically disordered and mitotically phosphorylated proteins is stabilized and solubilized in mitosis, suggesting a fundamental remodeling of the biophysical environment of the mitotic cell. Our data represent a rich resource for cell, structural, and systems biologists interested in proteome regulation during biological transitions.
Collapse
|
13
|
The Conserved RNA Binding Cyclophilin, Rct1, Regulates Small RNA Biogenesis and Splicing Independent of Heterochromatin Assembly. Cell Rep 2018. [PMID: 28636937 DOI: 10.1016/j.celrep.2017.05.086] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNAi factors and their catalytic activities are essential for heterochromatin assembly in S. pombe. This has led to the idea that siRNAs can promote H3K9 methylation by recruiting the cryptic loci regulator complex (CLRC), also known as recombination in K complex (RIKC), to the nucleation site. The conserved RNA-binding protein Rct1 (AtCyp59/SIG-7) interacts with splicing factors and RNA polymerase II. Here we show that Rct1 promotes processing of pericentromeric transcripts into siRNAs via the RNA recognition motif. Surprisingly, loss of siRNA in rct1 mutants has no effect on H3K9 di- or tri-methylation, resembling other splicing mutants, suggesting that post-transcriptional gene silencing per se is not required to maintain heterochromatin. Splicing of the Argonaute gene is also defective in rct1 mutants and contributes to loss of silencing but not to loss of siRNA. Our results suggest that Rct1 guides transcripts to the RNAi machinery by promoting splicing of elongating non-coding transcripts.
Collapse
|
14
|
Oakley MS, Verma N, Zheng H, Anantharaman V, Takeda K, Gao Y, Myers TG, Pham PT, Mahajan B, Kumar N, Sangweme D, Tripathi AK, Mlambo G, Aravind L, Kumar S. Molecular Markers of Radiation Induced Attenuation in Intrahepatic Plasmodium falciparum Parasites. PLoS One 2016; 11:e0166814. [PMID: 27911910 PMCID: PMC5135057 DOI: 10.1371/journal.pone.0166814] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 11/04/2016] [Indexed: 11/24/2022] Open
Abstract
Experimental immunization with radiation attenuated sporozoites (RAS) and genetically attenuated sporozoites has proved to be a promising approach for malaria vaccine development. However, parasite biomarkers of growth attenuation and enhanced immune protection in response to radiation remain poorly understood. Here, we report on the effect of an attenuating dose of γ-irradiation (15 krad) on the Plasmodium falciparum sporozoite (PfSPZ) ultrastructure by electron microscopy, growth rate of liver stage P. falciparum in liver cell cultures, and genome-wide transcriptional profile of liver stage parasites by microarray. We find that γ-irradiation treated PfSPZ retained a normal cellular structure except that they were vacuous with a partially disrupted plasma membrane and inner membrane complex. A similar infection rate was observed by γ-irradiation-treated and untreated PfSPZ in human HCO-4 liver cells (0.47% versus 0.49%, respectively) on day 3 post-infection. In the microarray studies, cumulatively, 180 liver stage parasite genes were significantly transcriptionally altered on day 3 and/or 6 post-infection. Among the transcriptionally altered biomarkers, we identified a signature of seven candidate parasite genes that associated with functionally diverse pathways that may regulate radiation induced cell cycle arrest of the parasite within the hepatocyte. A repertoire of 14 genes associated with protein translation is transcriptionally overexpressed within the parasite by radiation. Additionally, 37 genes encode proteins expressed on the cell surface or exported into the host cell, 4 encode membrane associated transporters, and 10 encode proteins related to misfolding and stress-related protein processing. These results have significantly increased the repertoire of novel targets for 1) biomarkers of safety to define proper attenuation, 2) generating genetically attenuated parasite vaccine candidates, and 3) subunit candidate vaccines against liver stage malaria.
Collapse
Affiliation(s)
- Miranda S. Oakley
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Nitin Verma
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Hong Zheng
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Vivek Anantharaman
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States
| | - Kazuyo Takeda
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Yamei Gao
- Division of Viral Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Timothy G. Myers
- Genomics Technologies Section, Research Technologies Branch, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, United States
| | - Phuong Thao Pham
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Babita Mahajan
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Nirbhay Kumar
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Davison Sangweme
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Abhai K. Tripathi
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - Godfree Mlambo
- Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States
| | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, Maryland, United States
| | - Sanjai Kumar
- Division of Emerging and Transfusion Transmitted Diseases, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, Maryland, United States
- * E-mail:
| |
Collapse
|
15
|
Hoskins JW, Ibrahim A, Emmanuel MA, Manmiller SM, Wu Y, O’Neill M, Jia J, Collins I, Zhang M, Thomas JV, Rost LM, Das S, Parikh H, Haake JM, Matters GL, Kurtz RC, Bamlet WR, Klein A, Stolzenberg-Solomon R, Wolpin BM, Yarden R, Wang Z, Smith J, Olson SH, Andresson T, Petersen GM, Amundadottir LT. Functional characterization of a chr13q22.1 pancreatic cancer risk locus reveals long-range interaction and allele-specific effects on DIS3 expression. Hum Mol Genet 2016; 25:4726-4738. [PMID: 28172817 PMCID: PMC5815622 DOI: 10.1093/hmg/ddw300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 07/08/2016] [Accepted: 08/26/2016] [Indexed: 12/20/2022] Open
Abstract
Genome-wide association studies (GWAS) have identified multiple common susceptibility loci for pancreatic cancer. Here we report fine-mapping and functional analysis of one such locus residing in a 610 kb gene desert on chr13q22.1 (marked by rs9543325). The closest candidate genes, KLF5, KLF12, PIBF1, DIS3 and BORA, range in distance from 265-586 kb. Sequencing three sub-regions containing the top ranked SNPs by imputation P-value revealed a 30 bp insertion/deletion (indel) variant that was significantly associated with pancreatic cancer risk (rs386772267, P = 2.30 × 10-11, OR = 1.22, 95% CI 1.15-1.28) and highly correlated to rs9543325 (r2 = 0.97 in the 1000 Genomes EUR population). This indel was the most significant cis-eQTL variant in a set of 222 histologically normal pancreatic tissue samples (β = 0.26, P = 0.004), with the insertion (risk-increasing) allele associated with reduced DIS3 expression. DIS3 encodes a catalytic subunit of the nuclear RNA exosome complex that mediates RNA processing and decay, and is mutated in several cancers. Chromosome conformation capture revealed a long range (570 kb) physical interaction between a sub-region of the risk locus, containing rs386772267, and a region ∼6 kb upstream of DIS3 Finally, repressor regulatory activity and allele-specific protein binding by transcription factors of the TCF/LEF family were observed for the risk-increasing allele of rs386772267, indicating that expression regulation at this risk locus may be influenced by the Wnt signaling pathway. In conclusion, we have identified a putative functional indel variant at chr13q22.1 that associates with decreased DIS3 expression in carriers of pancreatic cancer risk-increasing alleles, and could therefore affect nuclear RNA processing and/or decay.
Collapse
Affiliation(s)
- Jason W. Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Abdisamad Ibrahim
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mickey A. Emmanuel
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sarah M. Manmiller
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yinglun Wu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Maura O’Neill
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Jinping Jia
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Janelle V. Thomas
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lauren M. Rost
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sudipto Das
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Hemang Parikh
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Health Informatics Institute, Morsani College of Medicine, University of South Florida, Tampa, FL, USA
| | - Jefferson M. Haake
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Gail L. Matters
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Robert C. Kurtz
- Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York, USA
| | - William R. Bamlet
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Alison Klein
- Department of Oncology, the Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Epidemiology, the Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rachael Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian M. Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Ronit Yarden
- Department of Human Science, NHS, Georgetown University Medical Center, NW, Washington DC, USA
| | - Zhaoming Wang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Jill Smith
- Department of Medicine, Georgetown University Hospital, Washington, DC, and Department of Medicine, Penn State University College of Medicine, Hershey PA, USA
| | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, NY, USA
| | - Thorkell Andresson
- Protein Characterization Laboratory, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Gloria M. Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Laufey T. Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
16
|
The fission yeast CENP-B protein Abp1 prevents pervasive transcription of repetitive DNA elements. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1314-21. [PMID: 27345571 DOI: 10.1016/j.bbagrm.2016.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2016] [Revised: 06/03/2016] [Accepted: 06/22/2016] [Indexed: 11/20/2022]
Abstract
It is well established that eukaryotic genomes are pervasively transcribed producing cryptic unstable transcripts (CUTs). However, the mechanisms regulating pervasive transcription are not well understood. Here, we report that the fission yeast CENP-B homolog Abp1 plays an important role in preventing pervasive transcription. We show that loss of abp1 results in the accumulation of CUTs, which are targeted for degradation by the exosome pathway. These CUTs originate from different types of genomic features, but the highest increase corresponds to Tf2 retrotransposons and rDNA repeats, where they map along the entire elements. In the absence of abp1, increased RNAPII-Ser5P occupancy is observed throughout the Tf2 coding region and, unexpectedly, RNAPII-Ser5P is enriched at rDNA repeats. Loss of abp1 also results in Tf2 derepression and increased nucleolus size. Altogether these results suggest that Abp1 prevents pervasive RNAPII transcription of repetitive DNA elements (i.e., Tf2 and rDNA repeats) from internal cryptic sites.
Collapse
|
17
|
Collaborative Control of Cell Cycle Progression by the RNA Exonuclease Dis3 and Ras Is Conserved Across Species. Genetics 2016; 203:749-62. [PMID: 27029730 DOI: 10.1534/genetics.116.187930] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 03/26/2016] [Indexed: 11/18/2022] Open
Abstract
Dis3 encodes a conserved RNase that degrades or processes all RNA species via an N-terminal PilT N terminus (PIN) domain and C-terminal RNB domain that harbor, respectively, endonuclease activity and 3'-5' exonuclease activity. In Schizosaccharomyces pombe, dis3 mutations cause chromosome missegregation and failure in mitosis, suggesting dis3 promotes cell division. In humans, apparently hypomorphic dis3 mutations are found recurrently in multiple myeloma, suggesting dis3 opposes cell division. Except for the observation that RNAi-mediated depletion of dis3 function drives larval arrest and reduces tissue growth in Drosophila, the role of dis3 has not been rigorously explored in higher eukaryotic systems. Using the Drosophila system and newly generated dis3 null alleles, we find that absence of dis3 activity inhibits cell division. We uncover a conserved CDK1 phosphorylation site that when phosphorylated inhibits Dis3's exonuclease, but not endonuclease, activity. Leveraging this information, we show that Dis3's exonuclease function is required for mitotic cell division: in its absence, cells are delayed in mitosis and exhibit aneuploidy and overcondensed chromosomes. In contrast, we find that modest reduction of dis3 function enhances cell proliferation in the presence of elevated Ras activity, apparently by accelerating cells through G2/M even though each insult by itself delays G2/M. Additionally, we find that dis3 and ras genetically interact in worms and that dis3 can enhance cell proliferation under growth stimulatory conditions in murine B cells. Thus, reduction, but not absence, of dis3 activity can enhance cell proliferation in higher organisms.
Collapse
|
18
|
Robinson SR, Oliver AW, Chevassut TJ, Newbury SF. The 3' to 5' Exoribonuclease DIS3: From Structure and Mechanisms to Biological Functions and Role in Human Disease. Biomolecules 2015; 5:1515-39. [PMID: 26193331 PMCID: PMC4598762 DOI: 10.3390/biom5031515] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 07/01/2015] [Accepted: 07/06/2015] [Indexed: 12/03/2022] Open
Abstract
DIS3 is a conserved exoribonuclease and catalytic subunit of the exosome, a protein complex involved in the 3' to 5' degradation and processing of both nuclear and cytoplasmic RNA species. Recently, aberrant expression of DIS3 has been found to be implicated in a range of different cancers. Perhaps most striking is the finding that DIS3 is recurrently mutated in 11% of multiple myeloma patients. Much work has been done to elucidate the structural and biochemical characteristics of DIS3, including the mechanistic details of its role as an effector of RNA decay pathways. Nevertheless, we do not understand how DIS3 mutations can lead to cancer. There are a number of studies that pertain to the function of DIS3 at the organismal level. Mutant phenotypes in S. pombe, S. cerevisiae and Drosophila suggest DIS3 homologues have a common role in cell-cycle progression and microtubule assembly. DIS3 has also recently been implicated in antibody diversification of mouse B-cells. This article aims to review current knowledge of the structure, mechanisms and functions of DIS3 as well as highlighting the genetic patterns observed within myeloma patients, in order to yield insight into the putative role of DIS3 mutations in oncogenesis.
Collapse
Affiliation(s)
- Sophie R Robinson
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| | - Antony W Oliver
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Falmer, Brighton BN1 9RQ, UK.
| | - Timothy J Chevassut
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| | - Sarah F Newbury
- Medical Research Building, Brighton and Sussex Medical School, University of Sussex, Falmer, Brighton BN1 9PS, UK.
| |
Collapse
|
19
|
Bitton DA, Atkinson SR, Rallis C, Smith GC, Ellis DA, Chen YYC, Malecki M, Codlin S, Lemay JF, Cotobal C, Bachand F, Marguerat S, Mata J, Bähler J. Widespread exon skipping triggers degradation by nuclear RNA surveillance in fission yeast. Genome Res 2015; 25:884-96. [PMID: 25883323 PMCID: PMC4448684 DOI: 10.1101/gr.185371.114] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2014] [Accepted: 03/31/2015] [Indexed: 12/31/2022]
Abstract
Exon skipping is considered a principal mechanism by which eukaryotic cells expand their transcriptome and proteome repertoires, creating different splice variants with distinct cellular functions. Here we analyze RNA-seq data from 116 transcriptomes in fission yeast (Schizosaccharomyces pombe), covering multiple physiological conditions as well as transcriptional and RNA processing mutants. We applied brute-force algorithms to detect all possible exon-skipping events, which were widespread but rare compared to normal splicing events. Exon-skipping events increased in cells deficient for the nuclear exosome or the 5′-3′ exonuclease Dhp1, and also at late stages of meiotic differentiation when nuclear-exosome transcripts decreased. The pervasive exon-skipping transcripts were stochastic, did not increase in specific physiological conditions, and were mostly present at less than one copy per cell, even in the absence of nuclear RNA surveillance and during late meiosis. These exon-skipping transcripts are therefore unlikely to be functional and may reflect splicing errors that are actively removed by nuclear RNA surveillance. The average splicing rate by exon skipping was ∼0.24% in wild type and ∼1.75% in nuclear exonuclease mutants. We also detected approximately 250 circular RNAs derived from single or multiple exons. These circular RNAs were rare and stochastic, although a few became stabilized during quiescence and in splicing mutants. Using an exhaustive search algorithm, we also uncovered thousands of previously unknown splice sites, indicating pervasive splicing; yet most of these splicing variants were cryptic and increased in nuclear degradation mutants. This study highlights widespread but low frequency alternative or aberrant splicing events that are targeted by nuclear RNA surveillance.
Collapse
Affiliation(s)
- Danny A Bitton
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Sophie R Atkinson
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Charalampos Rallis
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Graeme C Smith
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - David A Ellis
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Yuan Y C Chen
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Michal Malecki
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Sandra Codlin
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Jean-François Lemay
- Université de Sherbrooke, Department of Biochemistry, Sherbrooke, Quebec J1H 5N4, Canada
| | - Cristina Cotobal
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - François Bachand
- Université de Sherbrooke, Department of Biochemistry, Sherbrooke, Quebec J1H 5N4, Canada
| | - Samuel Marguerat
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| | - Juan Mata
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Jürg Bähler
- University College London, Research Department of Genetics, Evolution and Environment and UCL Cancer Institute, London WC1E 6BT, United Kingdom
| |
Collapse
|
20
|
Saksouk N, Barth TK, Ziegler-Birling C, Olova N, Nowak A, Rey E, Mateos-Langerak J, Urbach S, Reik W, Torres-Padilla ME, Imhof A, Déjardin J, Simboeck E. Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol Cell 2014; 56:580-94. [PMID: 25457167 DOI: 10.1016/j.molcel.2014.10.001] [Citation(s) in RCA: 159] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 08/22/2014] [Accepted: 09/30/2014] [Indexed: 11/25/2022]
Abstract
Constitutive heterochromatin is typically defined by high levels of DNA methylation and H3 lysine 9 trimethylation (H3K9Me3), whereas facultative heterochromatin displays DNA hypomethylation and high H3 lysine 27 trimethylation (H3K27Me3). The two chromatin types generally do not coexist at the same loci, suggesting mutual exclusivity. During development or in cancer, pericentromeric regions can adopt either epigenetic state, but the switching mechanism is unknown. We used a quantitative locus purification method to characterize changes in pericentromeric chromatin-associated proteins in mouse embryonic stem cells deficient for either the methyltransferases required for DNA methylation or H3K9Me3. DNA methylation controls heterochromatin architecture and inhibits Polycomb recruitment. BEND3, a protein enriched on pericentromeric chromatin in the absence of DNA methylation or H3K9Me3, allows Polycomb recruitment and H3K27Me3, resulting in a redundant pathway to generate repressive chromatin. This suggests that BEND3 is a key factor in mediating a switch from constitutive to facultative heterochromatin.
Collapse
Affiliation(s)
- Nehmé Saksouk
- INSERM AVENIR, Institute of Human Genetics CNRS UPR1142, 141 rue de la Cardonille, 34000 Montpellier, France
| | - Teresa K Barth
- Munich Centre of Integrated Protein Science and Adolf Butenandt Institute, Group, Ludwig-Maximillians University of Munich, Schillerstrasse 44, 80336 Munich, Germany
| | - Celine Ziegler-Birling
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Nelly Olova
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK
| | - Agnieszka Nowak
- INSERM AVENIR, Institute of Human Genetics CNRS UPR1142, 141 rue de la Cardonille, 34000 Montpellier, France
| | - Elodie Rey
- INSERM AVENIR, Institute of Human Genetics CNRS UPR1142, 141 rue de la Cardonille, 34000 Montpellier, France
| | - Julio Mateos-Langerak
- INSERM AVENIR, Institute of Human Genetics CNRS UPR1142, 141 rue de la Cardonille, 34000 Montpellier, France
| | - Serge Urbach
- Functional Proteomics Facility, Institute of Functional Genomics, 141 rue de la Cardonille, 34000 Montpellier, France
| | - Wolf Reik
- The Babraham Institute, Babraham Research Campus, Cambridge CB22 3AT, UK; Epigenetics Programme, The Babraham Institute, Cambridge, CB22 3AT, UK; Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK; Centre for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, UK
| | - Maria-Elena Torres-Padilla
- Institute of Genetics and Molecular and Cellular Biology (IGBMC), 1 rue Laurent Fries, 67404 Illkirch, France
| | - Axel Imhof
- Munich Centre of Integrated Protein Science and Adolf Butenandt Institute, Group, Ludwig-Maximillians University of Munich, Schillerstrasse 44, 80336 Munich, Germany
| | - Jérome Déjardin
- INSERM AVENIR, Institute of Human Genetics CNRS UPR1142, 141 rue de la Cardonille, 34000 Montpellier, France.
| | | |
Collapse
|
21
|
Tsanova B, Spatrick P, Jacobson A, van Hoof A. The RNA exosome affects iron response and sensitivity to oxidative stress. RNA (NEW YORK, N.Y.) 2014; 20:1057-1067. [PMID: 24860016 PMCID: PMC4114685 DOI: 10.1261/rna.043257.113] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/01/2014] [Indexed: 06/03/2023]
Abstract
RNA degradation plays important roles for maintaining temporal control and fidelity of gene expression, as well as processing of transcripts. In Saccharomyces cerevisiae the RNA exosome is a major 3'-to-5' exoribonuclease and also has an endonuclease domain of unknown function. Here we report a physiological role for the exosome in response to a stimulus. We show that inactivating the exoribonuclease active site of Rrp44 up-regulates the iron uptake regulon. This up-regulation is caused by increased levels of reactive oxygen species (ROS) in the mutant. Elevated ROS also causes hypersensitivity to H2O2, which can be reduced by the addition of iron to H2O2 stressed cells. Finally, we show that the previously characterized slow growth phenotype of rrp44-exo(-) is largely ameliorated during fermentative growth. While the molecular functions of Rrp44 and the RNA exosome have been extensively characterized, our studies characterize how this molecular function affects the physiology of the organism.
Collapse
Affiliation(s)
- Borislava Tsanova
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center–Houston and The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| | - Phyllis Spatrick
- Department of Microbiology and Physiological Systems, Albert Sherman Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Allan Jacobson
- Department of Microbiology and Physiological Systems, Albert Sherman Center, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Ambro van Hoof
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center–Houston and The University of Texas Graduate School of Biomedical Sciences, Houston, Texas 77030, USA
| |
Collapse
|
22
|
Kumakura N, Otsuki H, Tsuzuki M, Takeda A, Watanabe Y. Arabidopsis AtRRP44A is the functional homolog of Rrp44/Dis3, an exosome component, is essential for viability and is required for RNA processing and degradation. PLoS One 2013; 8:e79219. [PMID: 24244451 PMCID: PMC3820695 DOI: 10.1371/journal.pone.0079219] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 09/26/2013] [Indexed: 11/25/2022] Open
Abstract
The RNA exosome is a multi-subunit complex that is responsible for 3ʹ to 5ʹ degradation and processing of cellular RNA. Rrp44/Dis3 is the catalytic center of the exosome in yeast and humans. However, the role of Rrp44/Dis3 homologs in plants is still unidentified. Here, we show that Arabidopsis AtRRP44A is the functional homolog of Rrp44/Dis3, is essential for plant viability and is required for RNA processing and degradation. We characterized AtRRP44A and AtRRP44B/SOV, two predicted Arabidopsis Rrp44/Dis3 homologs. AtRRP44A could functionally replace S. cerevisiae Rrp44/Dis3, but AtRRP44B/SOV could not. rrp44a knock-down mutants showed typical phenotypes of exosome function deficiency, 5.8S rRNA 3ʹ extension and rRNA maturation by-product over-accumulation, but rrp44b mutants did not. Conversely, AtRRP44B/SOV mutants showed elevated levels of a selected mRNA, on which rrp44a did not have detectable effects. Although T-DNA insertion mutants of AtRRP44B/SOV had no obvious phenotype, those of AtRRP44A showed defects in female gametophyte development and early embryogenesis. These results indicate that AtRRP44A and AtRRP44B/SOV have independent roles for RNA turnover in plants.
Collapse
Affiliation(s)
- Naoyoshi Kumakura
- Department of Life Sciences, Graduate School of Arts and Sciences, the University of Tokyo, Tokyo, Japan
| | | | | | | | | |
Collapse
|
23
|
Morris MR, Astuti D, Maher ER. Perlman syndrome: overgrowth, Wilms tumor predisposition and DIS3L2. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2013; 163C:106-13. [PMID: 23613427 DOI: 10.1002/ajmg.c.31358] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Perlman syndrome is a rare autosomal recessively inherited congenital overgrowth syndrome characterized by polyhydramnios, macrosomia, characteristic facial dysmorphology, renal dysplasia and nephroblastomatosis and multiple congenital anomalies. Perlman syndrome is associated with high neonatal mortality and, survivors have developmental delay and a high risk of Wilms tumor. Recently a Perlman syndrome locus was mapped to chromosome 2q37 and homozygous or compound heterozygous mutations were characterized in DIS3L2. The DIS3L2 gene product has ribonuclease activity and homology to the DIS3 component of the RNA exosome. It has been postulated that the clinical features of Perlman syndrome result from disordered RNA metabolism and, though the precise targets of DIS3L2 have yet to be characterized, in cellular models DIS3L2 knockdown is associated with abnormalities of cell growth and division.
Collapse
|
24
|
Schmidt K, Butler JS. Nuclear RNA surveillance: role of TRAMP in controlling exosome specificity. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:217-31. [PMID: 23417976 DOI: 10.1002/wrna.1155] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The advent of high-throughput sequencing technologies has revealed that pervasive transcription generates RNAs from nearly all regions of eukaryotic genomes. Normally, these transcripts undergo rapid degradation by a nuclear RNA surveillance system primarily featuring the RNA exosome. This multimeric protein complex plays a critical role in the efficient turnover and processing of a vast array of RNAs in the nucleus. Despite its initial discovery over a decade ago, important questions remain concerning the mechanisms that recruit and activate the nuclear exosome. Specificity and modulation of exosome activity requires additional protein cofactors, including the conserved TRAMP polyadenylation complex. Recent studies suggest that helicase and RNA-binding subunits of TRAMP direct RNA substrates for polyadenylation, which enhances their degradation by Dis3/Rrp44 and Rrp6, the two exosome-associated ribonucleases. These findings indicate that the exosome and TRAMP have evolved highly flexible functions that allow recognition of a wide range of RNA substrates. This flexibility provides the nuclear RNA surveillance system with the ability to regulate the levels of a broad range of coding and noncoding RNAs, which results in profound effects on gene expression, cellular development, gene silencing, and heterochromatin formation. This review summarizes recent findings on the nuclear RNA surveillance complexes, and speculates upon possible mechanisms for TRAMP-mediated substrate recognition and exosome activation.
Collapse
Affiliation(s)
- Karyn Schmidt
- Department of Biochemistry and Biophysics, Center for RNA Biology, University of Rochester Medical Center, Rochester, NY, USA
| | | |
Collapse
|
25
|
RNAi triggered by specialized machinery silences developmental genes and retrotransposons. Nature 2012; 493:557-60. [PMID: 23151475 PMCID: PMC3554839 DOI: 10.1038/nature11716] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 10/26/2012] [Indexed: 01/02/2023]
Abstract
RNA interference (RNAi) is a conserved mechanism in which small interfering RNAs (siRNAs) guide the degradation of cognate RNAs, but also promote heterochromatin assembly at repetitive DNA elements such as centromeric repeats. However, the full extent of RNAi functions and its endogenous targets have not been explored. Here we show that, in the fission yeast Schizosaccharomyces pombe, RNAi and heterochromatin factors cooperate to silence diverse loci, including sexual differentiation genes, genes encoding transmembrane proteins, and retrotransposons that are also targeted by the exosome RNA degradation machinery. In the absence of the exosome, transcripts are processed preferentially by the RNAi machinery, revealing siRNA clusters and a corresponding increase in heterochromatin modifications across large domains containing genes and retrotransposons. We show that the generation of siRNAs and heterochromatin assembly by RNAi is triggered by a mechanism involving the canonical poly(A) polymerase Pla1 and an associated RNA surveillance factor Red1, which also activate the exosome. Notably, siRNA production and heterochromatin modifications at these target loci are regulated by environmental growth conditions, and by developmental signals that induce gene expression during sexual differentiation. Our analyses uncover an interaction between RNAi and the exosome that is conserved in Drosophila, and show that differentiation signals modulate RNAi silencing to regulate developmental genes.
Collapse
|
26
|
Larochelle M, Lemay JF, Bachand F. The THO complex cooperates with the nuclear RNA surveillance machinery to control small nucleolar RNA expression. Nucleic Acids Res 2012; 40:10240-53. [PMID: 22965128 PMCID: PMC3488260 DOI: 10.1093/nar/gks838] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
THO is a multi-protein complex that promotes coupling between transcription and mRNA processing. In contrast to its role in mRNA biogenesis, we show here that the fission yeast THO complex negatively controls the expression of non-coding small nucleolar (sno) RNAs. Accordingly, the deletion of genes encoding subunits of the evolutionarily conserved THO complex results in increased levels of mature snoRNAs. We also show physical and functional connections between THO and components of the TRAMP polyadenylation complex, whose loss of function also results in snoRNA accumulation. Consistent with a role in snoRNA expression, we demonstrate that THO and TRAMP complexes are recruited to snoRNA genes, and that a functional THO complex is required to maintain TRAMP occupancy at sites of snoRNA transcription. Our findings suggest that THO promotes exosome-mediated degradation of snoRNA precursors by ensuring the presence of the TRAMP complex at snoRNA genes. This study unveils an unexpected role for THO in the control of snoRNA expression and provides a new link between transcription and nuclear RNA decay.
Collapse
Affiliation(s)
- Marc Larochelle
- Department of Biochemistry, RNA Group, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | |
Collapse
|
27
|
Ryan CJ, Roguev A, Patrick K, Xu J, Jahari H, Tong Z, Beltrao P, Shales M, Qu H, Collins SR, Kliegman JI, Jiang L, Kuo D, Tosti E, Kim HS, Edelmann W, Keogh MC, Greene D, Tang C, Cunningham P, Shokat KM, Cagney G, Svensson JP, Guthrie C, Espenshade PJ, Ideker T, Krogan NJ. Hierarchical modularity and the evolution of genetic interactomes across species. Mol Cell 2012; 46:691-704. [PMID: 22681890 DOI: 10.1016/j.molcel.2012.05.028] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 05/01/2012] [Accepted: 05/15/2012] [Indexed: 12/13/2022]
Abstract
To date, cross-species comparisons of genetic interactomes have been restricted to small or functionally related gene sets, limiting our ability to infer evolutionary trends. To facilitate a more comprehensive analysis, we constructed a genome-scale epistasis map (E-MAP) for the fission yeast Schizosaccharomyces pombe, providing phenotypic signatures for ~60% of the nonessential genome. Using these signatures, we generated a catalog of 297 functional modules, and we assigned function to 144 previously uncharacterized genes, including mRNA splicing and DNA damage checkpoint factors. Comparison with an integrated genetic interactome from the budding yeast Saccharomyces cerevisiae revealed a hierarchical model for the evolution of genetic interactions, with conservation highest within protein complexes, lower within biological processes, and lowest between distinct biological processes. Despite the large evolutionary distance and extensive rewiring of individual interactions, both networks retain conserved features and display similar levels of functional crosstalk between biological processes, suggesting general design principles of genetic interactomes.
Collapse
Affiliation(s)
- Colm J Ryan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA 94158, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hou D, Ruiz M, Andrulis ED. The ribonuclease Dis3 is an essential regulator of the developmental transcriptome. BMC Genomics 2012; 13:359. [PMID: 22853036 PMCID: PMC3434026 DOI: 10.1186/1471-2164-13-359] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 07/11/2012] [Indexed: 11/24/2022] Open
Abstract
Background Dis3 is ribonuclease that acts directly in the processing, turnover, and surveillance of a large number of distinct RNA species. Evolutionarily conserved from eubacteria to eukaryotes and a crucial component of the RNA processing exosome, Dis3 has been shown to be essential in yeast and fly S2 cells. However, it is not known whether Dis3 has essential functions in a metazoan. This study inquires whether Dis3 is required for Drosophila development and viability and how Dis3 regulates the transcriptome in the developing fly. Results Using transgenic flies, we show that Dis3 knock down (Dis3KD) retards growth, induces melanotic tumor formation, and ultimately results in 2nd instar larval lethality. In order to determine whether Dis3KD fly phenotypes were a consequence of disrupting developmentally regulated RNA turnover, we performed RNA deep sequencing analysis on total RNA isolated from developmentally staged animals. Bioinformatic analysis of transcripts from Dis3KD flies reveals substantial transcriptomic changes, most notably down-regulation in early expressed RNAs. Finally, gene ontology analysis of this early stage shows that Dis3 regulates transcripts related to extracellular structure and remodelling, neurogenesis, and nucleotide metabolism. Conclusions We conclude that Dis3 is essential for early Drosophila melanogaster development and has specific and important stage-specific roles in regulating RNA metabolism. In showing for the first time that Dis3 is required for the development of a multicellular organism, our work provides mechanistic insight into how Dis3—either independent of or associated with the RNA processing exosome—participates in cell type-specific RNA turnover in metazoan development.
Collapse
Affiliation(s)
- Dezhi Hou
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA.
| | | | | |
Collapse
|
29
|
Dis3- and exosome subunit-responsive 3' mRNA instability elements. Biochem Biophys Res Commun 2012; 423:461-6. [PMID: 22668878 DOI: 10.1016/j.bbrc.2012.05.141] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Accepted: 05/26/2012] [Indexed: 11/20/2022]
Abstract
Eukaryotic RNA turnover is regulated in part by the exosome, a nuclear and cytoplasmic complex of ribonucleases (RNases) and RNA-binding proteins. The major RNase of the complex is thought to be Dis3, a multi-functional 3'-5' exoribonuclease and endoribonuclease. Although it is known that Dis3 and core exosome subunits are recruited to transcriptionally active genes and to messenger RNA (mRNA) substrates, this recruitment is thought to occur indirectly. We sought to discover cis-acting elements that recruit Dis3 or other exosome subunits. Using a bioinformatic tool called RNA SCOPE to screen the 3' untranslated regions of up-regulated transcripts from our published Dis3 depletion-derived transcriptomic data set, we identified several motifs as candidate instability elements. Secondary screening using a luciferase reporter system revealed that one cassette-harboring four elements-destabilized the reporter transcript. RNAi-based depletion of Dis3, Rrp6, Rrp4, Rrp40, or Rrp46 diminished the efficacy of cassette-mediated destabilization. Truncation analysis of the cassette showed that two exosome subunit-sensitive elements (ESSEs) destabilized the reporter. Point-directed mutagenesis of ESSE abrogated the destabilization effect. An examination of the transcriptomic data from exosome subunit depletion-based microarrays revealed that mRNAs with ESSEs are found in every up-regulated mRNA data set but are underrepresented or missing from the down-regulated data sets. Taken together, our findings imply a potentially novel mechanism of mRNA turnover that involves direct Dis3 and other exosome subunit recruitment to and/or regulation on mRNA substrates.
Collapse
|
30
|
Zaratiegui M, Castel SE, Irvine DV, Kloc A, Ren J, Li F, de Castro E, Marín L, Chang AY, Goto D, Cande WZ, Antequera F, Arcangioli B, Martienssen RA. RNAi promotes heterochromatic silencing through replication-coupled release of RNA Pol II. Nature 2011; 479:135-8. [PMID: 22002604 PMCID: PMC3391703 DOI: 10.1038/nature10501] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 08/25/2011] [Indexed: 11/25/2022]
Abstract
Heterochromatin comprises tightly compacted repetitive regions of eukaryotic chromosomes. The inheritance of heterochromatin through mitosis requires RNA interference (RNAi), which guides histone modification 1 during the DNA replication phase of the cell cycle2. Here, we show that the alternating arrangement of origins of replication and non-coding RNA in pericentromeric heterochromatin results in competition between transcription and replication. Co-transcriptional RNAi releases RNA polymerase II (PolII), allowing completion of DNA replication by the leading strand DNA polymerase, and associated histone modifying enzymes3 which spread heterochromatin with the replication fork. In the absence of RNAi, stalled forks are repaired by homologous recombination without histone modification.
Collapse
Affiliation(s)
- Mikel Zaratiegui
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Smith SB, Kiss DL, Turk E, Tartakoff AM, Andrulis ED. Pronounced and extensive microtubule defects in a Saccharomyces cerevisiae DIS3 mutant. Yeast 2011; 28:755-69. [PMID: 21919057 DOI: 10.1002/yea.1899] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/21/2011] [Accepted: 07/10/2011] [Indexed: 11/05/2022] Open
Abstract
Subunits of the RNA processing exosome assemble into structurally distinct protein complexes that function in disparate cellular compartments and RNA metabolic pathways. Here, in a genetic, cell biological and transcriptomic analysis, we examined the role of Dis3, an essential polypeptide with endo- and 3'→5' exo-ribonuclease activity, in cell cycle progression. We present several lines of evidence that perturbation of DIS3 affects microtubule (MT) localization and structure in Saccharomyces cerevisiae. Cells with a DIS3 mutant: (a) accumulate anaphase and pre-anaphase mitotic spindles; (b) exhibit spindles that are misorientated and displaced from the bud neck; (c) harbour elongated spindle-associated astral MTs; (d) have an increased G1 astral MT length and number; and (e) are hypersensitive to MT poisons. Mutations in the core exosome genes RRP4 and MTR3 and the exosome cofactor gene MTR4, but not other exosome subunit gene mutants, also elicit MT phenotypes. RNA deep sequencing analysis (RNA-seq) shows broad changes in the levels of cell cycle- and MT-related transcripts in mutant strains. Collectively, the data presented in this study suggest an evolutionarily conserved role for Dis3 in linking RNA metabolism, MTs and cell cycle progression.
Collapse
Affiliation(s)
- Sarah B Smith
- Department of Molecular Biology and Microbiology, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | | | | | |
Collapse
|
32
|
Abstract
In most eukaryotes, histone and DNA modifications are responsible for the silencing of genes integrated in heterochromatic sequences, as well as the silencing of pericentromeric repeats and transposable elements themselves. But the mechanisms that guide these modifications to heterochromatin during the cell cycle have been elusive. RNA interference takes advantage of heterochromatic transcription to process small RNAs and recruit enzymes required for both histone and DNA modifications, and is one such mechanism that has been identified. The processes are best understood in fission yeast and plants, but recent work in mammalian cells, especially in the germline, suggests these mechanisms may be highly conserved.
Collapse
Affiliation(s)
- Tom Volpe
- Department of Molecular and Cellular Biology, Northwestern University, Chicago, Illinois 60611, USA
| | | |
Collapse
|
33
|
Kitano E, Hayashi A, Kanai D, Shinmyozu K, Nakayama JI. Roles of fission yeast Grc3 protein in ribosomal RNA processing and heterochromatic gene silencing. J Biol Chem 2011; 286:15391-402. [PMID: 21385875 PMCID: PMC3083176 DOI: 10.1074/jbc.m110.201343] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2010] [Revised: 03/01/2011] [Indexed: 01/26/2023] Open
Abstract
Grc3 is an evolutionarily conserved protein. Genome-wide budding yeast studies suggest that Grc3 is involved in rRNA processing. In the fission yeast Schizosaccharomyces pombe, Grc3 was identified as a factor exhibiting distinct nuclear dot localization, yet its exact physiological function remains unknown. Here, we show that S. pombe Grc3 is required for both rRNA processing and heterochromatic gene silencing. Cytological analysis revealed that Grc3 nuclear dots correspond to heterochromatic regions and that some Grc3 is also present in the nucleolar peripheral region. Depleting the heterochromatic proteins Swi6 or Clr4 abolished heterochromatic localization of Grc3 and resulted in its preferential accumulation in the perinucleolar region, suggesting its dynamic association with these nuclear compartments. Cells expressing mutant grc3 showed defects in 25 S rRNA maturation and in heterochromatic gene silencing. Protein analysis of Grc3-containing complexes led to the identification of Las1 and components of the IPI complex (Rix1, Ipi1, and Crb3). All of these Grc3-interacting proteins showed a dynamic nuclear localization similar to that observed for Grc3, and those conditional mutants showed defects in both rRNA processing and silencing of centromeric transcripts. Our data suggest that Grc3 functions cooperatively with Las1 and the IPI complex in both ribosome biogenesis and heterochromatin assembly.
Collapse
Affiliation(s)
- Erina Kitano
- From the Laboratory for Chromatin Dynamics and
- the Department of Biology, Graduate School of Science, Kobe University, Kobe 657-8501, Japan, and
| | - Aki Hayashi
- From the Laboratory for Chromatin Dynamics and
| | - Daigo Kanai
- From the Laboratory for Chromatin Dynamics and
- the Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda 669-1337, Japan
| | - Kaori Shinmyozu
- Proteomics Support Unit, RIKEN Center for Developmental Biology, Kobe Hyogo 650-0047, Japan
| | - Jun-ichi Nakayama
- From the Laboratory for Chromatin Dynamics and
- the Department of Bioscience, Graduate School of Science and Technology, Kwansei-Gakuin University, Sanda 669-1337, Japan
| |
Collapse
|
34
|
Choi ES, Strålfors A, Castillo AG, Durand-Dubief M, Ekwall K, Allshire RC. Identification of noncoding transcripts from within CENP-A chromatin at fission yeast centromeres. J Biol Chem 2011; 286:23600-7. [PMID: 21531710 PMCID: PMC3123123 DOI: 10.1074/jbc.m111.228510] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The histone H3 variant CENP-A is the most favored candidate for an epigenetic mark that specifies the centromere. In fission yeast, adjacent heterochromatin can direct CENP-ACnp1 chromatin establishment, but the underlying features governing where CENP-ACnp1 chromatin assembles are unknown. We show that, in addition to centromeric regions, a low level of CENP-ACnp1 associates with gene promoters where histone H3 is depleted by the activity of the Hrp1Chd1 chromatin-remodeling factor. Moreover, we demonstrate that noncoding RNAs are transcribed by RNA polymerase II (RNAPII) from CENP-ACnp1 chromatin at centromeres. These analyses reveal a similarity between centromeres and a subset of RNAPII genes and suggest a role for remodeling at RNAPII promoters within centromeres that influences the replacement of histone H3 with CENP-ACnp1.
Collapse
Affiliation(s)
- Eun Shik Choi
- Wellcome Trust Centre for Cell Biology and Institute of Cell Biology, The University of Edinburgh, Edinburgh EH9 3JR, Scotland, United Kingdom
| | | | | | | | | | | |
Collapse
|
35
|
Rose AE, Poliseno L, Wang J, Clark M, Pearlman A, Wang G, Vega Y Saenz de Miera EC, Medicherla R, Christos PJ, Shapiro R, Pavlick A, Darvishian F, Zavadil J, Polsky D, Hernando E, Ostrer H, Osman I. Integrative genomics identifies molecular alterations that challenge the linear model of melanoma progression. Cancer Res 2011; 71:2561-71. [PMID: 21343389 DOI: 10.1158/0008-5472.can-10-2958] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Superficial spreading melanoma (SSM) and nodular melanoma (NM) are believed to represent sequential phases of linear progression from radial to vertical growth. Several lines of clinical, pathologic, and epidemiologic evidence suggest, however, that SSM and NM might be the result of independent pathways of tumor development. We utilized an integrative genomic approach that combines single nucleotide polymorphism array (6.0; Affymetrix) with gene expression array (U133A 2.0; Affymetrix) to examine molecular differences between SSM and NM. Pathway analysis of the most differentially expressed genes between SSM and NM (N = 114) revealed significant differences related to metabolic processes. We identified 8 genes (DIS3, FGFR1OP, G3BP2, GALNT7, MTAP, SEC23IP, USO1, and ZNF668) in which NM/SSM-specific copy number alterations correlated with differential gene expression (P < 0.05; Spearman's rank). SSM-specific genomic deletions in G3BP2, MTAP, and SEC23IP were independently verified in two external data sets. Forced overexpression of metabolism-related gene MTAP (methylthioadenosine phosphorylase) in SSM resulted in reduced cell growth. The differential expression of another metabolic-related gene, aldehyde dehydrogenase 7A1 (ALDH7A1), was validated at the protein level by using tissue microarrays of human melanoma. In addition, we show that the decreased ALDH7A1 expression in SSM may be the result of epigenetic modifications. Our data reveal recurrent genomic deletions in SSM not present in NM, which challenge the linear model of melanoma progression. Furthermore, our data suggest a role for altered regulation of metabolism-related genes as a possible cause of the different clinical behavior of SSM and NM.
Collapse
Affiliation(s)
- Amy E Rose
- Department of Dermatology, New York University School of Medicine, New York, New York, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Kiss DL, Andrulis ED. The exozyme model: a continuum of functionally distinct complexes. RNA (NEW YORK, N.Y.) 2011; 17:1-13. [PMID: 21068185 PMCID: PMC3004051 DOI: 10.1261/rna.2364811] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Exosome complexes are composed of 10 to 11 subunits and are involved in multiple facets of 3' → 5' RNA processing and turnover. The current paradigm stipulates that a uniform, stoichiometric core exosome, composed of single copies of each subunit, carries out all RNA metabolic functions in vivo. While core composition is well established in vitro, available genetic, cell biological, proteomic, and transcriptomic data raise questions about whether individual subunits contribute to RNA metabolic functions exclusively within the complex. Here, we recount the current understanding of the core exosome model and show predictions of the core model that are not satisfied by the available evidence. To resolve this discrepancy, we propose the exozyme hypothesis, a novel model stipulating that while exosome subunits can and do carry out certain functions within the core, subsets of exosome subunits and cofactors also assemble into a continuum of compositionally distinct complexes--exozymes--with different RNA specificities. The exozyme model is consistent with all published data and provides a new framework for understanding the general mechanisms and regulation of RNA processing and turnover.
Collapse
Affiliation(s)
- Daniel L Kiss
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | |
Collapse
|
37
|
Garcia JF, Dumesic PA, Hartley PD, El-Samad H, Madhani HD. Combinatorial, site-specific requirement for heterochromatic silencing factors in the elimination of nucleosome-free regions. Genes Dev 2010; 24:1758-71. [PMID: 20675407 DOI: 10.1101/gad.1946410] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-resolution nucleosome occupancy maps of heterochromatic regions of wild-type and silencing-defective mutants of the fission yeast Schizosaccharomyces pombe revealed that heterochromatin induces the elimination of nucleosome-free regions (NFRs). NFRs associated with transcription initiation sites as well as those not associated with promoters are affected. We dissected the roles of the histone H3K9 methyltransferase Clr4 and the HP1 proteins Swi6 and Chp2, as well as the two catalytic activities of the SHREC histone deacetylase (HDAC)/ATPase effector complex. Strikingly, different DNA sites have distinct combinatorial requirements for these factors: Five classes of NFRs were identified that are eliminated by silencing factors through a mechanistic hierarchy governed by Clr4. The SHREC HDAC activity plays a major role in the elimination of class I-IV NFRs by antagonizing the action of RSC, a remodeling complex implicated in NFR formation. We propose that heterochromatin formation involves the deployment in several sequence-specific mechanisms to eliminate gaps between nucleosomes, thereby blocking access to the DNA.
Collapse
Affiliation(s)
- Jennifer F Garcia
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA 94158, USA
| | | | | | | | | |
Collapse
|
38
|
St-André O, Lemieux C, Perreault A, Lackner DH, Bähler J, Bachand F. Negative regulation of meiotic gene expression by the nuclear poly(a)-binding protein in fission yeast. J Biol Chem 2010; 285:27859-68. [PMID: 20622014 DOI: 10.1074/jbc.m110.150748] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Meiosis is a cellular differentiation process in which hundreds of genes are temporally induced. Because the expression of meiotic genes during mitosis is detrimental to proliferation, meiotic genes must be negatively regulated in the mitotic cell cycle. Yet, little is known about mechanisms used by mitotic cells to repress meiosis-specific genes. Here we show that the poly(A)-binding protein Pab2, the fission yeast homolog of mammalian PABPN1, controls the expression of several meiotic transcripts during mitotic division. Our results from chromatin immunoprecipitation and promoter-swapping experiments indicate that Pab2 controls meiotic genes post-transcriptionally. Consistently, we show that the nuclear exosome complex cooperates with Pab2 in the negative regulation of meiotic genes. We also found that Pab2 plays a role in the RNA decay pathway orchestrated by Mmi1, a previously described factor that functions in the post-transcriptional elimination of meiotic transcripts. Our results support a model in which Mmi1 selectively targets meiotic transcripts for degradation via Pab2 and the exosome. Our findings have therefore uncovered a mode of gene regulation whereby a poly(A)-binding protein promotes RNA degradation in the nucleus to prevent untimely expression.
Collapse
Affiliation(s)
- Olivier St-André
- RNA Group, Université de Sherbrooke, Department of Biochemistry, Sherbrooke, Québec J1H 5N4, Canada
| | | | | | | | | | | |
Collapse
|
39
|
Importance of polyadenylation in the selective elimination of meiotic mRNAs in growing S. pombe cells. EMBO J 2010; 29:2173-81. [PMID: 20512112 PMCID: PMC2905246 DOI: 10.1038/emboj.2010.108] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2010] [Accepted: 04/30/2010] [Indexed: 11/09/2022] Open
Abstract
A number of meiosis-specific mRNAs are initially weakly transcribed, but then selectively removed during fission yeast mitotic growth. These mRNAs harbour a region termed DSR (determinant of selective removal), which is recognized by the YTH family RNA-binding protein Mmi1p. Mmi1p directs the destruction of these mRNAs in collaboration with nuclear exosomes. However, detailed molecular mechanisms underlying this process of selective mRNA elimination have remained elusive. In this study, we demonstrate the critical role of polyadenylation in this process. Two-hybrid and genetic screens revealed potential interactions between Mmi1p and proteins involved in polyadenylation. Additional investigations showed that destruction of DSR-containing mRNAs by exosomes required polyadenylation by a canonical poly(A) polymerase. The recruitment of Pab2p, a poly(A)-binding protein, to the poly(A) tail was also necessary for mRNA destruction. In cells undergoing vegetative growth, Mmi1p localized with exosomes, Pab2p, and components of the polyadenylation complex in several patchy structures in the nucleoplasm. These patches may represent the sites for degradation of meiosis-specific mRNAs with untimely expression.
Collapse
|
40
|
Mamolen M, Smith A, Andrulis ED. Drosophila melanogaster Dis3 N-terminal domains are required for ribonuclease activities, nuclear localization and exosome interactions. Nucleic Acids Res 2010; 38:5507-17. [PMID: 20421210 PMCID: PMC2938213 DOI: 10.1093/nar/gkq295] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Eukaryotic cells use numerous pathways to regulate RNA production, localization and stability. Several of these pathways are controlled by ribonucleases. The essential ribonuclease, Dis3, plays important roles in distinct RNA metabolic pathways. Despite much progress in understanding general characteristics of the Dis3 enzyme in vitro and in vivo, much less is known about the contributions of Dis3 domains to its activities, subcellular localization and protein–protein interactions. To address these gaps, we constructed a set of Drosophila melanogaster Dis3 (dDis3) mutants and assessed their enzymatic activity in vitro and their localizations and interactions in S2 tissue culture cells. We show that the dDis3 N-terminus is sufficient for endoribonuclease activity in vitro and that proper N-terminal domain structure is critical for activity of the full-length polypeptide. We find that the dDis3 N-terminus also contributes to its subcellular distribution, and is necessary and sufficient for interactions with core exosome proteins. Finally, dDis3 interaction with dRrp6 and dImportin-α3 is independent of core interactions and occurs though two different regions. Taken together, our data suggest that the dDis3 N-terminus is a dynamic and complex hub for RNA metabolism and exosome interactions.
Collapse
Affiliation(s)
- Megan Mamolen
- Department of Molecular Biology and Microbiology and Cell Biology Program, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
41
|
Punga T, Bühler M. Long intronic GAA repeats causing Friedreich ataxia impede transcription elongation. EMBO Mol Med 2010; 2:120-9. [PMID: 20373285 PMCID: PMC3377279 DOI: 10.1002/emmm.201000064] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 01/08/2010] [Accepted: 02/02/2010] [Indexed: 12/31/2022] Open
Abstract
Friedreich ataxia is a degenerative disease caused by deficiency of the protein frataxin (FXN). An intronic expansion of GAA triplets in the FXN-encoding gene, FXN, causes gene silencing and thus reduced FXN protein levels. Although it is widely assumed that GAA repeats block transcription via the assembly of an inaccessible chromatin structure marked by methylated H3K9, direct proof for this is lacking. In this study, we analysed different histone modification patterns along the human FXN gene in FRDA patient-derived lymphoblastoid cell lines. We show that FXN mRNA synthesis, but not turnover rates are affected by an expanded GAA repeat tract. Importantly, rather than preventing transcription initiation, long GAA repeat tracts affect transcription at the elongation step and this can occur independently of H3K9 methylation. Our data demonstrate that finding novel strategies to overcome the transcription elongation problem may develop into promising new treatments for FRDA.
Collapse
Affiliation(s)
- Tanel Punga
- Friedrich Miescher Institute for Biomedical ResearchBasel, Switzerland
| | - Marc Bühler
- Friedrich Miescher Institute for Biomedical ResearchBasel, Switzerland
| |
Collapse
|
42
|
Lemay JF, D'Amours A, Lemieux C, Lackner DH, St-Sauveur VG, Bähler J, Bachand F. The nuclear poly(A)-binding protein interacts with the exosome to promote synthesis of noncoding small nucleolar RNAs. Mol Cell 2010; 37:34-45. [PMID: 20129053 DOI: 10.1016/j.molcel.2009.12.019] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Revised: 08/11/2009] [Accepted: 11/09/2009] [Indexed: 11/19/2022]
Abstract
Poly(A)-binding proteins (PABPs) are important to eukaryotic gene expression. In the nucleus, the PABP PABPN1 is thought to function in polyadenylation of pre-mRNAs. Deletion of fission yeast pab2, the homolog of mammalian PABPN1, results in transcripts with markedly longer poly(A) tails, but the nature of the hyperadenylated transcripts and the mechanism that leads to RNA hyperadenylation remain unclear. Here we report that Pab2 functions in the synthesis of noncoding RNAs, contrary to the notion that PABPs function exclusively on protein-coding mRNAs. Accordingly, the absence of Pab2 leads to the accumulation of polyadenylated small nucleolar RNAs (snoRNAs). Our findings suggest that Pab2 promotes poly(A) tail trimming from pre-snoRNAs by recruiting the nuclear exosome. This work unveils a function for the nuclear PABP in snoRNA synthesis and provides insights into exosome recruitment to polyadenylated RNAs.
Collapse
Affiliation(s)
- Jean-François Lemay
- RNA Group, Department of Biochemistry, Université de Sherbrooke, Sherbrooke, QC JIH 5N4, Canada
| | | | | | | | | | | | | |
Collapse
|
43
|
Coy S, Vasiljeva L. The exosome and heterochromatin : multilevel regulation of gene silencing. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 702:105-21. [PMID: 21713681 DOI: 10.1007/978-1-4419-7841-7_9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Heterochromatic silencing is important for repressing gene expression, protecting cells against viral invasion, maintaining DNA integrity and for proper chromosome segregation. Recently, it has become apparent that expression of eukaryotic genomesis far more complex than had previously been anticipated. Strikingly, it has emerged that most of the genome is transcribed including intergenic regions and heterochromatin, calling for us to re-address the question of how gene silencing is regulated and re-evaluate the concept ofheterochromatic regions of the genome being transcriptionally inactive. Although heterochromatic silencing can be regulated at the transcriptional level, RNA degrading activities supplied either by the exosome complex or RNAi also significantly contribute to this process. The exosome also regulates noncoding RNAs (ncRNAs) involved in the establishment of heterochromatin, further underscoring its role as the major cellular machinery involved in RNA processing and turn-over. This multilevel control of the transcriptome may be utilized to ensure greater accuracy of gene expression and allow distinction between functional transcripts and background noise. In this chapter, we will discuss the regulation of gene silencing across species, with special emphasis on the exosome's contribution to the process. We will also discuss the links between transcriptional and posttranscriptional mechanisms for gene silencing and their impact on the regulation of eukaryotic transcriptomes.
Collapse
Affiliation(s)
- Sarah Coy
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, UK
| | | |
Collapse
|
44
|
Splicing factor Spf30 assists exosome-mediated gene silencing in fission yeast. Mol Cell Biol 2009; 30:1145-57. [PMID: 20028739 DOI: 10.1128/mcb.01317-09] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Heterochromatin assembly in fission yeast relies on the processing of cognate noncoding RNAs by both the RNA interference and the exosome degradation pathways. Recent evidence indicates that splicing factors facilitate the cotranscriptional processing of centromeric transcripts into small interfering RNAs (siRNAs). In contrast, how the exosome contributes to heterochromatin assembly and whether it also relies upon splicing factors were unknown. We provide here evidence that fission yeast Spf30 is a splicing factor involved in the exosome pathway of heterochromatin silencing. Spf30 and Dis3, the main exosome RNase, colocalize at centromeric heterochromatin and euchromatic genes. At the centromeres, Dis3 helps recruiting Spf30, whose deficiency phenocopies the dis3-54 mutant: heterochromatin is impaired, as evidenced by reduced silencing and the accumulation of polyadenylated centromeric transcripts, but the production of siRNAs appears to be unaffected. Consistent with a direct role, Spf30 binds centromeric transcripts and locates at the centromeres in an RNA-dependent manner. We propose that Spf30, bound to nascent centromeric transcripts, perhaps with other splicing factors, assists their processing by the exosome. Splicing factor intercession may thus be a common feature of gene silencing pathways.
Collapse
|
45
|
Mamolen M, Andrulis ED. Characterization of the Drosophila melanogaster Dis3 ribonuclease. Biochem Biophys Res Commun 2009; 390:529-34. [PMID: 19800864 DOI: 10.1016/j.bbrc.2009.09.132] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Accepted: 09/30/2009] [Indexed: 10/20/2022]
Abstract
The Dis3 ribonuclease is a member of the hydrolytic RNR protein family. Although much progress has been made in understanding the structure, function, and enzymatic activities of prokaryotic RNR family members RNase II and RNase R, there are no activity studies of the metazoan ortholog, Dis3. Here, we characterize the activity of the Drosophila melanogaster Dis3 (dDis3) protein. We find that dDis3 is active in the presence of various monovalent and divalent cations, and requires divalent cations for activity. dDis3 hydrolyzes compositionally distinct RNA substrates, yet releases different products depending upon the substrate. Additionally, dDis3 remains active when lacking N-terminal domains, suggesting that an independent active site resides in the C-terminus of the protein. Finally, a study of dDis3 interactions with dRrp6 and core exosome subunits in extracts revealed sensitivity to higher divalent cation concentrations and detergent, suggesting the presence of both ionic and hydrophobic interactions in dDis3-exosome complexes. Our study thus broadens our mechanistic understanding of the general ribonuclease activity of Dis3 and RNR family members.
Collapse
Affiliation(s)
- Megan Mamolen
- Department of Molecular Biology and Microbiology and Program in Cell Biology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | |
Collapse
|
46
|
Drake KM, Ruteshouser EC, Natrajan R, Harbor P, Wegert J, Gessler M, Pritchard-Jones K, Grundy P, Dome J, Huff V, Jones C, Aldred MA. Loss of heterozygosity at 2q37 in sporadic Wilms' tumor: putative role for miR-562. Clin Cancer Res 2009; 15:5985-92. [PMID: 19789318 DOI: 10.1158/1078-0432.ccr-09-1065] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Wilms' tumor is a childhood cancer of the kidney with an incidence of approximately 1 in 10,000. Cooccurrence of Wilms' tumor with 2q37 deletion syndrome, an uncommon constitutional chromosome abnormality, has been reported previously in three children. Given these are independently rare clinical entities, we hypothesized that 2q37 harbors a tumor suppressor gene important in Wilms' tumor pathogenesis. EXPERIMENTAL DESIGN To test this, we performed loss of heterozygosity analysis in a panel of 226 sporadic Wilms' tumor samples and mutation analysis of candidate genes. RESULTS Loss of heterozygosity was present in at least 4% of cases. Two tumors harbored homozygous deletions at 2q37.1, supporting the presence of a tumor suppressor gene that follows a classic two-hit model. However, no other evidence of second mutations was found, suggesting that heterozygous deletion alone may be sufficient to promote tumorigenesis in concert with other genomic abnormalities. We show that miR-562, a microRNA within the candidate region, is expressed only in kidney and colon and regulates EYA1, a critical gene for renal development. miR-562 expression is reduced in Wilms' tumor and may contribute to tumorigenesis by deregulating EYA1. Two other candidate regions were localized at 2q37.3 and 2qter, but available data from patients with constitutional deletions suggest that these probably do not confer a high risk for Wilms' tumor. CONCLUSIONS Our data support the presence of a tumor suppressor gene at 2q37.1 and suggest that, in individuals with constitutional 2q37 deletions, any increased risk for developing Wilms' tumor likely correlates with deletions encompassing 2q37.1.
Collapse
Affiliation(s)
- Kylie M Drake
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Zofall M, Fischer T, Zhang K, Zhou M, Cui B, Veenstra TD, Grewal SIS. Histone H2A.Z cooperates with RNAi and heterochromatin factors to suppress antisense RNAs. Nature 2009; 461:419-22. [PMID: 19693008 PMCID: PMC2746258 DOI: 10.1038/nature08321] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2009] [Accepted: 07/29/2009] [Indexed: 12/20/2022]
Abstract
Eukaryotic transcriptomes are characterized by widespread transcription of non-coding and antisense RNAs1–3, which is linked to key chromosomal processes, such as chromatin remodeling, gene regulation, and heterochromatin assembly4–7. However, these transcripts can be deleterious, and their accumulation is suppressed by several mechanisms including degradation by the nuclear exosome8,9. The mechanisms by which cells differentiate coding RNAs from transcripts targeted for degradation are not clear. Here we show that the variant histone H2A.Z, which is loaded preferentially at the 5' ends of genes by the Swr1 complex containing a JmjC domain protein, mediates suppression of antisense transcripts in the fission yeast Schizosaccharomyces pombe genome. H2A.Z is partially redundant in this regard with the Clr4/Suv39h-containing heterochromatin silencing complex that is also distributed at euchromatic loci, and with RNAi component Argonaute (Ago1). Loss of Clr4 or Ago1 alone has little effect on antisense transcript levels, but cells lacking either of these factors and H2A.Z show markedly increased levels of antisense RNAs that are normally degraded by the exosome. These analyses suggest that in addition to performing other functions, H2A.Z is a component of a genome indexing mechanism that cooperates with heterochromatin and RNAi factors to suppress read-through antisense transcripts.
Collapse
Affiliation(s)
- Martin Zofall
- Laboratory of Biochemistry and Molecular Biology, National Cancer Institute, National Institutes of Health Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | |
Collapse
|
48
|
Silent chromatin at the middle and ends: lessons from yeasts. EMBO J 2009; 28:2149-61. [PMID: 19629038 PMCID: PMC2722250 DOI: 10.1038/emboj.2009.185] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2009] [Accepted: 06/15/2009] [Indexed: 11/09/2022] Open
Abstract
Eukaryotic centromeres and telomeres are specialized chromosomal regions that share one common characteristic: their underlying DNA sequences are assembled into heritably repressed chromatin. Silent chromatin in budding and fission yeast is composed of fundamentally divergent proteins tat assemble very different chromatin structures. However, the ultimate behaviour of silent chromatin and the pathways that assemble it seem strikingly similar among Saccharomyces cerevisiae (S. cerevisiae), Schizosaccharomyces pombe (S. pombe) and other eukaryotes. Thus, studies in both yeasts have been instrumental in dissecting the mechanisms that establish and maintain silent chromatin in eukaryotes, contributing substantially to our understanding of epigenetic processes. In this review, we discuss current models for the generation of heterochromatic domains at centromeres and telomeres in the two yeast species.
Collapse
|
49
|
Graham AC, Kiss DL, Andrulis ED. Core exosome-independent roles for Rrp6 in cell cycle progression. Mol Biol Cell 2009; 20:2242-53. [PMID: 19225159 PMCID: PMC2669031 DOI: 10.1091/mbc.e08-08-0825] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 02/03/2009] [Accepted: 02/11/2009] [Indexed: 12/25/2022] Open
Abstract
Exosome complexes are 3' to 5' exoribonucleases composed of subunits that are critical for numerous distinct RNA metabolic (ribonucleometabolic) pathways. Several studies have implicated the exosome subunits Rrp6 and Dis3 in chromosome segregation and cell division but the functional relevance of these findings remains unclear. Here, we report that, in Drosophila melanogaster S2 tissue culture cells, dRrp6 is required for cell proliferation and error-free mitosis, but the core exosome subunit Rrp40 is not. Micorarray analysis of dRrp6-depleted cell reveals increased levels of cell cycle- and mitosis-related transcripts. Depletion of dRrp6 elicits a decrease in the frequency of mitotic cells and in the mitotic marker phospho-histone H3 (pH3), with a concomitant increase in defects in chromosome congression, separation, and segregation. Endogenous dRrp6 dynamically redistributes during mitosis, accumulating predominantly but not exclusively on the condensed chromosomes. In contrast, core subunits localize predominantly to MTs throughout cell division. Finally, dRrp6-depleted cells treated with microtubule poisons exhibit normal kinetochore recruitment of the spindle assembly checkpoint protein BubR1 without restoring pH3 levels, suggesting that these cells undergo premature chromosome condensation. Collectively, these data support the idea that dRrp6 has a core exosome-independent role in cell cycle and mitotic progression.
Collapse
Affiliation(s)
- Amy C Graham
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
50
|
Graham AC, Davis SM, Andrulis ED. Interdependent nucleocytoplasmic trafficking and interactions of Dis3 with Rrp6, the core exosome and importin-alpha3. Traffic 2009; 10:499-513. [PMID: 19220816 DOI: 10.1111/j.1600-0854.2009.00888.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Subcellular compartmentalization of exoribonucleases (RNAses) is an important control mechanism in the temporal and spatial regulation of RNA processing and decay. Despite much progress towards understanding RNAse substrates and functions, we know little of how RNAses are transported and assembled into functional, subcellularly restricted complexes. To gain insight into this issue, we are studying the exosome-binding protein Dis3, a processive 3' to 5' exoribonuclease. Here, we examine the interactions and subcellular localization of the Drosophila melanogaster Dis3 (dDis3) protein. N-terminal domain mutants of dDis3 abolish associations with the 'core' exosome, yet only reduce binding to the 'nuclear' exosome-associated factor dRrp6. We show that nuclear localization of dDis3 requires a C-terminal classic nuclear localization signal (NLS). Consistent with this, dDis3 specifically co-precipitates the NLS-binding protein importin-alpha3. Surprisingly, dDis3 constructs that lack or mutate the C-terminal NLS retain importin-alpha3 binding, suggesting that the interaction is indirect. Finally, we find that endogenous dDis3 and dRrp6 exhibit coordinated nuclear enrichment or exclusion, suggesting that dDis3, Rrp6 and importin-alpha3 interact in a complex independent of the core. We propose that the movement and deposition of this complex is important for the subcellular compartmentalization and regulation of the exosome core.
Collapse
Affiliation(s)
- Amy C Graham
- Department of Molecular Biology and Microbiology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | | | | |
Collapse
|